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Abstract
Everyday conversation is both an auditory and a visual phenomenon. While visual speech
information enhances comprehension for the listener, evidence suggests that the ability to benefit
from this information improves with development. A number of brain regions have been
implicated in audiovisual speech comprehension, but the extent to which the neurobiological
substrate in the child compares to the adult is unknown. In particular, developmental differences in
the network for audiovisual speech comprehension could manifest though the incorporation of
additional brain regions, or through different patterns of effective connectivity. In the present
study we used functional magnetic resonance imaging and structural equation modeling (SEM) to
characterize the developmental changes in network interactions for audiovisual speech
comprehension. The brain response was recorded while children 8- to 11-years-old and adults
passively listened to stories under audiovisual (AV) and auditory-only (A) conditions. Results
showed that in children and adults, AV comprehension activated the same fronto-temporo-parietal
network of regions known for their contribution to speech production and perception. However,
the SEM network analysis revealed age-related differences in the functional interactions among
these regions. In particular, the influence of the posterior inferior frontal gyrus/ventral premotor
cortex on supramarginal gyrus differed across age groups during AV, but not A speech. This
functional pathway might be important for relating motor and sensory information used by the
listener to identify speech sounds. Further, its development might reflect changes in the
mechanisms that relate visual speech information to articulatory speech representations through
experience producing and perceiving speech.
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In naturalistic situations, such as conversation, the incoming auditory speech stream is
accompanied by information from the face, particularly from the lips, mouth, and eyes of the
speaker. This visual information has been shown to enhance speech comprehension in both
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children and adults (Binnie, Montgomery, & Jackson, 1974; Dodd, 1979; MacLeod &
Summerfield, 1987; Massaro, 1984; Massaro, Thompson, Barron, & Laren, 1986; Ross,
Saint-Amour, Leavitt, Javitt, & Foxe, 2007; Sumby & Pollack, 1954; Summerfield, 1979).
Although sensitivity to visual speech information appears early in development (Burnham &
Dodd, 2004; Kuhl & Meltzoff, 1982; Patterson & Werker, 2003; Rosenblum, Schmuckler, &
Johnson, 1997; Teinonen, Aslin, Alku, & Csibra, 2008; Weikum et al., 2007), there is
evidence that it continues to develop throughout childhood (Desjardins & Werker, 2004;
Hockley & Polka, 1994; Massaro et al., 1986; McGurk & MacDonald, 1976; Sekiyama &
Burnham, 2008; van Linden & Vroomen, 2008). With respect to neurobiology, recent
research suggests that audiovisual speech comprehension in adults is mediated by a neural
network that incorporates primary sensory regions as well as posterior inferior frontal gyrus
and ventral premotor cortex (IFGOp/PMv), supramarginal gyrus (SMG), posterior superior
temporal gyrus (STGp), planum temporale (PTe), and the posterior superior temporal sulcus
(STSp), and involves strong effective connectivity among these regions (Bernstein, Lu, &
Jiang, 2008; Callan, Jones, Callan, & Akahane-Yamada, 2004; Callan et al., 2003; Calvert &
Campbell, 2003; Calvert, Campbell, & Brammer, 2000; Jones & Callan, 2003; Miller &
D'Esposito, 2005; Ojanen et al., 2005; Pekkola et al., 2006; Sekiyama, Kanno, Miura, &
Sugita, 2003; Skipper, Goldin-Meadow, Nusbaum, & Small, 2007a; Skipper, Nusbaum, &
Small, 2005; Wright, Pelphrey, Allison, McKeown, & McCarthy, 2003). The extent to
which the mechanism for audiovisual speech comprehension in the child compares to the
adult case is unknown; in particular, it is unclear whether the neurobiological substrate in the
developing brain incorporates additional regions or different patterns of effective
connectivity. In this paper, we examine the potential developmental mechanisms that result
in a mature system implementing audiovisual speech comprehension, and how this system
changes developmentally in the interactions among brain regions involved in the production
and perception of speech.

Empirical evidence suggests that speech perception in children is less influenced by visual
speech information than in adults. For example, studies assessing the development of
audiovisual speech perception using incongruent “McGurk” stimuli report an increase in the
influence of visual speech information with age, with development perhaps continuing even
as late as the eleventh year (Hockley & Polka, 1994; Massaro, 1984; Massaro et al., 1986;
McGurk & MacDonald, 1976; Sekiyama & Burnham, 2008; Wightman, Kistler, & Brungart,
2006). Several factors likely contribute to the neural development of audiovisual speech,
including both general factors (e.g., development of selective attention, increasing
myelination, and synaptic pruning) and more specific factors (e.g., learning of oral motor
patterns for speech). Here we focus on the child's increasing personal experience perceiving
and producing speech, in an effort to gain insight into how children integrate audiovisual
information during everyday verbal communication.

There is evidence to suggest that audiovisual speech integration is a skill that is acquired by
experience listening to and observing speech over an extended period of time. In adults, for
example, the amount of experience with a second language affects audiovisual processing in
that language: Native French speakers with only beginning and intermediate skills in
English are less sensitive to visual cues indicating a particular English consonant than either
monolingual English speakers or more advanced French/English bilinguals (Werker, Frost,
& McGurk, 1992). The role of experience in audiovisual integration gains further support
from the presence of cross-linguistic differences. In one such example, Japanese adults are
less influenced by visual information than English adults (Sekiyama & Burnham, 2008;
Sekiyama & Tohkura, 1993), a difference that begins to emerge between 6 and 8 years
(Sekiyama & Burnham, 2008). These data suggest that developmental differences in
audiovisual speech integration are moderated by everyday perceptual experience with
language.
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Experience with speech production also contributes to the development of audiovisual
speech comprehension. For example, children with articulatory difficulties perceive
incongruent audiovisual syllables more often by their auditory component than do children
without articulatory difficulties, who more often hear the fused percept or perceive the
visual component alone (e.g., when presented with an auditory /pa/ and a visual /ka/,
children tend to report hearing /pa/ instead of a fused percept /ta/, or visual /ka/; Desjardins,
Rogers, & Werker, 1997, but see Dodd, McIntosh, Erdener, & Burnham, 2008). In addition,
both groups of children are less likely to integrate the auditory and visual information into a
fused percept, or to perceive the visual component alone, than adults. Further, children with
cochlear implants who produce more intelligible speech demonstrate an improved ability to
use visual speech information (Bergeson, Pisoni, & Davis, 2005; Lachs, Pisoni, & Kirk,
2001). Taken together, these findings suggest a relationship between speech production skill
and audiovisual speech perception.

The development of audiovisual speech comprehension thus appears to involve mechanisms
that relate visual speech information to articulatory speech representations, both of which
are acquired through experience with one's native language (cf. Desjardins et al., 1997; Kuhl
& Meltzoff, 1982, 1984; Sekiyama & Burnham, 2008). Specifically, we propose that as
children experience the auditory, somatosensory, and motor consequences of produced
speech sounds in their own speech and in others' speech, they develop a mapping system
between sensory and motor output. This mapping allows for these components of the
audiovisual speech signal to have a “predictive value” for each of the other components. For
example, several authors have suggested that motor-speech representations constrain the
interpretation of the incoming auditory signal (Callan et al., 2004; Skipper et al., 2005;
Skipper, Nusbaum, & Small, 2006; Skipper, van Wassenhove, Nusbaum, & Small, 2007b;
van Wassenhove, Grant, & Poeppel, 2005; Wilson & Iacoboni, 2006). In one model, visible
articulatory movements of the speaker's lips and mouth invoke articulatory representations
of the listener that could have generated the observed speech movements (Skipper et al.,
2007b; van Wassenhove et al., 2005). These representations, based in prior articulatory
experience, provide a set of possible phonetic targets to constrain the final interpretation of
the speech sound (i.e., the visual information provides a “forward model” of the speech
sound). Such motor-speech models draw on the listener's articulatory repertoire, and we
argue that, because adults have more experience producing and perceiving speech than
children, they have more precise predictors of the target speech sound.

As mentioned at the outset, the neural substrate of audiovisual speech perception consists of
a widespread network of interconnected cortical regions. In general, brain networks develop
though increasing integration among the component regions that define the network (Church
et al., 2009; Fair et al., 2007a; Fair et al., 2007b; Karunanayaka et al., 2007). The primary
objective of the present study was to characterize this developmental change for audiovisual
speech comprehension. To do so we used structural equation modeling (SEM) to assess
differences between adults and children in effective connectivity among left hemisphere
brain regions important for language production and perception. Physiological studies have
suggested that interactions among left IFGOp/PMv, SMG, STGp, PTe, and STSp support
audiovisual speech perception (see Campbell, 2008 for review). In particular, the
development of audiovisual speech might depend on interactions between inferior frontal/
ventral premotor regions, and posterior temporal/inferior parietal regions. This pathway has
been postulated to help relate motor (articulatory) and sensory (auditory and somatosensory)
information about the identity of the speech target (Callan et al., 2004; Skipper et al., 2005;
Skipper et al., 2006; Skipper et al., 2007b; van Wassenhove et al., 2005; Wilson & Iacoboni,
2006). Because adults have more experience both perceiving and producing speech, their
sensory and motor repertoires are richer, and will have greater predictive value. Thus, we
predict significant age differences in effective connectivity for audiovisual speech between
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inferior frontal/ventral premotor regions, and posterior temporal and inferior parietal
regions.

In the current study, we used functional magnetic resonance imaging (fMRI) and SEM to
study twenty-four adults and nine children during auditory-alone and audiovisual story
comprehension. We compared effective connectivity between children and adults across the
network, with particular attention to connectivity between temporal/parietal and frontal
regions.

Materials and Methods
Participants

Twenty-four adults (12 females, M age = 23.0 years, SD = 5.6 years) and nine children (7
females, range = 8-11 years, M age = 9.5 years, SD = 0.9 years) participated. Eight years
was the youngest age in the available cohort, and in previous studies, development of
audiovisual speech perception has been shown to occur in this age range, with few age
differences beyond age 11 (Hockley & Polka, 1994; Massaro et al., 1986; McGurk &
MacDonald, 1976; Sekiyama & Burnham, 2008; Wightman et al., 2006). Only one
additional child was excluded for excessive motion (> 1 mm). The adult sample was part of
a prior investigation conducted in our laboratory, which used the same experimental
manipulation (Dick, Goldin-Meadow, Hasson, Skipper, & Small, 2009; Skipper et al.,
2007a; Skipper, Goldin-Meadow, Nusbaum, & Small, 2009). All participants were right-
handed according to the Edinburgh handedness inventory (Oldfield, 1971), had normal
hearing (self-reported) and normal (or corrected to normal) vision and were native speakers
of English. No participant had a history of neurological or psychiatric illness. All adult
participants gave written informed consent. Participants under 18 years gave assent and
informed consent was obtained from a parent. The Institutional Review Board of the
Biological Sciences Division of The University of Chicago approved the study.

Stimuli
We used a passive listening paradigm to avoid explicit motor responses, which could
introduce a confound in motor areas responsible for preparing and producing an action to
respond (Small & Nusbaum, 2004; Yarkoni, Speer, Balota, McAvoy, & Zacks, 2008).
Participants were instructed to watch and listen to short adaptations of Aesop's Fables (M =
53 s; SD = 3 s) that were presented with and without visual speech information. Although
the overall study incorporated four story-telling conditions, only two are included in the
present analysis, Audiovisual (AV; with face information but without manual gestures) and
Auditory (A; with no visual input). Each participant heard one AV and one A story in each
of two runs for a total of two stories of each type. The stories were separated by a 16 s
Baseline fixation condition. In the AV condition, participants watched and listened to a
female storyteller who rested her hands in her lap. She was framed from waist to head with
sufficient width to allow full perception of the upper body. In the A condition, participants
listened to the stories while watching a fixation cross presented on the screen. Audio was
delivered at a sound pressure level of 85 dB-SPL through MRI-compatible headphones
(Resonance Technologies, Inc., Northridge, CA). Video stimuli were viewed through a
mirror attached to the head coil. Following each run, participants responded to true/false
questions about each story using a button box. Mean accuracy was high for both adults (AV
M = 87%; A M = 82%) and children (AV M = 84%; A M = 84%), with no significant group
or condition differences or interaction (all t's < 1). These results suggest both children and
adults paid attention to the stories in both conditions.
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Data collection
MRI scans were acquired at 3-Tesla with a standard quadrature head coil (General Electric,
Milwaukee, WI, USA). Volumetric T1-weighted scans (120 axial slices, 1.5 × .938 × .938
mm resolution) provided high-resolution anatomical images. For the functional scans, thirty
slices (voxel size 5.00 × 3.75 × 3.75 mm) were acquired in the sagittal plane using spiral
blood oxygen level dependent (BOLD) acquisition (TR/TE = 2000 ms/25 ms, FA = 77°;
Noll, Cohen, Meyer, & Schneider, 1995). The first four BOLD scans of each of the two runs
were discarded to avoid images acquired before the signal reached a steady state.

Scanning Children—Special steps were taken to ensure that children were properly
acclimated to the scanner environment. Following Byars et al. (2002), we included a “mock”
scan during which children practiced lying still in the scanner while listening to prerecorded
scanner noise. When children felt confident to enter the real scanner, the session began.

Data Analysis I: Preprocessing
Two analyses were performed: a “block” analysis correlating the hemodynamic response
during story presentation to an extrinsic hemodynamic response function, and a network
analysis using structural equation modeling (SEM). The following steps were implemented:

Preprocessing—Preprocessing steps were conducted using Analysis of Functional
Neuroimages software (AFNI; http://afni.nimh.nih.gov) on the native MRI images. For each
participant, image processing consisted of (1) three-dimensional motion correction using
weighted least-squares alignment of three translational and three rotational parameters, and
registration to the first non-discarded image of the first functional run, and to the anatomical
volumes; (2) despiking and mean normalization of the time series; (3) inspection and
censoring of time points occurring during excessive motion (> 1 mm; Johnstone et al.,
2006); (4) modeling of sustained hemodynamic activity within a story via regressors
corresponding to the conditions, convolved with a gamma function model of the
hemodynamic response derived from Cohen (1997). We also included linear and quadratic
drift trends, and six motion parameters obtained from the spatial alignment procedure. This
analysis resulted in regression coefficients (beta weights) and associated t statistics
measuring the reliability the coefficients. False Discovery Rate (FDR; Benjamini &
Hochberg, 1995; Genovese, Lazar, & Nichols, 2002) statistics were calculated for each beta
value; (5) to remove additional sources of spurious variance unlikely to represent signal of
interest, we regressed from the time series signal from both lateral ventricles, and from
bilateral white matter (Fox et al., 2005).

Time series assessment and temporal re-sampling in preparation for SEM—
Due to counterbalancing, story conditions differed slightly in length (i.e., across participants
the same stories were used in different conditions). Because SEM analyzes covariance
structures, the time series must be the same length across individuals. To standardize time
series length, we first imported time series from significant voxels (p < .01; FDR corrected)
in predefined ROIs (see below), removed outlying voxels (> 10% signal change), and
averaged the signal to achieve a representative time series across the two runs for each ROI
for each condition (AV and A; baseline time points were excluded). We then re-sampled
these averaged time series down to 92 s using a locally weighted scatterplot smoothing
(LOESS) method. In this method each re-sampled data point is estimated with a weighted
least squares function, giving greater weight to actual time points near the point being
estimated, and less weight to points farther away (Cleveland & Devlin, 1988). Non-
significant Box's M tests indicated no differences in the variance-covariance structure of the
re-sampled and original data. The SEM analysis was conducted on these re-sampled time-
series.
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Data Analysis II: Standard Analysis of Activation Differences
We conducted second-level group analysis on a two-dimensional surface rendering of the
brain constructed in Freesurfer (http://surfer.nmr.mgh.harvard.edu; Dale, Fischl, & Sereno,
1999; Fischl, Sereno, & Dale, 1999). Note that although children and adults do show
differences in brain morphology, Freesurfer has been used to successfully create surface
representations for children (Tamnes et al., 2009), and even neonates (Pienaar, Fischl,
Caviness, Makris, & Grant, 2008). Further, in the age range we investigate here, atlas
transformations similar to the kind used by Freesurfer have been shown to lead to robust
results without errors when comparing children and adult functional images (Burgund et al.,
2002; Kang, Burgund, Lugar, Petersen, & Schlaggar, 2003). Using AFNI, we interpolated
regression coefficients, representing percent signal change, to specific vertices on the
surface representation of the individual's brain. Image registration across the group required
an additional standardization step accomplished with icosahedral tessellation and projection
(Argall, Saad, & Beauchamp, 2006). The functional data were smoothed on the surface
(4mm FWHM) and imported to a MySQL relational database (http://www.mysql.com/). The
R statistical package (version 2.6.2; http://www.R-project.org) was then used to query the
database and analyze the information stored in these tables (for details see Hasson, Skipper,
Wilde, Nusbaum, & Small, 2008). Finally, we created an average of the cortical surfaces in
Freesurfer on which to display the results of the whole-brain analysis.

We conducted a mixed (fixed and random) effects Condition (repeated measure; 2) × Age
Group (2) × Participant (33) ANOVA on a vertex-by-vertex basis using the normalized
regression coefficients as the dependent variable. We assessed comparisons with the resting
baseline, between age groups and conditions, and 2 (Age) × 2 (Condition) interaction
contrasts. We also removed statistical outliers (> 3 SDs from the mean of transverse
temporal gyrus; outliers represented < 1% of the data). To control for the family-wise error
(FWE) rate given multiple comparisons, we clustered the data using a non-parametric
permutation method. This method proceeds by resampling the data under the null hypothesis
without replacement, making no assumptions about the distribution of the parameter in
question (see Hayasaka & Nichols, 2003; Nichols & Holmes, 2002 for implementation
details). Using this method, we determined a minimum cluster size (e.g., taking cluster sizes
above the 95th percentile of the random distribution controls for the FWE at the p < .05
level). Reported clusters used a per-surface-vertex threshold of p < .01 and controlled for the
FWE rate of p < .05.

Signal-to-noise ratio and analysis—We carried out a Signal-to-Noise Ratio (SNR)
analysis to determine if there were any cortical regions where, across participants and
groups, it would be impossible to find experimental effects simply due to high noise levels
(see Parrish, Gitelman, LaBar, & Mesulam, 2000 for rationale of using this method in fMRI
studies). We present the details of these analyses in the Supplementary Materials and report
the results below.

Data Analysis III: Network Analysis Using Structural Equation Modeling
The SEM analysis was performed using AMOS (Arbuckle, 1989). Where applicable, we
followed the procedural steps in Solodkin et al (Solodkin, Hlustik, Chen, & Small, 2004)
and McIntosh and Gonzalez-Lima (1994), and report those steps here in abbreviated form.

Specification of theoretical anatomical model—The specification of a theoretical
anatomical model requires the definition of the nodes of the network and the directional
connections (i.e., paths) among them. Our theoretical model represents a compromise
between the complexity of the neural systems implementing language comprehension and
the interpretability of the resulting model. Although a complex model might account for
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most or all known anatomical connections, it would be nearly impossible to interpret
(McIntosh & Gonzalez-Lima, 1992; McIntosh et al., 1994). Further, our hypotheses are
focused on left hemisphere frontal, temporal, and parietal regions. Thus, we specified a left
hemisphere theoretical network for language comprehension, which included ten brain
regions (ROIs) and their connections. These regions were chosen based on the results of
recent functional imaging findings examining discourse comprehension in adults (Hasson,
Nusbaum, & Small, 2007a; Skipper et al., 2005) and in children (Karunanayaka et al., 2007;
Schmithorst, Holland, & Plante, 2006). Connectivity among the regions was constrained by
known anatomical connectivity in macaques (Schmahmann & Pandya, 2006). ROIs were
defined on each individual surface representation using an automated parcellation procedure
in Freesurfer (Desikan et al., 2006; Fischl et al., 2004), incorporating the neuroanatomical
conventions of Duvernoy (1991). We manually edited the default parcellation to delineate
anterior and posterior portions of the predefined temporal regions, and dorsal and ventral
portions of the predefined premotor region. The specific anatomical regions are described in
Table 1. Surface interpolation of functional data inherently results in spatial smoothing
across contiguous ROIs (and potentially spurious covariance). To avoid this, surface ROIs
were imported to the native MRI space for SEM, and the time series were not spatially
smoothed.

We next proceeded to construction of the structural equation models, which required the
following steps:

Generation of the covariance matrix—For each age group (children and adults), we
generated a variance-covariance matrix based on the mean time series from active voxels (p
< .01, FDR corrected) across all participants, for all ROIs. One covariance matrix per group,
per condition was generated.

Generation of and solving of structural equations—Initial models were constructed
in AMOS, which uses an iterative maximum likelihood method to obtain a solution for each
path coefficient representing the effective connectivity between each node (i.e., anatomical
ROI) of the network. The best solution of the set of equations minimizes the difference
between the observed and predicted covariance matrices.

Goodness of fit between the predicted and observed variance-covariance
matrices—Model fit was assessed against a χ2 distribution with q(q+1)/2-p degrees of
freedom (where q is the number of nodes of the network, and p is the number of unknown
coefficients). Good model fit is said to be obtained if the null hypothesis (specifying no
difference between the observed and predicted covariance matrices) is not rejected (Barrett,
2007).

Comparison between models—Multiple group comparison was used to assess model
differences between (1) AV and A within age group, and (2) adult and child within
condition. Differences between the models were assessed in AMOS using the “stacked
model” approach (McIntosh & Gonzalez-Lima, 1994), according to which both groups are
simultaneously fit to the same model, with the null hypothesis that the path coefficients
between the groups do not differ (null model). In the alternative model, paths of interest are
allowed to differ. Significant differences in the χ2 fit for both models are assessed with
reference to a critical χ2 value (χ2

crit, df=1 = 3.84). A significant difference implies that better
model fit is achieved when the paths are allowed to vary across groups. Although the
approach requires identical models, there were fewer active areas for A than for AV. Data
from these missing visual and fusiform nodes were obtained by generating a random time
series vector, with the missing path coefficients to and from these regions fixed to a value of
zero.
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Results
Signal-to-noise ratio

Simulations indicated that in the current design, the minimum SNR needed to detect a signal
change of 0.5% was 54, and that needed to detect a signal change of 1% was 27 (see
Supplementary Materials). We analyzed the mean SNR across participants from fifty-eight
cortical and subcortical anatomical ROIs. In the regions examined, mean SNR ranged from a
low of 13.8 (SD = 7.1) in the right temporal pole (a region of high susceptibility artifact) to a
high of 134.3 (SD = 25.6) in the right superior precentral sulcus. Importantly, in most
regions SNR was sufficient to detect even small signal changes, and on average SNR did not
significantly differ across adults and children (Adult M = 66.3; SD = 29.0 vs Child M = 62.0;
SD = 36.4, t(56) = 0.82, p > .05). This suggests sufficient SNR to detect differences within
and across groups.

Auditory and audiovisual story comprehension compared to baseline
We first examined signal changes, both positive (“activations”) and negative
(“deactivations”), for each condition (AV, A) relative to a resting baseline, across groups.
Both contrasts showed bilateral activation in frontal, inferior parietal, and temporal regions.
An exception to this was a lack of right frontal and parietal activation in the child group for
both conditions (see Figure 1 and Table 2 for cluster size and stereotaxic coordinates).
Additional activation in bilateral occipital-temporal regions was found in the AV condition.
Deactivations were found in posterior cingulate, precuneus, cuneus, lateral superior parietal
cortex, lingual gyrus, and, for children, in the right superior frontal gyrus. These findings are
comparable to prior studies of language comprehension in both adults and children (Hasson
et al., 2007a;Schmithorst et al., 2006;Wilson, Molnar-Szakacs, & Iacoboni, 2008).

Comparison of Activation Differences: Audiovisual vs. Auditory-only
For both adults and children, AV elicited greater BOLD signal intensity than A in bilateral
occipital regions and posterior fusiform gyrus (Table 3). Additional differences were found
(for adults) in left parahippocampal gyrus, and (for children) in bilateral thalamus, left
inferior frontal gyrus, anterior insula, and bilateral posterior superior temporal gyrus
(extending to posterior superior temporal sulcus in the left hemisphere). For adults, A was
more active than AV in bilateral posterior cingulate gyrus, left lingual gyrus, and left
parahippocampal gyrus. Similarly, for children, A was associated with stronger activation
than AV in left posterior cingulate and left lingual gyrus, and right cuneus.

Comparison of Activation Differences: Adults vs. Children
Although no significant clusters showed greater BOLD intensity for adults than children in
the AV condition, there were differences favoring adults in the A condition (Table 3). Right
superior temporal gyrus, right middle frontal gyrus, left insula and left postcentral gyrus
demonstrated greater activity for adults in the A condition. Children elicited greater activity
in left medial frontal gyrus and precuneus/posterior cingulate during the AV condition, but
no significant differences favored children in the A condition. Finally, interaction contrasts
(i.e., Adults [AV-A] − Children [AV-A] ≠ 0; Jaccard, 1998) conducted over the whole brain
revealed no clusters that met the FWE correction for multiple comparisons.

Structural Equation Modeling Analysis of Base Networks and Network Differences
Goodness of Fit of Base Network Models—Good fit was obtained across both
conditions and both age groups (Adult AV: χ2 = 26.77, df = 17, p > .06; Adult A: χ2 = 34.07,
df = 23, p > .06; Children AV: χ2 = 23.50, df = 17, p > .13; Children A: χ2 = 34.36, df = 23,
p > .06), indicating that the hypothesized model should be retained. Squared multiple
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correlations revealed that many regions consistently showed a moderate to high degree of
explained variance across groups and conditions (i.e., between 40 and 80% variance
explained; these included STa, STp, STSp, MTGp). In three regions (SMG, IFGTr, IFGOp/
PMv), however, explained variance was more variable across groups and conditions,
explaining between 1% and 72% of the variance. This indicates not only potential influence
on these regions from brain areas absent in the network model, but also greater influence of
the task demands on effective connectivity to and from these regions, leading to greater
variability across conditions and groups.

The theoretical networks incorporating all regions are provided in Figure 2. As expected,
both networks revealed moderate to strong connectivity from auditory cortex to anterior and
posterior temporal cortices. The AV network additionally revealed moderate to strong
connectivity from visual cortex and fusiform gyrus to these temporal regions.

Analysis of Network Differences—Comparison of networks proceeded in two steps
using the multiple group or “stacked model” approach (McIntosh & Gonzalez-Lima, 1994).
We first compared the broader ten-node network across groups and across conditions. This
analysis yielded significant differences in the pattern of network interactions between age
groups and across conditions. This suggests that, although the base models shared the same
nodes and predicted connectivity, and provided a good fit for both groups and conditions,
there were significant differences in the connection weights. For both age groups, there were
differences between the networks for AV and A (AV vs. A for Adults: χ2 = 186.3, df = 68, p
< .001; AV vs. A for Children: χ2 = 104.7, df = 68, p < .01). In addition, there were
differences across age for both conditions (Adults vs. Children for the AV condition: χ2 =
132.0, df = 62, p < .001; Adults vs. Children for the A condition: χ2 = 131.0, df = 68, p < .
05).

Based on our a priori hypotheses, we focused our analysis of differences for specific
pathways on the relationships among IFGOp/PMv, SMG, STp, and STSp (see Petersson,
Reis, Askelöf, Castro-Caldas, & Ingvar, 2000 for a similar approach analyzing sub-networks
within broader networks; shown as red nodes in Figure 3). In this way we attempted to
account for a sufficient degree of observed covariance by establishing the structure of the
broader ten-node network, while focusing on our questions of interest within a smaller sub-
network comprised of four nodes. Seven path coefficients within each network, comprising
the interactions among only the four nodes of interest, were tested for significant differences
(Figure 3 and Table 4).

We first compared differences across age for both conditions. Comparing Adults to Children
within the AV condition, we found that only one connection within this sub-network,
IFGOp/PMv -> SMG, was significantly different (χ2

diff, 1 = 5.7, p < .05). When a similar
comparison was conducted for the A condition, two age-related differences were found. The
influence of IFGOp/PMv on STSp (χ2

diff, 1 = 11.1, p < .001), and the influence of STSp on
STp (χ2

diff, 1 = 8.5, p < .05) differed across groups.

We next examined condition differences within each age group. The effective connectivity
of IFGOp/PMv on SMG, which showed an age difference for AV, also differed when we
compared AV to A within children (χ2

diff, 1 = 4.8, p < .05). An additional significant
difference was for the influence of IFGOp/PMv on STSp (χ2

diff, 1 = 7.90, p < .01). Finally,
several differences between the AV and A condition were found for adults. Effective
connectivity of STSp on STp and SMG was stronger for AV than for A (χ2

diff, 1 = 6.0, p < .
05; χ2

diff, 1 = 10.4, p < .001). The influence of SMG on STp was stronger for A than for AV
(χ2

diff, 1 = 7.0, p < .01). The influence of IFGOp/PMv on STSp also differed across
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conditions (χ2
diff, 1 = 5.7, p < .05). The magnitudes of the path coefficients are presented in

Table 4. We elaborate on these findings below.

Discussion
We investigated age-related differences in the neurobiological substrates of audiovisual
speech using a network modeling approach. We had expected differences in sensitivity to
visual speech information manifested by differences in network connectivity among brain
regions important for audiovisual speech comprehension. Consistent with prior network-
level investigations of the development of story comprehension (Karunanayaka et al., 2007),
clear differences were found in the functional relationships among regions of a fronto-
temporoparietal network across age groups and conditions. The principal finding was that,
for audiovisual but not auditory-only comprehension, the influence of IFGOp/PMv on SMG
differed across age groups, and, in children, between audiovisual and auditory-only
comprehension. These results suggest that the development of audiovisual speech
comprehension proceeds through changes in the functional interactions among brain regions
involved in both language production and perception.

Development of a Left Fronto-Temporo-Parietal Network for Audiovisual Language
Comprehension

Relative to a resting baseline, both children and adults activated a similar network of brain
regions in response to audiovisual speech. When we investigated age differences in BOLD
signal intensity in the AV condition, we found no significant clusters showing greater
BOLD intensity for adults. We also found no evidence that condition modulated age
differences in BOLD signal intensity (i.e., there was no condition by age interaction).
Compared to adults, however, significant clusters showing greater BOLD intensity for
children during AV were found in left precuneus and medial frontal gyrus. These medial
prefrontal and posterior midline regions are commonly associated with a putative “default
network” consisting of brain regions that reliably show decreased activation during the
performance of an exogenous cognitive task (Fox et al., 2005; Shulman et al., 1997).
Further, the degree of activation in these regions has been associated with encoding
linguistic stimuli to memory, in some cases showing that greater deactivation is correlated
with better retention, possibly reflecting the more efficient allocation of resources to the
cognitive task (Clark & Wagner, 2003; Daselaar, Prince, & Cabeza, 2004). It is possible that
the difference in activity in these regions reflects less efficient processing for children during
AV speech, potentially because the added visual information is more helpful for adults than
for children.

It is important to note, though, that no significant differences in BOLD signal intensity
favoring either age group were found in brain regions previously associated with processing
audiovisual speech. Age-related differences for these regions were only found in the SEM
analysis of effective connectivity. Specifically, although no age differences were found in
the comprehension of the stories, the network analysis showed that the networks for
audiovisual speech differed across age group, and across conditions (AV and A) within each
age group. Further, both condition and age group modulated the influence of IFGOp/PMv on
inferior parietal and posterior temporal brain regions. When visual speech information was
present, the influence of IFGOp/PMv on SMG and STSp was moderately positive for adults
(Figures 3A and 3C), but moderately negative for children (Figures 3A and 3D), though a
significant age difference was found only for the influence of IFGOp/PMv on SMG (Figure
3A). The connection weights here indicated that greater activity in IFGOp/PMv predicted
greater activity in SMG for adults, but predicted reduced activity in SMG for children. For
children, this pathway also differed between AV and A conditions, with greater activity in
IFGOp/PMv predicting greater activity in SMG for auditory but not for audiovisual speech.
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In addition, connectivity for this pathway only differed across age during audiovisual but not
auditory speech, which suggests that this pathway is an important component of a network
for processing audiovisual speech. The absence of age differences in BOLD activity in
regions previously implicated in audiovisual speech perception is consistent with the
interpretation that both children and adults process the visual speech information. However,
the network results suggest that less developed networks for integrating auditory and visual
speech information in children limit the utility of the visual information for language
comprehension.

The neurobiological significance of these network differences might relate to continuing
maturational processes of the brain. Brain development continues into early adulthood
(Huttenlocher, 1979; Huttenlocher & Dabholkar, 1997; Yakovlev & Lecours, 1967), with
regions associated with more primary functions (e.g., sensorimotor cortex, early visual
cortex, early auditory cortex) maturing earlier than association cortices. Several studies have
suggested that prefrontal association cortices are the last to mature (Huttenlocher &
Dabholkar, 1997; Nagel et al., 2006; Sowell, Thompson, Holmes, Jernigan, & Toga, 1999;
Sowell et al., 2004), and some research suggests continued maturation of parietal and
temporal cortex into adolescence (Giedd et al., 1999; Gogtay et al., 2004). These
developmental changes in cortical structure reflect a variety of processes, including a pre-
pubertal increase in dendritic and axonal growth and myelination, followed by a post-
pubertal process of dendritic pruning and selective cell death (see Paus, 2005 for review). In
principle these changes could account for age differences in effective connectivity between
inferior frontal and inferior parietal cortices during audiovisual speech comprehension. In
particular, the increased efficiency of the propagation of neural impulses due to myelination
might support increased functional integration (Fair et al., 2007a; Fair et al., 2007b). Other
factors, however, also contribute to the degree to which regions of the network interact,
including coordinated activity (“coactivation”) of regions within the network in response to
experience (Bi & Poo, 1999; Katz & Shatz, 1996). In fact, both maturational and
experiential factors likely contribute to the development of audiovisual speech
comprehension, as both processes interact over the course of development (Als et al., 2004;
Dawson, Ashman, & Carver, 2000; Edelman & Tononi, 1997; Goldman-Rakic, 1987; Shaw
et al., 2008).

The findings we report also raise the question of the potential role for IFGOp/PMv and SMG
within a network supporting audiovisual speech comprehension. In the Introduction we
suggested that interactions between IFGOp/PMv and posterior temporal/inferior parietal
regions relate motor (articulatory) and sensory (auditory and somatosensory) hypotheses
about the identity of the speech target (cf. Callan, Callan, Tajima, & Akahane-Yamada,
2006; Callan et al., 2004; Fadiga, Craighero, Buccino, & Rizzolatti, 2002; Pulvermüller et
al., 2006; Skipper et al., 2007b; Wilson & Iacoboni, 2006). This suggestion is also consistent
with the notion that this IFGOp/PMV -> SMG pathway is involved in linking articulatory-
motor and somatosensory representations during both speech production and perception
(Bohland & Guenther, 2006; Callan et al., 2004; Duffau, Gatignol, Denvil, Lopes, &
Capelle, 2003; Guenther, 2006; Guenther, Ghosh, & Tourville, 2006; Ojemann, 1992;
Skipper et al., 2007b). In addition, both of these brain regions show sensitivity to the
convergence of auditory and visual speech information. For example, Hasson and colleagues
(Hasson, Skipper, Nusbaum, & Small, 2007b) found that left IFGOp and SMG were both
sensitive to individual differences in the perception of incongruent audiovisual phonemes
(i.e., McGurk syllables). That is, although the incongruent phoneme was usually perceived
as a fused percept (i.e., auditory /pa/ with video /ka/ is often perceived as /ta/), some people
perceived the fused percept more often than others. Further, individuals who failed to
perceive the fused audiovisual phoneme, like children, seemed to judge the audiovisual
stimulus to be in the phonological category specified by the auditory component, rather than
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the visual component (cf. Brancazio & Miller, 2005). Finally, Bernstein and colleagues
(2008; also see Bernstein, Lu, & Jiang, 2008) showed that although left STSp, STGp, and
precentral gyrus were sensitive to incongruent audiovisual speech sounds, only activation in
the left SMG node of this network varied as a function of the incongruity between auditory
and visual speech information.

The sensitivity of these regions to audiovisual speech, coupled with their involvement in
speech production, supports the hypothesis that the age difference we report reflects a
maturation of this functional pathway, in part through experience both producing and
perceiving speech. Guenther (Guenther, 2006; Guenther et al., 2006; Tourville, Reilly, &
Guenther, 2008) has proposed that during speech production, projections from IFGOp/PMv
to posterior superior temporal regions and SMG carry information about the expected
auditory and somatosensory traces of produced speech sounds. These expectations are then
compared to the actual auditory and somatosensory sensations of the produced sounds, a
process that allows rapid articulatory adaptation in response to feedback. Over time children
learn to correct speech production errors by correcting discrepancies between the motor-
speech target (involving IFGOp/PMv) and the actual somatosensory and auditory
consequences of the production (involving SMG and posterior superior temporal cortex;
Guenther et al., 2006). The mechanism we propose for developing audiovisual speech
perception is similar; children learn to take advantage of the predictive value of visual
speech information through experience. To the extent that visual speech information is
informative for comprehension, this information is incorporated into a mapping system
between auditory and somatosensory signals and motor output acquired by perceiving the
consequences of the child's own speech productions. Over time, as the mapping between
sensory and motor consequences achieves greater consolidation, visual speech information
gains predictive value, providing more precise early constraints or “forward models”
(Skipper et al., 2007b; van Wassenhove et al., 2005) that contribute to the final
interpretation of the speech sound.

Importantly, modification of this mechanism may occur for an extended period over the
course of development, with changes in both the coupling of one's own produced speech and
the associated auditory/somatosensory consequences (Plaut & Kello, 1999; Westermann &
Miranda, 2004), and changes in the coupling of visual speech to its associated auditory
consequences (Kuhl & Meltzoff, 1984; Vihman, 2002). Indeed, throughout childhood the
speech production system undergoes substantial modification, with anatomical changes and
refinement of motor control from infancy to adulthood (Vorperian et al., 2005). These
changes have a direct effect on the quality and range of vocal sounds produced by infants
and children (Ménard, Schwartz, & Boë, 2004). As the pharynx and vocal tract lengths
increase, the mapping of articulatory-to-acoustic and somatosensory representations is
updated (Callan, Kent, Guenther, & Vorperian, 2000; Ménard et al., 2004; Ménard,
Schwartz, Boë, & Aubin, 2007), in turn impacting the predictive value of visual speech
information. In this model, visual speech is not essential, but contributes information when
auditory speech targets are ambiguous (for example, when encountering a foreign speaker,
or when the auditory signal is degraded by white noise, or by the accompanying MRI
scanner noise; Callan et al., 2004; Meister, Wilson, Deblieck, Wu, & Iacoboni, 2007; Ross
et al., 2007; Sato, Tremblay, & Gracco, 2009; Schwartz, Berthommier, & Savariaux, 2004).
Furthermore, visual information will have greater predictive value in cases where it is most
informative (for example, for place of articulation, which might be less clear in the acoustic
modality; Binnie et al., 1974), and in cases where it is necessary to supplement degraded
auditory speech representations (for example, for children with cochlear implants who show
reduced bimodal fusion, and rely more on visual information; Schorr, Fox, van Wassenhove,
& Knudsen, 2005).
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Posterior Superior Temporal Sulcus and Auditory-Visual Integration
Left STSp has been hypothesized to be an important cortical region for integration of
auditory and visual speech information (Calvert et al., 2000; Campbell, 2008; Okada &
Hickok, 2009). Several functional imaging studies have found that STSp shows sensitivity
to manipulations of the congruency of auditory and visual speech information (Bernstein et
al., 2008; Miller & D'Esposito, 2005; Sekiyama et al., 2003), and responds more strongly to
audiovisual than to auditory-only speech (Calvert et al., 2000; Skipper et al., 2005; Wright et
al., 2003), to dynamic compared to static visual speech (Calvert & Campbell, 2003), and to
visual speech gestures compared to rest (Campbell et al., 2001).

We found that effective connectivity between STSp and a number of regions differed across
AV and A language for both children (IFGOp/PMv -> STSp) and adults (IFGOp/PMv ->
STSp; STS -> SMG; STSp -> STp). For adults, the strength of these connections tended to
be greater during audiovisual than auditory-only speech, but the opposite was true for
children. To some extent, the findings we report are consistent with the proposed role for
STSp in the crossmodal integration of auditory and visual information during speech
comprehension (i.e., the analysis of BOLD signal intensity revealed that STGp/STSp is
activated more strongly for audiovisual speech language in children, and for both age groups
functional interactions with STSp are modulated by the presence of visual information).
However, several findings are not consistent the idea that STSp is a critical region for the
integration of audiovisual speech. For example, differences in BOLD signal intensity
between the AV and A conditions were not found for adults in STSp. Further, age
differences in connectivity were not found for STSp during audiovisual comprehension.
Instead, age differences in connectivity were revealed for this region only during the A
condition (Figure 1B; cf. Callan et al., 2003; Hocking & Price, 2008; Jones & Callan, 2003;
Ojanen et al., 2005; Olson, Gatenby, & Gore, 2002; Saito et al., 2005 for similar studies
reporting no differences between audiovisual and auditory presentation in STSp). Despite
some differences in the pattern of the findings, this latter finding is in general agreement
with a prior network-level investigation of auditory story comprehension (Karunanayaka et
al., 2007). Both studies report that connectivity during auditory story comprehension
changes over development. We found that connectivity between posterior inferior frontal/
premotor regions and STSp was positive for children, but then became negative for adults.
Similarly, Karunanayaka and colleagues found that connectivity between inferior frontal and
temporal regions changed with age, although this change was reflected as an increase in
connectivity. Notably, the anatomical definition of brain regions in the networks differs
between the studies, which might have influenced the connectivity pattern (e.g., the
temporal ROI of their network model was functionally defined and included a large part of
the anterior superior temporal gyrus and sulcus). However, notwithstanding the lack of
correspondence in ROI definition, the difference in the pattern of connectivity changes
during auditory story comprehension deserves further exploration. In general, the findings
we report do suggest that rather than proposing STSp is a primary binding site for
audiovisual speech processing (Campbell, 2008; Okada & Hickok, 2009), the function of
STSp must be considered in the context of the network of cortical regions with which it
interacts, and the demands of the task. Moreover, electrophysiological evidence suggests
integration of auditory and visual information via STSp may occur too late to account for
early visual speech effects observed in event-related potential (van Wassenhove et al., 2005)
and intracranial event-related potential (Besle et al., 2008) studies. These findings support
models emphasizing feed-forward processing of visual speech information, potentially via
the application of motor-speech information as we advocate here.
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Summary
In summary, we used a network modeling approach to examine how the development of
audiovisual speech comprehension is reflected by changes in the interactions among brain
regions involved in both speech perception and speech production. The analyses we report
demonstrated that in children and adults, audiovisual speech comprehension activated a
similar fronto-temporo-parietal network of brain regions. Age-related differences in
audiovisual speech comprehension were primarily reflected by differences in effective
connectivity across the brain regions comprising this network. These findings suggest that
the function of a network is not fully characterized by the response of its individual
components, but also by the dynamic interactions among them.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Whole-brain analysis results for each condition compared to Baseline for both adults and
children. The individual per-vertex threshold was p < .01 (corrected FWE p < .05).
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Figure 2.
Base theoretical network models for each condition and for each age group. Path
coefficients represent standardized values. For the auditory-only networks, path coefficients
connecting visual and fusiform nodes to the rest of the network were set to zero. IFGTr =
Inferior frontal gyrus (pars triangularis); IFGOp/PMv = Inferior frontal gyrus (pars
opercularis)/ventral premotor; SMG = Supramarginal gyrus; STp = Posterior superior
temporal (posterior superior temporal gyrus and planum temporale); Aud = Auditory
(transverse temporal gyrus and sulcus); STa = Anterior superior temporal (anterior superior
temporal gyrus and planum polare); STSp = Posterior superior temporal sulcus; MTGp =
Posterior middle temporal gyrus; Fus = Fusiform gyrus; Vis = Visual (striate and extrastriate
cortex).
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Figure 3.
Analysis of age and condition differences within the sub-network of interest. Red nodes
were identified as important for connecting auditory and visual information during speech
comprehension. Clear nodes comprised the remaining nodes of the theoretical network.
Green arrows indicate a significant difference for that pathway for the comparison of
interest. Grey arrows indicate pathways that were assessed for significance for the
comparison of interest, but indicated no significant differences. IFGTr = Inferior frontal
gyrus (pars triangularis); IFGOp/PMv = Inferior frontal gyrus (pars opercularis)/ventral
premotor; SMG = Supramarginal gyrus; STp = Posterior superior temporal (posterior
superior temporal gyrus and planum temporale); Aud = Auditory (transverse temporal gyrus
and sulcus); STa = Anterior superior temporal (anterior superior temporal gyrus and planum
polare); STSp = Posterior superior temporal sulcus; MTGp = Posterior middle temporal
gyrus; Fus = Fusiform gyrus; Vis = Visual (striate and extrastriate cortex).
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Table 1

Anatomical Description of the Cortical Regions of Interest

ROI Anatomical Structure Brodmann's
Area

Delimiting Landmarks

IFGTr pars triangularis of the
inferior frontal gyrus

45 A = A coronal plane defined as the rostral end of the anterior
horizontal ramus of the sylvian fissure
P = Vertical ramus of the sylvian fissure
S = Inferior frontal sulcus
I = Anterior horizontal ramus of the sylvian fissure

IFGOp/PMv pars opercularis of the
inferior frontal gyrus, inferior
precentral sulcus, and
inferior precentral gyrus

6, 44 A = Anterior vertical ramus of the sylvian fissure
P = Central sulcus
S = Inferior frontal sulcus, extending a horizontal plane
posteriorly across the precentral gyrus
I = Anterior horizontal ramus of the sylvian fissure to the border
with insular cortex

SMG Supramarginal gyrus 40 A = Postcentral sulcus
P = Sulcus intermedius primus of Jensen
S = Intraparietal sulcus
I = Sylvian fissure

STa Anterior portion of the
superior temporal gyrus and
planum polare

22 A = Inferior circular sulcus of insula
P = A vertical plane drawn from the anterior extent of the
transverse temporal gyrus
S = Anterior horizontal ramus of the sylvian fissure
I = Dorsal aspect of the upper bank of the superior temporal
sulcus

Auditory Transverse temporal gyrus
and sulcus (Heschl's gyrus
and sulcus)

41, 42 A = Inferior circular sulcus of insula and planum polare
P = Planum temporale
M = Sylvian fissure
L = Superior temporal gyrus

STp Posterior portion of the
superior temporal gyrus and
planum temporale

22, 42 A = A vertical plane drawn from the anterior extent of the
transverse temporal gyrus
P = Angular gyrus
S = Supramarginal gyrus
I = Dorsal aspect of the upper bank of the superior temporal
sulcus

MTGp Posterior middle temporal
gyrus

21 A = A vertical plane drawn from the anterior extent of the
transverse temporal gyrus
P = Temporo-occipital incisure
S = Superior temporal sulcus
I = Inferior temporal sulcus

STSp Posterior superior temporal
sulcus

22 A = A vertical plane drawn from the anterior extent of the
transverse temporal gyrus
P = Angular gyrus and middle occipital gyrus and sulcus
S = Angular and superior temporal gyrus
I = Middle temporal gyrus

Fusiform
gyrus

Fusiform or lateral occipito-
temporal gyrus

37 A = Anterior transverse collateral sulcus
P = Posterior transverse collateral sulcus
M = Medial occipito-temporal sulcus
L = Lateral occipito-temporal sulcus

Visual Inferior occipital gyrus and
sulcus, middle occipital
gyrus and sulcus, calcarine
sulcus, and occipital pole

17, 18, 19 A = On the lateral surface, a line starting from the parieto-
occipital fissure to the temporo-occipital incisure; the medial
surface included calcarine sulcus extending to the precuneus
P = Posterior occipital pole
S = Superior occipital gyrus
I = Lateral occipito-temporal gyrus

Note. A = Anterior; P = Posterior; S = Superior; I = Inferior; M = Medial; L = Lateral.
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Table 4

Standardized path coefficients for significant comparisons of interest

Adults vs Children

Adults Children

Network path

Audiovisual

IFGOp/PMv → SMG .10 −.24

Auditory

STSp → STp .13 .36

IFGOp/PMv → STSp −.19 .23

Audiovisual vs Auditory

Audiovisual Auditory

Network path

Adults

SMG → STp .13 .19

STSp → STp .25 .13

STSp → SMG .28 .09

IFGOp/PMv → STSp .09 −.19

Children

IFGOp/PMv → SMG −.24 .23

IFGOp/PMv → STSp −.11 .23

Note. IFGOp/PMv = Inferior frontal gyrus (pars opercularis)/ventral premotor; SMG = Supramarginal gyrus; STp = Posterior superior temporal
(posterior superior temporal gyrus and planum temporale); STSp = Posterior superior temporal sulcus.
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