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Abstract
Adipose tissue expresses all components of the renin-angiotensin system including
angiotensinogen (AGT). Recent studies have highlighted a potential role of AGT in adipose tissue
function and homeostasis. However, some controversies surround the regulatory mechanisms of
AGT in obese adipose tissue. In this context, we here demonstrated that the AGT messenger RNA
(mRNA) level in human subcutaneous adipose tissue was significantly reduced in obese subjects
as compared with nonobese subjects. Adipose tissue AGT mRNA level in obese mice was also
lower as compared with their lean littermates; however, the hepatic AGT mRNA level remained
unchanged. When 3T3-L1 adipocytes were cultured for a long period, the adipocytes became
hypertrophic with a marked increase in the production of reactive oxygen species. Expression and
secretion of AGT continued to decrease during the course of adipocyte hypertrophy. Treatment of
the 3T3-L1 and primary adipocytes with reactive oxygen species (hydrogen peroxide) or tumor
necrosis factor α caused a significant decrease in the expression and secretion of AGT. On the
other hand, treatment with the antioxidant N-acetyl cysteine suppressed the decrease in the
expression and secretion of AGT in the hypertrophied 3T3-L1 adipocytes. Finally, treatment of
obese db/db mice with N-acetyl cysteine augmented the expression of AGT in the adipose tissue,
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but not in the liver. The present study demonstrates for the first time that oxidative stress
dysregulates AGT in obese adipose tissue, providing a novel insight into the adipose tissue–
specific interaction between the regulation of AGT and oxidative stress in the pathophysiology of
obesity.

1. Introduction
Overactivity of the systemic renin-angiotensin system (RAS) is one of the central
mechanisms for obesity-related metabolic disorders [1,2]. Notably, the major components of
the RAS are expressed in various tissues including the heart, blood vessels, adipose tissue,
and brain [3]; these comprise tissue RAS. A series of products are produced locally from
angiotensinogen (AGT), the unique precursor of angiotensin peptides, and play a critical
role in cardiovascular homeostasis [3,4].

Although AGT is produced mainly by the liver, adipose tissue is also considered as a source
of AGT production [5]. In agreement with this notion, the adipose tissue expresses all
components of the RAS, including AGT, renin, angiotensin I–converting enzyme, and
angiotensin II type 1 receptor, in humans and rodents [6,7]. A previous study has
demonstrated that AGT-deficient mice are low in blood pressure and body fat mass [8].
Moreover, adipocyte-specific transgenic overexpression of AGT on an AGT-deficient
background was shown to augment plasma AGT level and rescue hypotension and leanness
[9]. These results indicate that adipose tissue–derived AGT does contribute to the circulating
AGT level and adipogenesis.

In rodent experiments, the AGT messenger RNA (mRNA) level in white adipose tissue has
been shown to be regulated by the nutritional status; however, that in the liver was
independent of the nutritional status [10,11]. In human cross-sectional studies, the AGT
mRNA level in adipose tissue was shown to be higher in obese subjects [6,12]. On the other
hand, another study reported that the AGT mRNA level in adipose tissue was significantly
lower in obese individuals [13]. Elevation of AGT expression in adipose tissue in obese
individuals thus remains controversial [14].

Several studies have shown that increased oxidative stress is a manifestation of obesity-
related metabolic derangement [15–17]. In fact, in humans, oxidative stress is critically
associated with atherosclerosis, hypertension, and diabetes mellitus [18,19]. Oxidative stress
is also related with the RAS. Angiotensin II is a potent inducer of reactive oxygen species
(ROS) in a variety of tissues [20–22]. In the liver and kidney, increased ROS has been
reported to increase AGT gene expression [23–26]. Also in obese adipose tissue, generation
of ROS is exaggerated and is involved in adipose tissue dysfunction [17,27]. However,
whether increased ROS may affect adipose AGT production remains to be elucidated.

In the present study, we demonstrated that the AGT mRNA level was reduced in obese
adipose tissue in humans and mice and in hypertrophied 3T3-L1 adipocytes. In this context,
we tested the hypothesis that increased oxidative stress would modulate AGT in obese
adipose tissue.

2. Materials and methods
2.1. Subcutaneous abdominal adipose tissue biopsies in human subjects

The present study was performed according to the Declaration of Helsinki and approved by
the Ethical Committee on Human Research of Kyoto University Graduate School of
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Medicine (2004, no. 553). Written informed consent was obtained from all subjects before
the study.

Subcutaneous abdominal adipose tissue biopsies were obtained from 46 Japanese subjects
(24 men and 22 women; age [mean ± SD], 46 ± 2.1 years). The body mass index (BMI) of
the subjects ranged from 19 to 52 (mean ± SD, 30 ± 1.6) kg/m2. All subjects had been on
stable therapy with lipid-lowering, antihypertensive, or hypoglycemic agents for at least 1
month before admission and continued with the same doses throughout the study period.
Patients who received angiotensin I–converting enzyme inhibitors, angiotensin II receptor
blockers, and steroid-related drugs were carefully excluded. For the study, subcutaneous
abdominal adipose depots of the study subjects were excised from the periumbilical region
under local anesthesia. The samples were immediately frozen in liquid nitrogen and stored at
−80°C until use.

2.2. Mouse experiments
Male ob/ob mice (age, 12 weeks) were purchased from Oriental BioService (Kyoto, Japan)
and housed in the animal facility of Kyoto University. Male db/db mice (age, 10 weeks)
were purchased from Japan SLC (Hamamatsu, Japan) and housed in Seoul National
University. The mice were allowed free access to food and water. For in vivo antioxidant
treatment, the db/db mice were injected with N-acetyl cysteine (NAC; 150 mg/kg body
weight; Sigma-Aldrich Japan, Tokyo, Japan) or the vehicle (phosphate-buffered saline) into
the peritoneal cavity once daily for 1 week. All experimental procedures were approved by
the Kyoto University Graduate School of Medicine Animal Research Committee and the
Seoul National University Animal Experiment Ethics Committee.

2.3. Cell culture and isolation of primary adipocytes
3T3-L1 fibroblasts were cultured and differentiated into adipocytes as described previously
[28]. Briefly, the 2-day postconfluent cells (designated as day 0) were incubated for 2 days
with 10% fetal bovine serum (FBS)/Dulbecco modified Eagle medium (DMEM), 0.5 mmol/
L 3-isobutyl-1-methylxanthine, 0.25 µmol/L dexamethasone, and 1 µg/mL insulin. The cells
were then incubated for 2 days in 10% FBS/DMEM with insulin and, thereafter, incubated
in 10% FBS/DMEM that was changed on every alternate day. Oil red O staining was
performed as described [29].

Primary adipocytes were isolated from epididymal fat pads of 9-week-old male C57BL/6J
mice (purchased from Oriental BioService, Kyoto, Japan). Epididymal fat pads were
harvested, minced into 2- to 3-mm pieces, and digested using 0.8 mg/mL collagenase
(Sigma-Aldrich Japan) in DMEM for 30 minutes at 37°C in a shaking water bath. After the
digestion with collagenase, cells were filtered through a 250-µm nylon filter and centrifuged
at 1000 rpm for 30 seconds. The suspended mature adipocytes were separated from the
pelleted stromovascular fraction and washed 3 times in DMEM for experiments.

2.4. Determination of adipocyte size
The cells were fixed with 2% osmium tetroxide and passed through a 250-µm nylon filter to
remove the fibrous elements, and the cells were washed extensively with isotonic saline. A
total of 10 000 cells was analyzed using the Coulter Multisizer III (Beckman Coulter, High
Wycombe, England) [30].

2.5. Quantitative real-time polymerase chain reaction
Total RNA was extracted from human and mouse adipose tissue by using a QIAGEN
RNeasy Mini Kit (QIAGEN Japan, Tokyo, Japan) and from cultured adipocytes by using
Trizol Reagent (Invitrogen, Carlsbad, CA). Complementary DNA was then synthesized by
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using an iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA). Taqman polymerase chain
reactions (PCRs) for human AGT, mouse AGT, mouse monocyte chemoattractant protein 1
(MCP-1), mouse interleukin 6 (IL-6), and mouse tumor necrosis factor α (TNFα) were
performed using the ABI Prism 7300 Sequence Detection System (Applied Biosystems,
Foster City, CA). The sequences of probes and primers are summarized in Table 1.

2.6. Enzyme-linked immunosorbent assay
The AGT protein level in the culture media was measured by sandwich-type enzyme-linked
immunosorbent assay (ELISA) as described [31]. Similarly, the MCP-1 and IL-6 protein
levels were detected by using an ELISA kit (R&D Systems, Minneapolis, MN).

2.7. Determination of ROS
The ROS activity was determined by the nitroblue tetrazolium (NBT) assay [32]. Reduced
NBT (formazan) was dissolved in 50% acetic acid, and the absorbance of the supernatant
was determined at 560 nm.

2.8. Statistical analysis
The data are presented as the mean ± SE. Unpaired Student t test was used for comparisons
with the control group. The differences were accepted as significant at a level of P < .05.

3. Results
3.1. AGT mRNA expression level in adipose tissue from obese humans and mice

To explore the impact of obesity on AGT gene expression in human adipose tissue, we
performed subcutaneous abdominal adipose tissue biopsies from 46 subjects with a wide
range of BMI. The AGT mRNA level was significantly reduced by 61% in the obese
subjects as compared with the nonobese subjects (Fig. 1A).

To verify the obesity-related decrease in adipose AGT expression, we analyzed adipose
tissue from genetically obese mice. In 12-week-old male ob/ob mice (mean body weight, 60
± 0.7 g), the AGT mRNA level was significantly decreased in both epididymal (29%) and
subcutaneous (57%) adipose depots as compared with their lean littermates (mean body
weight, 29 ± 0.3 g) (Fig. 1B). On the other hand, the AGT mRNA levels in the liver
remained unaltered in both groups (Fig. 1C).

Similar results were observed in case of the diet-induced obese (DIO) mice (12-week-old
male C57BL/6J mice fed with a high-fat/high-sucrose diet for 4 weeks). The AGT mRNA
level in the adipose tissue of the DIO mice (mean body weight, 40 ± 0.8 g) was significantly
lower than that in the adipose tissue of their lean littermates (mean body weight, 30 ± 0.4 g)
(P <.05); however, the hepatic AGT mRNA level remained unchanged in both groups
(Yasue et al, unpublished observations). These results indicate that the AGT mRNA level
was decreased exclusively in the obese adipose tissue in both humans and mice.

3.2. AGT expression during the course of hypertrophy in the 3T3-L1 adipocytes
To explore the mechanism by which AGT is decreased in obese adipose tissue, we analyzed
hypertrophied adipocytes. 3T3-L1 fibroblasts were completely differentiated into adipocytes
for 8-day incubation with induction media [28]. Consistent with a previous report [33], the
AGT mRNA level in differentiated 3T3-L1 adipocytes (day 8) was significantly elevated by
15-folds in comparison with 3T3-L1 fibroblasts (day 0). For generating hypertrophied
adipocytes, 3T3-L1 adipocytes were cultured up to 30 days after the induction of
differentiation. Oil red O staining exhibited a gradual increase in lipid accumulation from
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day 8 to day 28. The adipocytes displayed unilocular lipid droplets on days 18 and 28 (Fig.
2A).

The mean diameter of the adipocytes as assessed by the Coulter Multisizer III was 20.2 µm
on day 8 and 37.5 µm on day 30 (Fig. 2B). During the course of adipocyte hypertrophy,
ROS production increased 2.7-folds (day 18) and 4.3-folds (day 28) in comparison with the
levels on day 8 (Fig. 2C). The mRNA and protein levels of MCP-1 and IL-6 were elevated
substantially on days 18 and 28 (Fig. 2D and E, respectively). The AGT mRNA level was
significantly lower on days 18 (48%) and 28 (42%) than that on day 8 (Fig. 2D). The AGT
concentration in the culture media was decreased on days 18 (59% of the initial value) and
28 (42% of the initial value) (Fig. 2E). These results suggest that AGT expression and
secretion were decreased in the hypertrophied adipocytes.

3.3. Impact of TNFα on the expression and secretion of AGT in adipocytes
Tumor necrosis factor α plays a critical role in the pathophysiology of inflammation and
oxidative stress [27,34,35]. To explore the impact of TNFα on the expression and secretion
of AGT in adipocytes, the differentiated 3T3-L1 adipocytes (day 8) were treated with TNFα
(Sigma-Aldrich Japan) for 24 hours. Treatment with TNFα decreased the AGT mRNA level
in a dose-dependent manner along with a concomitant increase in the MCP-1 and IL-6
mRNA levels (Fig. 3A). The AGT protein level in the culture media decreased in parallel to
the AGT mRNA level (Fig. 3B).

We also investigated the effects of TNFα on primary adipocytes. Similarly to 3T3-L1
adipocytes, treatment with TNFα (10 ng/mL) for 24 hours slightly but significantly
decreased AGT mRNA level and substantially increased MCP-1 mRNA level (Fig. 3C).

3.4. Impact of oxidative stress on the expression and secretion of AGT in adipocytes
To explore the impact of oxidative stress on the expression and secretion of AGT in
adipocytes, differentiated 3T3-L1 adipocytes (day 8) were exposed to a specific ROS
molecule, hydrogen peroxide (H2O2), for 24 hours [17,36]. Incubation of adipocytes with
H2O2 significantly increased the MCP-1 mRNA level, consistent with a previous report
[17]. In contrast, H2O2 diminished the AGT mRNA level up to 35% of the initial value in a
dose-dependent manner (Fig. 4A). The AGT protein level in the culture media also
decreased up to 23% of the initial value (Fig. 4B).

Similar to 3T3-L1 adipocytes, H2O2 treatment (1 mmol/L, 24 hours) significantly decreased
AGT mRNA level in primary adipocytes (Fig. 4C). The H2O2 treatment tended to increase
the MCP-1 mRNA level.

3.5. Effect of antioxidant treatment on the expression and secretion of AGT in adipocytes
We examined whether inhibition of ROS generation could nullify the decrease in AGT gene
expression and AGT secretion in obese adipose tissue. First, we treated 3T3-L1 adipocytes
with the antioxidant NAC (10 mmol/L) for 10 days (days 8–18). Without the NAC
treatment, the adipocytes had become hypertrophic and increased ROS production in this
period (Fig. 2B and C). The NBT assay revealed that NAC treatment significantly
suppressed ROS production (Fig. 5A). Although ROS production was reported to potentiate
adipocyte differentiation in early phase [37], the ROS suppression with the NAC treatment
in our experiments did not cause morphologic changes in hypertrophied adipocytes
compared with the vehicle treatment. The NAC treatment inhibited the increase in MCP-1
expression (Fig. 5B). The AGT mRNA level was significantly elevated with NAC treatment
(Fig. 5B).
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To test whether such phenomenon is reproducible in obese adipose tissue where ROS
production is exaggerated [17], we administered NAC to obese db/db mice once daily for 1
week. Similar to the obese ob/ob mice and DIO mice, in obese db/db mice (mean body
weight, 48 ± 1.5 g), the AGT mRNA level in epididymal adipose tissue was markedly
decreased to 22% as compared with their lean littermates (mean body weight, 28 ± 1.0 g)
(Fig. 5C). In contrast, the TNFα mRNA level in epididymal adipose tissue was significantly
higher in db/db mice than in their lean littermates (Fig. 5C). Both systemic and local
(adipose tissue) oxidative stress was elevated substantially in obese db/db mice [38].
Notably, in db/db mice, NAC treatment significantly reduced the oxidative stress also in
adipose tissue [38].

In the NAC treatment group, the AGT mRNA level in the epididymal adipose depots
increased significantly by 2.1-folds compared with that in the vehicle group, whereas the
IL-6 (P = .052) and TNFα (P = .10) mRNA levels tended to decrease in the NAC treatment
group (Fig. 5D). On the other hand, the hepatic AGT mRNA level remained unchanged in
both groups (Fig. 5E).

4. Discussion
The major finding of the present study is that oxidative stress dysregulates AGT in adipose
tissue in obese humans and rodents. The AGT mRNA level was decreased in both obese
adipose tissue and hypertrophied adipocytes, in which oxidative stress was exaggerated.
Exposure of oxidative stress decreased AGT expression not only in the adipocyte cell line
but also in primary adipocytes. The decrease in AGT expression was rescued by treatment
with the antioxidant both in vivo and in vitro. Such obesity-associated changes in AGT in
the adipose tissue were not observed in the liver.

The AGT regulation in obese adipose tissue has long been analyzed, but results were
inconsistent [6,12,13]. We here demonstrated that the AGT mRNA level in adipose tissue
was reduced in both obese humans and mice (Fig. 1). In obese mice, there seem to be no
apparent depot-specific (subcutaneous and epididymal adipose depots) or strain-specific (ob/
ob, db/db, and DIO mice) differences in the fall of AGT in adipose tissue. The AGT mRNA
level was decreased also in hypertrophied 3T3-L1 adipocytes (Fig. 2). These results are
consistent with a previous report using differentiation system of human adipocytes in
primary culture, where the AGT mRNA level increased in differentiation process, but
decreased in further culture process [39].

In previous experiments, several hormonal and metabolic changes associated with obesity
influence AGT expression in adipocytes; however, due to species differences and
experimental conditions, there are controversies around the results [39–42]. On the other
hand, our results indicate that AGT expression is decreased in obese adipose tissue. Reactive
oxygen species (H2O2) decreased AGT expression in both 3T3-L1 adipocytes and primary
adipocytes (Fig. 4). On the other hand, elimination of ROS with antioxidant increased AGT
expression not only in hypertrophied 3T3-L1 adipocytes but also in adipose tissue from
obese mice (Fig. 5). The oxidative stress–mediated decrease in adipose AGT is reproduced
in our various experiments.

Several studies have suggested the augmentation of AGT by oxidative stress in the liver and
kidney. In the liver, angiotensin II is known to enhance AGT expression via ROS generation
[23], resulting in a positive feedback loop of AGT production [43]. In addition, oxidative
stress mediated by hyperglycemia and hypertension has been shown to augment the
expression of AGT in the rodent kidney [25,26]. In turn, elevated expression of AGT has
been shown to activate renal RAS and considerably contribute to renal injury [26]. On the
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other hand, our data support a notion that oxidative stress “decreases” expression and
secretion of AGT in obese adipose tissue, implying that regulation of AGT in adipose tissue
may be distinct from other tissues in response to oxidative stress.

The clinical or pathophysiologic implications of decreased AGT in obese adipose tissue still
remain unclear. Although further studies are warranted, the notion that adipose tissue RAS is
involved in the control of adipogenesis and adipose tissue mass [44] tempts us to speculate
that tissue-specific decrease of AGT in obese adipose tissue may serve as a defense against
further exacerbation of adiposity. In obese adipose tissue, exaggerated oxidative stress
affects the expression of a variety of genes [17]. Representatively, ROS induces the
proinflammatory TNFα but suppresses the anti-inflammatory adiponectin in murine adipose
tissue [17]. Glutathione peroxidase 3 (GPx3), an antioxidant enzyme secreted from the
adipose tissue and kidney, is known to be decreased by oxidative stress exclusively in
adipose tissue in obese db/db mice [38]. Notably, in vivo administration of an antioxidant
was shown to rescue the decrease in GPx3 expression only in adipose tissue, but not in the
kidney [38]. In this context, AGT shares close similarity with adiponectin and GPx3 in
terms of the response to oxidative stress in adipose tissue.

Tissue-specific dysregulation of AGT has also been observed in inflammatory response
[45,46]. Hepatic AGT is shown to increase by inflammatory stimuli via the acute-phase
responsive element (APRE) on the promoter region of the AGT gene [43,47]. In rats treated
with lipopolysaccharide, AGT mRNA level was shown to increase in the liver, aorta, and
adrenal gland, but remained unchanged in the kidney [45]. Furthermore, in transgenic mice
with cardioselective overexpression of TNFα, expression of AGT was decreased exclusively
in the heart [46]. In the present study, we demonstrated that TNFα decreased the expression
and secretion of AGT in 3T3-L1 adipocytes (Fig. 3). Considering that chronic, low-grade
inflammation is a manifestation of obese adipose tissue [48,49], our results suggest that
AGT is inversely regulated by inflammation in obese adipose tissue.

Previous works have raised a possibility that the inflammatory responses to AGT in adipose
tissue and liver are controlled by distinct mechanisms [50]. In cultured adipocytes,
inflammatory signals transcriptionally decrease AGT by the inhibition of APRE [50];
however, in cultured hepatocytes, nuclear factor–κB signaling augments AGT by the
activation of APRE [47]. Importantly, the intracellular signaling involved in oxidative stress
and inflammation interact and share, at least in part, common pathways in a tissue-specific
manner [18,19]. In this context, tissue-specific dysregulation of AGT by oxidative stress is
reminiscent of the case in inflammatory signals; and a possible link between the
dysregulation of AGT and oxidative stress in obese adipose tissue may provide a fresh clue
to dissect the pathophysiology of obesity. For example, we would suggest the one possibility
that oxidative stress–induced suppression of adipose tissue RAS via the decrease in AGT
may control adipose tissue function including adipocyte differentiation, lipolysis, and local
blood flow [44].

In summary, the present study demonstrates for the first time that oxidative stress
dysregulates AGT in obese adipose tissue in humans and rodents as well as in cultured
adipocytes with hypertrophy. Our results support a concept that oxidative stress–dependent
decrease in AGT may be a unique facet of dysfunction in obese adipose tissue.
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Fig. 1.
The AGT mRNA levels in obese adipose tissue from humans and mice. A, The relation
between the AGT mRNA level in subcutaneous abdominal adipose tissue and the degree of
obesity in humans: nonobese (BMI <25), n = 20; overweight (25 ≤ BMI < 30), n = 13; obese
(BMI ≥30), n = 13. B, Comparison of the adipose tissue AGT mRNA levels in 12-week-old
male ob/ob mice (n = 4; mean body weight, 60 ± 0.7 g) and their lean littermates (n = 4;
mean body weight, 29 ± 0.3 g). Left: epididymal adipose tissue depots. Right: subcutaneous
abdominal adipose tissue depots. C, Comparison of the hepatic AGT mRNA level between
the ob/ob mice (n = 4) and their lean littermates (n = 4). The mRNA level was examined by
real-time PCR and normalized to that of 18S ribosomal RNA (rRNA). The data are
expressed as the mean ± SE. *P <.05 as compared with the nonobese subjects or the lean
littermates.
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Fig. 2.
The AGT expression during the course of hypertrophy in the 3T3-L1 adipocytes. A, Oil red
O staining of the 3T3-L1 adipocytes on days 8, 18, and 28 after induction of differentiation.
Bar = 30 µm. B, Size of the 3T3-L1 adipocytes on days 8 and 30. Adipocyte size was
measured using a Coulter Multisizer III. C, The ROS production during adipocyte
hypertrophy. The ROS production was assessed by the NBT assay. Dark blue formazan was
dissolved, and the absorbance was determined at 560 nm (n = 3). D, The MCP-1, IL-6, and
AGT mRNA levels in the 3T3-L1 adipocytes on days 8, 18, and 28 (n = 4). The mRNA
level was examined by real-time PCR and normalized to that of 18S rRNA. E, The AGT
protein concentration in the culture media. The MCP-1, IL-6, and AGT concentrations in the
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3T3-L1 adipocytes on days 8, 18, and 28 were analyzed by ELISA (n = 4). Results are
representatives of at least 3 independent experiments. The data are expressed as the mean ±
SE. *P < .05 and **P < .01 as compared with the value of day 8. U.D. indicates
undetectable.
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Fig. 3.
Impact of TNFα on the expression and secretion of AGT in the 3T3-L1 adipocytes. A, The
AGT, MCP-1, and IL-6 mRNA level in the 3T3-L1 adipocytes (day 8) treated with TNFα
for 24 hours (n = 4). The mRNA level was examined by real-time PCR and normalized to
that of 18S rRNA. B, The AGT protein concentration in the culture media in the 3T3-L1
adipocytes (day 8) treated with TNFα for 24 hours (n = 4). The protein level was assessed by
ELISA. C, The AGT and MCP-1 mRNA level in the primary adipocytes treated with TNFα
(10 ng/mL) for 24 hours (n = 4). The mRNA level was examined by real-time PCR and
normalized to that of 18S rRNA. Results are representatives of at least 3 independent
experiments. The data are expressed as the mean ± SE. *P < .05 and **P < .01 as compared
with the control value.
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Fig. 4.
Impact of oxidative stress on the expression and secretion of AGT in the 3T3-L1 adipocytes.
A, The AGT and MCP-1 mRNA level in the 3T3-L1 adipocytes (day 8) treated with H2O2
for 24 hours (n = 4). The mRNA level was examined by real-time PCR and normalized to
that of 18S rRNA. B, The AGT protein level in the culture media of the 3T3-L1 adipocytes
(day 8) treated with H2O2 for 24 hours (n = 4). The protein concentration was assessed by
ELISA. C, The AGT and MCP-1 mRNA level in the primary adipocytes treated with H2O2
(1 mmol/L) for 24 hours (n = 4). The mRNA level was examined by real-time PCR and
normalized to that of 18S rRNA. Results are representatives of at least 3 independent
experiments. The data are expressed as the mean ± SE. *P < .05 and **P < .01 as compared
with the control value.
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Fig. 5.
Effect of antioxidant treatment on the expression and secretion of AGT in the adipocytes. A,
Suppression of ROS generation in the 3T3-L1 adipocytes treated with NAC (10 mmol/L) for
10 days (n = 3). The ROS was estimated by the NBT assay. B, The MCP-1 and AGT mRNA
levels in the 3T3-L1 adipocytes incubated with NAC (10 mmol/L) (n = 8). The mRNA level
was examined by real-time PCR and normalized to that of 18S rRNA. Results are
representatives of at least 3 independent experiments. C, Comparison of the AGT and TNFα
mRNA levels between 10-week-old male db/db mice (n = 4; mean body weight, 48 ± 1.5 g)
and their lean littermates (n = 4; mean body weight, 28 ± 1.0 g) in epididymal adipose
tissue. D, The level of IL-6, TNFα, and AGT mRNA in the epididymal adipose tissue depots
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of obese db/db mice treated with NAC (150 mg/kg body weight) or vehicle (phosphate-
buffered saline) once daily for 1 week (n = 3). E, The AGT mRNA level in the liver of obese
db/db mice treated with NAC or vehicle for 1 week (n = 3). The mRNA level was examined
by real-time PCR and normalized to that of cyclophilin mRNA. The data are expressed as
the mean ± SE. *P < .05 and **P < .01 as compared with the control value.
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Table 1

Sequences of Taqman PCR primers and probes

Gene name
Genbank accession no.

Forward primer
Reverse primer

Probe (5′-FAM, 3′-TAMRA)

Human AGT GGTGGAGGGTCTCACTTTCCA CCCTCAACTGGATGAAGAAACTGTCTCC

NM_000029 ATGGTCAGGTGGATGGTCCG

Mouse Agt ACACCTACGTTCACTTCCAAG ATGAGAGGTTTCTCTCAGCTGCCTGGA

NM_007428 CCGAGATGCTGTTGTCCAC

Mouse Ccl2 (MCP-1) TTGGCTCAGCCAGATGC CCCCACTCACCTGCTGCTACTCATTCA

NM_011333 CCAGCCTACTCATTGGGATCA

Mouse Il6 (IL-6) ATGAAGTTCCTCTCTGCAAGAG CACCAGCATCAGTCCCAAGAAGGCA

NM_031168 GTAGGGAAGGCCGTGGTTG

Mouse Tnf (TNFα) TCTCTTCAAGGGACAAGGCTG CCCGACTACGTGCTCCTCACCCA

NM_013693 ATAGCAAATCGGCTGACGGT

The sequences of primers and probes for each gene used in the present study are summarized.
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