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Abstract
Well over two decades has passed since the endothelium-derived relaxing factor (EDRF) was
reported to be the gaseous molecule nitric oxide (NO). Although soluble guanylyl cyclase (which
generates cyclic guanosine monophosphate, cGMP) was the first identified receptor for NO, it has
become increasingly clear that NO exerts a ubiquitous influence in a cGMP-independent manner. In
particular, many if not most effects of NO are mediated by S-nitrosylation, the covalent modification
of a protein cysteine thiol by an NO group to generate an S-nitrosothiol (SNO). Moreover, within
the current framework of NO biology, EDRF activity—i.e. G-protein coupled receptor-mediated, or
shear-induced endothelium-derived NO bioactivity—is understood to involve a central role for
SNOs, acting both as second messengers and signal effectors. Further, essential roles for S-
nitrosylation have been implicated in virtually all major functions of NO in the cardiovascular system.
Here we review the basic biochemistry of S-nitrosylation (and denitrosylation), discuss the role of
S-nitrosylation in the vascular and cardiac functions of NO and identify current and potential clinical
applications.
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NO as the Third Respiratory Gas
Molecular oxygen (O2) and carbon dioxide (CO2) are critical components of cardiovascular
physiology (and pathophysiology). These gaseous molecules are central to tissue physiology
and cellular respiration, and it has long been understood that disturbances in O2 or CO2
processing are both causative and indicative of pathophysiology1. Over time, however, it has
become increasingly clear that nitric oxide (NO) is also an endogenous regulator in
cardiovascular physiology and cellular respiration, operating at considerably lower
concentrations than O2 or CO2. These observations have lead to the proposal that NO is the
“third gas” of the respiratory cycle2–4.

The major sources of NO in vivo are the NO synthase (NOS) isoforms. These include
predominantly the neuronal (nNOS/NOS1), inducible (iNOS/NOS2) and endothelial (eNOS/
NOS3) enzymes. It is worth noting that this naming system is primarily of historical
significance; NOS tissue expression is far less strict than implied by this nomenclature, and all
three isoforms may be constitutive or inducible. NOS’s are heme- and flavin-containing
enzymes that employ NAPDH, tetrahydrobiopterin and O2 to convert L-arginine to L-citrulline
with concomitant release of NO 5.

NO-Based Signaling: The Roles of cGMP and S-Nitrosylation
One of the earliest described intracellular receptors for NO is the soluble guanylyl cyclase
(sGC)6, 7. Binding of NO to the heme group of sGC leads to increased conversion of GTP to
cGMP, which in turn activates protein kinase G (PKG). Despite the wealth of studies that have
focused on sGC, it has become increasingly clear that NO exerts most of its cellular influence
in a cGMP-independent manner. More generally, it is now appreciated that hemes in proteins
do not generally mediate NO-based signaling that involves posttranslational protein
modification, but rather serve to promote the requisite redox chemistry of NO. These
observations led to the exploration of alternative molecular mechanisms through which NO
might regulate cellular function, which culminated in the discovery of NO-mediated
modification of protein cysteine (Cys) residues (to generate an S-nitrosothiol, SNO),
designated S-nitrosylation (Figure 1A).

Cys is a unique amino acid due to its thiol side chain. This functional group is nucleophilic,
acidic (pKa ~ 8) and redox active due to its hybridized p- and d-orbitals, which together underlie
the large range of reactivities for Cys residues within proteins. Within the realm of redox
chemistry (i.e., transfer of electrons and consequent change in atomic oxidation state),
numerous reactions are known to occur on Cys thiol side chains that affect protein structure
and function. Of particular physiological significance is the redox reaction between NO and a
Cys thiol leading to S-nitrosylation (forming a protein SNO). In contrast to the cGMP axis that
employs a single principal molecular effector (i.e., PKG) to carry out the downstream functions
of NO, S-nitrosylation allows for a wide range of NO-mediated functions, inasmuch as a
plethora of proteins may undergo this modification 8, 9. S-nitrosylation therefore helps to
explain the wide range of cellular effects of NO in the cardiovascular system, some of which
are listed in Table 1.

In addition, the ongoing delineation of cellular SNO-proteins has revealed multiple loci through
which S-nitrosylation might influence levels of cGMP. It has been reported that S-nitrosylation
inhibits sGC 10 and cGMP phosphodiesterase 11, as well as eNOS itself 12 and eNOS-regulating
proteins including HSP9013 and Akt/protein kinase B 14. PKG has regulatory thiols as well,
which may be susceptible to S-nitrosylation. Further, activating S-nitrosylation of arginase
15 and inhibitory S-nitrosylation of dimethylarginine dimethylaminohydrolase 16 would
decrease NOS substrate levels and increase levels of endogenous, methylarginine NOS
inhibitors, respectively.
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Protein Denitrosylation: A Critical Regulator of SNO Biology
Numerous studies have focused on the mechanistic aspects of S-nitrosylation, leading to the
identification of proteins that may either catalyze S-nitrosylation (e.g. hemoglobin)17, or
participate in protein trans-nitrosylation (i.e., NO group transfer between proteins)18. More
recently, however, protein denitrosylation has been shown to play a major role in controlling
cellular S-nitrosylation19–21 (similar to the role of phosphatases in protein phosphorylation),
and has been shown to operate on hundreds of proteins in intact cells21, 22. To date, two major
enzymatic systems mediating denitrosylation have been described (Figure 1B), and are
discussed in greater detail below.

A number of enzymes have been reported to catalyze the reduction of SNOs, and thus may be
viewed as candidate denitrosylases. One of the first described is known as S-nitrosoglutathione
(GSNO) reductase (GSNOR)23, 24. This enzyme employs the reducing power of NADH to
convert GSNO to glutathione S-hydroxysulfenamide (GSNHOH), which in turn is converted
to oxidized glutathione (GSSG); reduction of GSSG by glutathione reductase completes the
denitrosylation cycle (GSSG-reductase activity is therefore required for physiological
denitrosylation of GSNO25). Although GSNOR acts only on GSNO, i.e. SNO-proteins are not
substrates, it governs protein S-nitrosylation by influencing the cellular equilibrium between
SNO-proteins and GSNO26, 27 (Figure 1B). Importantly, GSNOR has been shown to play a
role in regulating SNO signaling downstream of the β-adrenergic receptor28, 29, and is
therefore operative in cellular signal transduction (discussed further below). Pharmacological
inhibition or genetic deletion of GSNOR leads to enhanced vasodilation19, 30, 31, consistent
with a role for GSNO in conveying the systemic activity of NO derived from eNOS.

GSNOR is an atypical member of the alcohol dehydrogenase family, inasmuch as it has no
known alcohol-based substrate. In methylotropic bacteria, GSNOR also metabolizes
formaldehyde. A recent report indicates that another NADPH-oxidoreductase (carbonyl
reductase 1) possesses GSNOR activity32. In addition, xanthine oxidase metabolizes GSNO,
but the Km is high and its physiological relevance is therefore not clear33. Nonetheless, these
studies, taken together, raise the idea that multiple enzymes may modulate GSNO levels in
vivo.

A new line of investigation has recently revealed that the ubiquitous thioredoxin enzyme family
—originally described as protein disulfide reductases34, 35—are also bona fide intracellular
denitrosylases36, 37. In contrast to the strict substrate specificity of GSNOR for GSNO, a small-
molecular-weight SNO, the cytoplasmic and mitochondrial thioredoxins (Trx1 and Trx2,
respectively) directly mediate the denitrosylation of multiple substrate SNO-proteins. As
illustrated in Figure 1B, the Trx system employs a thioredoxin reductase (TrxR) and NADPH
to regenerate reduced Trx following denitrosylation. Recent examples demonstrate that, in the
context of signal transduction, denitrosylation by Trx/TrxR can be stimulus-coupled, substrate
specific and spatially restricted (compartmentalized) 20, 21, 30.

Accumulating evidence indicates that protein S-nitrosylation status in vivo is not determined
simply by rates of NO synthesis (i.e. NOS activities), but rather involves a precisely regulated
equilibrium between S-nitrosylation and denitrosylation pathways, in particular involving
transnitrosylation reactions between a variety of peptides and proteins, and that consequently
protein denitrosylation is critical in SNO-based signal transduction8,21. Enzymatic control of
both S-nitrosylation and denitrosylation, established by stringent genetic criteria, underlies the
spatiotemporal specificity necessary for cellular signaling. In addition, elucidation of the
mechanisms of denitrosylation may provide novel genetic and pharmacological tools for
manipulating SNO-based signaling in vivo (e.g., as revealed in studies of GSNOR−/− mice,
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discussed further below) and help identify potential targets for therapeutic intervention in
dysregulated SNO processing in the cardiovascular system38.

Roles of S-Nitrosylation in Vascular Signaling
EDRF and systemic vascular resistance

NO derived constitutively from eNOS (which mediates endothelium-dependent relaxation) is
thought to account for the increase in blood pressure that is produced by both NOS inhibitors
and genetic deletion of eNOS. It is worth considering in this light the implications of the
findings that inhibitors of GSNOR elicit vasodilation30 and deletion of GSNOR results in
lowering of systemic vascular resistance 19, 31; GSNOR null mice are in fact highly susceptible
to hypotension19. Thus, to the extent that peripheral vasodilation by eNOS is identified with
EDRF, analysis in GSNOR mutant mice indicates that GSNO is a major effector of EDRF
action.

Vasodilation by EDRF may be mediated by cGMP or may be cGMP-independent, depending
on the animal species and vessel type. In the classic Furchgott bioassay of rabbit thoracic aorta,
the EDRF response is equally dependent on cGMP-and non-cGMP-regulated pathways39,
40. Further, increases in cGMP in and of themselves provide little insight into the nature of
the NO-based effector, because both NO and GSNO can increase cGMP levels. In addition,
cGMP elevations may either result not only from NO binding to heme in sGC but also from
inhibitory S-nitrosylation of phosphodiesterase 511. GSNO-based EDRF activity would be
fully consistent with these data. GSNO is in equilibrium with protein SNO, and it has recently
been reported that shear-induced activation of endothelial cells is associated with S-
nitrosylation of over one hundred proteins41. Furchgott’s EDRF was not generated by shear
but rather by acetylcholine, a G protein-coupled receptor (GPCR) that activates both activates
eNOS and releases NO from SNO-protein reservoirs 172. As discussed in more detail below,
it has been shown recently that GPCR-mediated vasodilation via a different, eNOS-coupled
GPCR, the β2-adrenergic receptor, is regulated critically by and very likely dependent in large
part upon GSNO-mediated S-nitrosylation of a set of proteins that includes G protein-coupled
receptor kinase GRK228, 29, 42. Inhibition of GRK2 by S-nitrosylation prevents receptor
densensitization. Thus, the available evidence is consistent with a prominent role for SNO in
conveying NO-based vasodilatory signals43–45.

Substantial evidence supports a model in which endothelial dysfunction contributes to
evolution of vascular disease, including hypertension, diabetes and atherosclerosis. A signature
feature of this model is the excess production of superoxide, which eliminates NO43.
Endothelial sources of superoxide include NADPH oxidases and eNOS itself, through a process
known as “uncoupling” that results from co-factor or substrate deficiency. It is therefore of
interest that S-nitrosylation of NADPH oxidase may preserve NO bioavailabilty in healthy
endothelium by inhibiting production of superoxide44. By contrast, excessive S-nitrosylation
of arginase has been implicated in the uncoupling eNOS that is characteristic of arteriosclerotic
vessels45. It has been recently suggested that impaired S-nitrosylation of endothelial clock-
related proteins may be linked to hypertension46, emphasizing the emerging theme that hypo-
and hyper-nitrosylation of specific protein targets, rather than a general NO/superoxide
imbalance that may be interpreted principally in terms of altered levels of NO, may correlate
best with pathophysiology.

Angiogenesis
Endogenously synthesized NO is an established facilitator of endothelial function and survival:
eNOS is both induced and activated following endothelial stimulation with vascular endothelial
growth factor (VEGF)47, 48, a major promoter of vessel growth in vivo, as well as by shear
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stress49. Importantly, eNOS−/− mice are deficient in VEGF responsiveness, thus establishing
that NO is indeed a critical element in angiogenesis50. It has also been demonstrated that both
shear stress41, 51 and VEGF52, 53 regulate protein S-nitrosylation in the vascular endothelium.
In a recent specific example, VEGF production downstream of the chemokine-type GPCR
CXCR4 was shown to be intimately coupled to S-nitrosylation of MAP kinase phosphatase 7
(MKP7), which facilitates endothelial cell migration via activation of c-Jun N-terminal kinase
3 (JNK3), thus promoting angiogenesis54. Promotion of endothelial cell survival and
angiogenesis also appears to be mediated via S-nitrosylation and activation of dynamin55, a
regulator of endothelial cell endocytosis. Finally, endothelial S-nitrosylation is perturbed by
known pathophysiological stimuli including aging56 and hyperglycemic states57, clearly
linking defective S-nitrosylation to vascular disease.

It is well recognized that hypoxia stimulates angiogenesis primarily via the transcription factor
hypoxia-inducible factor (HIF), which augments VEGF expression58. Under normoxic
conditions, HIF is typically undetectable due to rapid proteolytic degradation that is initiated
by prolyl hyroxylation. Interestingly, exogenously administered SNO donors exert a hypoxia-
mimetic effect59, 60, leading to nuclear accumulation of HIF. HIF stablilization by SNO under
conditions of normoxia, observed both in vitro61, 62 and in vivo31, is mediated by S-
nitrosylation of HIF itself. Specifically, HIF is constitutively S-nitrosylated in normoxic
GSNOR−/− mice, with increased binding of S-nitrosylated HIF to the gene for VEGF31. These
mice also exhibited increased myocardial capillary density, lending further support for an
integral role of S-nitrosylation in promoting angiogenesis.

Apoptosis
Some of the earliest studies examining the functions of S-nitrosylation focused on the anti-
apoptotic/protective effects of endogenous NO63. These efforts demonstrated that NO S-
nitrosylates and inhibits the active site Cys residue of the pro-apoptotic effector caspase-364–
66. It was shown subsequently that caspase-3 undergoes stimulus-coupled activation, driven
by proapoptotic Fas stimulation, via thioredoxin-mediated denitrosylation20. Importantly, this
mechanism has been shown to operate in endothelial cells67, suggesting that the S-
nitrosylation/denitrosylation equilibrium of caspase-3 may be a critical determinant of
endothelial cell survival and vessel function. Furthermore, the oxidoreductase function of
thioredoxin, a vital element in preserving endothelial redox equilibrium and protecting against
the deleterious effects of oxidative and/or nitrosative stress, is itself stimulated by S-
nitrosylation68.

Inflammation
The robust anti-inflammatory attributes of NO were first appreciated in experimental
observations of diminished leukocyte adherence to vascular endothelium in the presence of
exogenous NO donors69. Administration of NOS inhibitors predictably results in increased
leukocyte rolling along the endothelium. Studies in knockout mice lacking a specific NOS
isoform also underscore the contribution of endogenous NO sources in mitigating leukocyte
adherence: compared to wild-type, eNOS−/−, nNOS−/− and iNOS−/− mice exhibit increased
leukocyte adherence to endothelium70, 71.

The molecular bases of these findings have been elucidated in part, and encompass two key
areas of SNO-mediated regulation: control of endothelial protein trafficking and suppression
of nuclear factor-κB (NF-κB)-dependent expression of pro-inflammatory cytokines and
adhesion molecules72. During the initial phase of an inflammatory response, leukocyte rolling
requires interactions between P-selectins on the endothelial cell surface with the cognate P-
selectin glycoprotein ligand-1 (PSGL-1) on the leukocyte surface. P-selectins are
transmembrane proteins that reside within resting endothelial cells in granules designated
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Weibel-Palade bodies (WPB). Upon endothelial cell activation by an inflammatory stimulus,
these granules translocate to the cell surface, resulting in exposure of P-selectin to the vessel
lumen. N-ethylmaleimide-sensitive factor (NSF), a principal component of this exocytic
trafficking machinery, is subject to direct inhibition by S-nitrosylation of critical Cys
residues73. The resultant interruption of NSF-mediated disassembly of soluble NSF-
attachment protein receptor (SNARE) complexes prevents WPB exocytosis from endothelial
cells. Thus, S-nitrosylation of NSF, consequent, for example, upon stimulation with the GPCR
agonist thrombin, is identified with the anti-inflammatory activity of eNOS (Figure 2).
Similarly, inhibitory S-nitrosylation of NSF in platelets is anti-thrombotic through a similar
mechanism74 (see below).

Other phases of the inflammatory response and leukocyte trafficking are impacted by S-
nitrosylation. Specifically, NO has been shown to limit the expression of integrins and
intracellular adhesion molecules (ICAMs) required for leukocyte adherence75–77. These and
other pro-inflammatory effectors, including cytokines and cytokine receptors, are under direct
transcriptional control by NF-κB78. Inhibitory S-nitrosylation of both NK-κB79 and its
upstream activating enzyme complex, inhibitory κB kinase (IKK)80, has been demonstrated in
multiple studies. Taken together, these demonstrations of multiple loci of S-nitrosylation in
the inflammatory signaling cascade support a comprehensive and multifaceted regulatory
scheme akin to that subserved by phosphorylation/dephosphorylation. It may be anticipated
that the anti-inflammatory actions of NO via S-nitrosylation will be relevant across a range of
vascular pathologies from atherosclerosis to vasculitis and septic shock.

Reperfusion Injury
Following a period of transient tissue ischemia, re-establishment of vascular blood flow and
O2 delivery causes paradoxical tissue damage referred to as “reperfusion injury”81. Elucidating
the biochemical and molecular mechanisms of reperfusion injury has been an active area of
investigation, inasmuch as amelioration would be of significant benefit during both
percutaneous and pharmacological reperfusion techniques. Altered S-nitrosylation is
intimately linked with reperfusion injury, helping to explain the salutary actions of statins,
estrogen and mitochondrial respiratory chain inhibitors. In particular, atorvastatin stimulates
iNOS-mediated S-nitrosylation of COX282, thereby generating cytoprotective prostaglandins.
In addition, estrogen appears to exert its cardioprotective effect, at least in part, by augmenting
S-nitrosylation of mitochondrial proteins 83–85. Whereas dysregulated S-nitrosylation appears
to facilitate injury via irreversible inhibition of mitochondrial complex I (necessary for
converting electrons from NADH to an ATP-producing proton gradient)86–88, targeted
delivery of nitrosylating agents to mitochondria is protective in ischemia/reperfusion (I/R), and
inhibition of reactive oxygen generation by complex I may be involved89. iNOS also
contributes to the protective effects of pre-conditioning (exposure to moderate hypoxia prior
to I/R, which attenuates reperfusion injury) that are partly recapitulated by nitroglycerin90,
91. Inasmuch as nitroglycerin bioactivation occurs predominantly in mitochondria and results
in accumulation of protein S-nitrosothiols92, it may be suggested that S-nitrosylation plays a
protective role85, 89, 93, 94. In support of this idea, SNO-proteins that have been shown to
increase in pre-conditioned hearts are also identified following I/R95.

Atherogenesis, risk factors and circulating SNO
Defective S-nitrosylation may contribute significantly to the pathophysiology of
atherosclerosis. This condition reflects a contribution from myriad factors, including
disruptions in the NO/redox equilibrium, immunologic/inflammatory stresses, platelet
activation, aberrant vessel tone, and age-associated endothelial dysfunction. A major role in
atherosclerosis for oxidative stress with resultant NO/redox disequilibrium is well-
characterized43. As described above, thioredoxin functions as a critical regulator of cellular
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redox status and as an important modulator of S-nitrosylation. Recent studies suggest that
statins, frequently employed anti-dyslipidemic and vasculoprotective agents, may exert their
effects, at least in part, by inducing both S-nitrosylation and activation of thioredoxin96.

Platelet activation is highly relevant in atherosclerosis. The role of NO in platelet biology has
been complicated in recent years by findings that both eNOS and iNOS may contribute to
platelet cGMP production, and that cGMP may exert both inhibitory and stimulatory
effects97. In addition, accumulating evidence also supports the idea that NO may inhibit
platelet aggregation via a cGMP-independent pathway98–102. Platelet aggregation is the third
and final stage of the platelet activation process, preceded by platelet adherence and granule
secretion (exocytosis). The contents of the various platelet granules (i.e., dense, α-, and
lysosomal granules) figure prominently in platelet recruitment, rolling, adherence, and
aggregation. As in the case of endothelial exocytosis discussed above, S-nitrosylation of NSF
also exerts an inhibitory effect on exocytosis in platelets, thereby suppressing thrombosis and
vascular inflammation 74(Figure 2). These effects are mediated by endogenously generated
NO, inasmuch as platelets from eNOS−/− mice exhibit increased rolling on venules, increased
arteriolar thrombosis, and increased exocytosis in vivo74.

Hypertension is a primary risk factor for progression of atherosclerotic disease and
cardiovascular morbidity and mortality. Endogenous SNOs are implicated as key mediators of
vasodilation and blood pressure control19, 46, 103, and in plasma, SNO-albumin provides a
major reservoir of NO bioactivity104. However, albumin can also serve as a deleterious NO
sink, whereby excessive sequestration of endogenous NO as S-nitrosoalbumin (SNO-albumin)
negatively impacts vascular homeostasis in a variety of pathophysiological states103. Notably,
albumin infusions may precipitate elevations in blood pressure by limiting the pool of
bioavailable SNO for basal vessel relaxation105. Similarly, increased plasma SNO levels,
suggestive of impaired NO delivery or excessive NO sequestration, are associated with adverse
cardiovascular outcomes and hypertension in end-stage renal disease patients106, and
misappropriation of NO as SNO-albumin is also directly implicated in the pathogenesis of
hypertension in preeclampsia107, 108. It is important to emphasize, however, that exogenously
administered SNO-albumin has been shown to serve as an effective therapeutic agent in a
number of animal models including ischaemia/reperfusion-associated heart damage109, 110,
lung injury in sickle cell disease111 and cardiopulmonary dysfunction in endotoxemia112,
113.

A number of studies have confirmed that the aging process is accompanied by a progressive
decrease in bioavailable NO and concomitant endothelial dysfunction15, 114–116. Explanations
include increased superoxide production and elevated levels of naturally occurring NOS
inhibitors. Upregulation of arginase activity in aging vasculature has also been espoused as a
predominant mechanism for age-related endothelial dysfunction. Elevated levels of arginase,
which competes directly with NOS for the common substrate L-arginine, would theoretically
limit the amount of NO synthesized. Indeed, it was reported that in vitro inhibition of arginase
activity restores (NO-based) vasodilation in aortic rings derived from aged rats114, 116. A
subsequent study revealed that arginase is activated by S-nitrosylation of a single Cys residue,
leading to its stabilization and to substantially enhanced substrate affinity (6-fold reduction in
Km)15, which might enhance its ability to compete with NOS. Moreover, S-nitrosylation of
arginase was increased in blood vessels from aging rats and was mediated by iNOS, previously
shown to be expressed in aging vasculature115.

SNO-Hemoglobin and Hypoxic Vasodilation
Hypoxic vasodilation is an autoregulatory physiological response that maximizes blood flow
to regions in the arterial periphery with low hemoglobin (Hb) O2 saturation, thereby matching
perfusion with tissue O2 demand4, 17, 117. The progressive diminution in blood O2 content
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accompanying the decline in arteriolar diameter within the microcirculation results in graded
vasodilation. Autoregulation of blood flow occurs within seconds or less (A–V transit times)
and is recapitulated by direct intra-arterial infusion of variably deoxygenated but not of
oxygenated RBCs118, and RBCs added to aortic ring bioassays at varying PO2 actuate graded
vasodilation (Figure 3A)17. Moreover, these RBC-induced responses can be replicated by S-
nitrosohemoglobin (SNO-Hb), which has a well-documented role in mediating hypoxic
vasodilation4, 119–122. Infusion of SNO-Hb (but not unmodified Hb) augments blood flow
in vivo under normoxic conditions (Figure 3B)122, and vasodilation is blunted in the setting of
supraphysiological PO2 (e.g., ambient O2 at 3 atmospheres absolute)122 (Figure 3C). By
contrast, hypoxemia augments vasodilation by SNO-Hb. Changes in peripheral blood flow are
predictably correlated with circulating SNO-Hb concentrations123.

Hemoglobin exists predominantly in one of two structural states: R (relaxed, high O2 affinity)
and T (tense, low O2 affinity)120. S-nitrosylation of hemoglobin (to generate SNO-Hb) occurs
at Cys93 of the β subunit (Cys β93)120. The allosteric conformation of the Hb molecule governs
reactivity of the Cys β93 residue, and thus the propensity for NO binding (Figure 3D). SNO-
Hb formation is favored in the oxygenated (R) structure, whereas in the T configuration (e.g.,
hypoxia, low pH), NO groups are released to the surrounding tissues with resultant
vasodilation. The duality of SNO-Hb as simultaneous O2 carrier and NO donor may plausibly
be harnessed in creating viable blood substitutes, with some applicability already reported in
ischemic myocardium124. Additionally, it appears that the coronary vasodilator nitroglycerin
improves perfusion of ischemic myocardium by utilizing SNO-Hb-mediated O2 delivery in
concert with NO unloading125. Inasmuch as RBCs play a central role in autoregulation of blood
flow4, perturbations in the delivery of SNO by RBCs may underlie a variety of
pathophysiological states characterized by microvascular dysfunction126. For example,
pulmonary hypertension, a clinical entity often triggered by sustained hypoxemia, leads to
depletion of RBC SNO-Hb stores and consequently to defective PO2-coupled vasoregulation
and ventilation/perfusion mismatching127. Moreover, in vivo repletion of SNO-Hb can correct
these physiologic deficits. Defective production of SNO-Hb by sickle RBCs has been
implicated in impaired vasoregulation in sickle cell disease; the severity of symptoms is
correlated with the degree of impairment of SNO-Hb processing and of RBC-mediated
vasodilation, and these deficits can be ameliorated by repletion of SNO-Hb 128. In diabetes,
derangements of SNO delivery by RBCs, resulting from glycosylation of Hb, which promotes
the R configuration and thereby limits NO delivery, may exacerbate the vasculopathy
associated with this disease129, 130.

Roles of S-Nitrosylation in Cardiac Signaling
Electrophysiology

Within the heart, S-nitrosylation has emerged as a ubiquitous signaling modality, impacting
virtually every facet of cardiac function and dysfunction. The elaborate cascade of Ca2+ cycling
that underlies excitation-contraction coupling (ECC) is no exception131. ECC spans an ordered
sequence from electrical excitation of the individual myocyte to heart contraction, subserved
by the tightly regulated trafficking of Ca2+ flux from one cellular compartment to another132.
Upon membrane depolarization of the cardiac myocyte generated by voltage-gated Na+

channels, a cytosolic influx of Ca2+ occurs via the plasmalemmal L-type Ca2+ channel.
Through a process known as Ca2+-induced Ca2+ release, this initial Ca2+ current triggers a
more pronounced Ca2+ release from the sarcoplasmic reticulum (SR) through the ryanodine
receptor/Ca2+ release channel (RyR2). Myocyte contraction proceeds when Ca2+ binds to
troponin C in myofilaments, activating myosin ATPase. Relaxation of the myocyte entails
diastolic reuptake and extrusion of cytosolic Ca2+ by way of the SR Ca2+ ATPase (SERCA2a)
and the sarcolemmal Na+/Ca2+ exchanger132, respectively.
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The ion channels participating in ECC, as well as those that determine the shape and duration
of the action potential (see below) are modulated by S-nitrosylation85, 131, 133–138, which
thereby exerts effects on both contractility and arrhythmogenesis. The specific effects exerted
by NO in the myocyte are dictated in part by the subcellular compartmentalization of NOSs
(NOS1and NOS3), which reside in close proximity to substrates for S-nitrosylation139(Figure
4). NOS3 is spatially confined to sarcolemmal membrane caveolae and is thus adjacent to the
L-type Ca2+ channel, whose S-nitrosylation inhibits ion influx135, 140. In a similar fashion,
NOS1 resides in the SR where it is complexed with RyR2, and S-nitrosylation activates RyR2
(increases channel opening probability, Po)136, 141. Co-localization and targeted S-
nitrosylation may also hold true for SERCA2a142, 143. Collectively, these observations
demonstrate the precise spatiotemporal regulation of S-nitrosylation that underlies control by
NO of cardiac ECC.

It has been reported that nNOS re-distributes to the sarcolemma in heart failure, where it may
regulate both β-adrenergic responsiveness and Ca2+ flux143–145, and the deleterious
consequences of myocardial infarction in mice (ventricular arrhythmia and mortality) are
significantly more severe in nNOS−/− animals than in wild-type animals, in association with
decreased S-nitrosylation of L-type Ca2+ channels143. Thus, inhibitory S-nitrosylation of L-
type Ca2+ channels by nNOS is likely anti-arrhythmogenic.

More generally, disruption of the NO/redox equilibrium in myocytes, through alteration of
either levels or spatiotemporal distribution of NO/ROS, is widely regarded as a sine qua non
of heart failure146. Up-regulation of oxidant (ROS) production, notably by xanthine oxidase,
can overwhelm endogenous, NO-based signaling and promote the mechano-energetic
uncoupling characteristic of cardiac dysfunction147. Therapies directed against xanthine
oxidase enable reverse remodeling in rats with dilated cardiomyopathy148. Thus, restoration
of NO/redox homeostasis provides a potentially fruitful approach to restoring cardiac
contractile function149

β-Adrenergic Receptor System
In cardiac myocytes, eNOS is activated following β-adrenergic receptor stimulation150, and
important roles have been demonstrated for S-nitrosylation in transducing adrenergic signals.
For example, S-nitrosylation of the L-type Ca2+ channel increases following isoproterenol
stimulation in an eNOS-dependent manner135. Interestingly, a difference in protein S-
nitrosylation appears to explain, at least in part, the gender disparity in I/R injury: females
exhibit higher SNO levels and improved protection83.

Densensitization of GPCRs is a characteristic feature of disease, as is a deficiency of NO
bioactivity. Recent studies have helped to connect these phenomena by demonstrating that
GRK2 undergoes agonist-coupled, inhibitory S-nitrosylation (Figure 5B). GRK2 activity is a
molecular correlate of receptor densensitization. Thus, S-nitrosylation leads to decreased β-
adrenergic receptor (β-AR) phosphorylation and desensitization29, and absent S-nitrosylation,
cardiac contractility declines rapidly during maintained adrenergic stimulation (Figure 5B).
β-arrestin 2, a scaffolding protein that targets receptors for stimulus-coupled internalization,
has also been shown to undergo S-nitrosylation28, leading to enhanced eNOS-dependent
receptor trafficking (Figure 5A). Importantly, these studies reported increased protein S-
nitrosylation (SNO-GRK2 and SNO-β-arrestin) in GSNOR−/− mice. Finally, S-nitrosylation
of dynamin facilitates clathrin-dependent endocytosis of membrane receptors including the β-
AR and thereby receptor downregulation 151 (Figure 5C). S-nitrosylation is thus under
enzymatic control and GSNO is a central player in β-adrenergic receptor signaling. Other
studies have demonstrated that VEGF may regulate GSNOR expression152; crosstalk between
VEGF (and other pro-vascular signals) and β-adrenergic receptors may be mediated via the
GSNOR/S-nitrosylation axis.
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Arrhythmogenesis
As indicated above, the shape and duration of the cardiac action potential are regulated by
multiple ion channels that are subject to regulatory S-nitrosylation138 (Figure 6 summarizes
findings in the case of the ventricular action potential). For example, the inward-rectifying K
current (IK1) shapes phase 3, and S-nitrosylation of a single cysteine in the relevant channel
protein, Kir2.1, shortens the action potential153. Chronic atrial fibrillation was associated with
decreased Kir2.1 S-nitrosylation, as assessed in human atrial samples.

A role for dysregulated S-nitrosylation in the development of a number of cardiac arrhythmias
is supported by additional studies. Gonzalez et al.141 demonstrated that nNOS-mediated S-
nitrosylation of RyR2 is critical for maintaining intracellular Ca2+ homeostasis (Figure 4).
Mice deficient in nNOS exhibit a diastolic calcium leak141, which creates contractile
dysfunction and a pro-arrythmogenic state154, 155. nNOS mutant mice also exhibit a pro-
arrhythmic state following myocardial infarction, which is associated with diminished S-
nitrosylation of RyR2, SERCA2a and L-type calcium channel143.

Mutations in α-syntrophin, a dystrophin-associated protein that acts as a scaffold between
nNOS and the plasma membrane Ca-ATPase156, have been shown to contribute to long-QT
syndrome157. The Ala390→Val mutation in α-syntrophin alters the inhibitory interaction
between nNOS and the plasma membrane Ca-ATPase, and the resultant S-nitrosylation of the
Na+ channel SCN5A enhances Na+ influx157, a pro-arrhythmic event recapitulating long-QT
syndrome.

Conclusions
NO plays an important role in virtually all aspects of cardiac and vascular physiology. However,
the molecular details are understood in only very few instances. The emergence of SNOs as
second messengers and of S-nitrosylation as the preeminent NO-based signal presages a new
era in cardiovascular biology. Unraveling the molecular underpinnings of SNO-based
cardiovascular function and pathophysiology will undoubtedly yield novel therapeutic targets
with great potential to improve clinical outcomes38.

Non-standard abbreviations and acronyms

EDRF endothelium-derived relaxation factor

GSNO S-nitrosoglutathione

GSNOR S-nitrosoglutathione reductase

SNO S-nitrosothiol
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Figure 1.
The roles of cGMP and S-nitrosylation in NO-based signaling (A) and enzymatic protein
denitrosylation mediated by the S-nitrosoglutathione reductase (GSNOR) and thioredoxin
(Trx) systems (B). (A) NO synthase (NOS) synthesizes NO, which may activate soluble
guanylyl cyclase and thereby enhance production of cGMP (left) or subserve protein S-
nitrosylation (right). The cGMP-dependent pathway is deactivated by cGMP-
phosphodiesterase (PDE), which hydrolyzes cGMP to GMP (PDE may also be activated
allosterically by cGMP). The SNO-based mechanisms are dynamically regulated via S-
nitrosylation and denitrosylation of a multitude of cysteine-containing proteins. In contrast to
the multiple elements regulated by S-nitrosylation, the cGMP-based signaling system relies
primarily on the cGMP-dependent protein kinase, PKG. (B) Proteins undergo reversible S-
nitrosylation and denitrosylation (center). Denitrosylation mediated by GSNOR is depicted on
the left. Transnitrosylation of glutathione (GSH) by S-nitrosylated proteins generates GSNO
and native protein. GSNO undergoes NADH-dependent reduction by GSNOR to generate
glutathione S-hydroxysulfenamide (GSNHOH), which can undergo further reaction with GSH
to generate oxidized glutathione (GSSG). The redox cycle is completed by reduction of GSSG
to GSH via GSSG reductase. Denitrosylation mediated by the thioredoxin (Trx) system is
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depicted on the right. The active site dithiol motif (CXXC) of Trx1 (cytoplasmic) or Trx2
(mitochondrial) undergoes oxidation coupled to denitrosylation of SNO substrate. Oxidized
Trx is reduced by the selenoprotein thioredoxin reductase (TrxR), which employs the reducing
power of NADPH to regenerate active Trx.
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Figure 2.
S-nitrosylation of NSF is anti-inflammatory and anti-thrombotic73, 74. In endothelial cells,
inhibitory S-nitrosylation of NSF suppresses exocytosis of Weibel-Palade bodies and thereby
externalization of P-selectin, which inhibits leukocyte rolling and thus vascular inflammation.
Similarly, in platelets (labeling in parentheses), inhibitory S-nitrosylation of NSF suppresses
exocytosis of secretory granules and thereby externalization of P-selectin (and other adhesive
molecules), which reduce platelet activation, adhesion, aggregation and rolling on the
endothelium. These effects are anti-thrombotic.
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Figure 3.
SNO-Hb subserves hypoxic vasodilation. (A) PO2 determines the ability of RBCs to constrict
or relax aortic ring preparations on a second-by-second time scale. PO2 is indicated for each
curve, which illustrate a graded response. (B) and (C) O2-dependent effects of SNO-Hb and
Hb on local cerebral blood flow are shown in normoxia and hyperoxia. SNO-Hb infusion in
vivo (1µmol/kg over 3min, beginning at time 0) immediately increases local cerebral blood
flow in the caudate-putamen nucleus of rats breathing 21% O2 at 1 atmosphere absolute (ATA),
where tissue PO2 ranges from 19 to 37 mmHg. Thus, SNO-Hb appropriately increases blood
flow in relatively hypoxic tissue; however, non-nitrosylated Hb decreases perfusion. In 100%
O2 at 3 ATA, where tissue PO2 ranges from 365 to 538 mmHg, vasodilation is abrogated
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because SNO-Hb cannot allosterically dispense NO bioactivity (Adapted from Allen et al.)
158. (D) Allosteric transitions of circulating hemoglobin (Hb) regulate delivery of NO
bioactivity to preserve vascular O2 homeostasis. Hb in RBCs senses [O2] and responds through
allosterically controlled NO binding, SNO formation, and NO group release. At high O2 in the
pulmonary venous system, Hb is in the R-state, Cys β93 is reactive and Cys93-SNO is shielded
in a hydrophobic pocket. On partial RBC deoxygenation in the periphery, Hb adopts the T
configuration and Cys β93-SNO is exposed to solvent. Further, in venous blood a population
of deoxygenated (T-state) Hb reacts with NO to produce nitrosylated heme in the β-chain
(bottom left). Transition to R-state draws Cys β93 close to the nitrosylated heme (top left) with
a subsequent transfer of NO from heme to Cys β93, forming a SNO (top right). Deoxygenation
of Hb favors the T conformation (bottom right), allowing SNO-Cys β93 to react with other
cellular thiols, and thereby facilitating release of NO/SNO from the RBC. (Adapted from
126).

Lima et al. Page 25

Circ Res. Author manuscript; available in PMC 2011 March 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
S-nitrosylation regulates myocardial Ca2+ handling and thereby excitation-contraction
coupling. RyR2, the cardiac form of the tetrameric ryanodine receptor/Ca2+ release channel,
is localized to the SR membrane in proximity with the plasma membrane L-type calcium
channel (LTCC), which provides the substrate for calcium-mediated calcium release from SR
to cytosol. The SR-localized Ca2+-ATPase (SERCA) replenishes SR Ca2+. RyR2 co-localizes
with nNOS in the SR, and S-nitrosylation of RyR2 (mediated by GSNO) potentiates Ca2+

release. As in skeletal muscle RyR1, physiological S-nitrosylation of one or a few Cys within
each RyR2 monomer is likely to be the case. S-nitrosylation of the LTCC (α1C subunit; resulting
in, for example, attenuated β-AR-dependent contractility) and of SERCA is inhibitory. Hypo-
S-nitrosylation of RyR2 is associated with diastolic Ca2+ leakage and arrhythmia characteristic
of sudden cardiac death. S-nitrosylation of the LTCC has been associated with ischemic
preconditioning that reduces reperfusion injury, whereas hyper-S-nitrosylation of the LTCC
has been associated with atrial fibrillation. Note in addition that aberrant S-nitrosylation can
result from the translocation of nNOS to the plasma membrane that is seen in association with
myocardial infarction and cardiomyopathy. Further, aberrant and in particular hyper-S-
nitrosylation can result in irreversible oxidative modification of S-nitrosylated proteins in
concert with reactive oxygen species produced by endogenous enzymes including xanthine
oxidase.
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Figure 5.
A Schematic summary of the regulation of agonist-induced β2-adrenergic receptor trafficking
by S-nitrosylation/denitrosylation of β-arrestin 2 (β-Arr 2), G protein-coupled receptor kinase
2 (GRK2), and dynamin. (A) β-Arr 2 serves as a scaffold that functionally colocalizes eNOS
and β-ARs (as well as other G protein-coupled receptors [GPCRs]). Ligand (isoproterenol)
stimulation results in activation of eNOS and S-nitrosylation of β-Arr 2. S-nitrosylation of β-
Arr 2 promotes its dissociation from eNOS and its association with clathrin heavy chain/β-
adaptin, which facilitates routing of the β2-AR into the clathrin-based endocytotic pathway,
and β-Arr 2 is subsequently denitrosylated. (B) Inhibition of GRK2 by ligand-coupled S-
nitrosylation suppresses agonist-stimulated β-AR phosphorylation, β-Arr 2 recruitment, and
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receptor desensitization and downregulation (schematic at top) At bottom: desensitization
(decline in cardiac contractility in the continued presence of ISO) is enhanced by inhibiting
NO production. (C) After GPCR activation, eNOS-mediated S-nitrosylation of dynamin
promotes multimerization and GTPase activity, as well as relocation to the plasma membrane,
which facilitates scission of endocytotic vesicles and receptor internalization. (Adapted
from28, 29).
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Figure 6.
S-nitrosylation of channel proteins regulates all phases of the ventricular action potential. S-
nitrosylation of SCN5A channels enhances the Na+ current (INa)157, 159, whereas S-
nitrosylation of the α1C subunit of the L-type Ca2+ channel inhibits the L-type Ca2+ current
(ICaL)135, 140. Among voltage-gated potassium channels, S-nitrosylation of the KCNQ1
subunit facilitates the slowly activating component of the delayed rectifier K+ current (IKs)
133, whereas S-nitrosylation exerts an inhibitory influence on Kv4.3 and thus the transient
outward potassium current (ITo)160, as well as Kir2.1153, and thus IK1 (phase 4). In addition,
heterologously expressed human ether-a-go-go-related gene 1 (hERG1) potassium channels,
which mediate the rapidly activating delayed rectifier K+ channel (IKr) in their native
environment, are inhibited by NO in a cGMP-independent fashion161. Note that, in the atrium,
S-nitrosylation inhibits hKv1.5 and thus the ultra-rapid delayed rectifier current 162 (Adapted
from138).
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Table 1

Exemplary SNO-proteins in the Cardiovascular System

SNO-protein Cell/Tissue Effects of S-nitrosylation

Albumin Serum NO bioactivity reservoir104

β-arrestin 2 Endothelium Enhanced binding of β-Arr 2 to clathrin
and internalization of β-adrenergic
receptor28

Caspase 3 Endothelium,
lymphocytes

Anti-apoptosis and preservation of
endothelial function64–67, 163

Dimethylarginine
dimethylaminohydrolase

Endothelium Accumulation of dimethylarginine and
NOS inhibition16

G-protein-coupled
receptor kinase 2

Endothelium,
Myocardium

Attenuation of β-adrenergic receptor
desensitization29

Hemoglobin Erythrocyte Hypoxic vasodilation and regulation of
vessel tone4, 17

Hypoxia-inducible factor
1 α

Myocardium Increased VEGF production and
myocardial capillary density31

MAP kinase
phosphatase 7

Endothelium Promotes endothelial cell migration and
angiogenesis54

N-ethylmaleimide-
sensitive factor

Platelets Prevention of platelet activation73, 74

Ryanodine receptor 2 Cardiac
muscle

Enhanced cardiac Ca2+ release and
contractility136, 137

Tissue
transglutaminase

Endothelial
surface

Inhibition of platelet aggregation164

Metallothionein Vascular smooth muscle Myogenic reflex, pulmonary vasoconstriction170,171

Examples of S-nitrosylated protein of interest, and the general location and overall effect of S-nitrosylation. See Table 2 for dysregulated SNO-proteins
in cardiovascular disease. MPK7 indicates mitogen-activated protein kinase phosphatase 7.
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Table 2

Aberrant S-nitrosylation in Cardiovascular Disease

SNO-protein Disease State

Serum albumin Pre-eclampsia107, 108

Ischemic coronary syndromes106

Hemoglobin Congestive heart failure165

Pulmonary arterial hypertension127

Sickle cell disease128

Diabetes (Type 1) 129, 130
Septic shock19

Hif-1α Pulmonary arterial hypertension60

Matrix metalloproteinase 9 Stroke166

Ryanodine receptor 2 Arrhythmogenesis, Heart failure 141

L-type Ca2+ channel (α1C subunit) Atrial fibrillation/arrhythmia135, 143, 167

Cardiac Na+ channel SNC5a Long Q/T syndrome157

Slowly activating delayed-rectifier K+ channel Atrial fibrillation/arrhythmia 133, 134

Insulin receptor β Diabetes (Type 2)168,169

Insulin receptor substrate 1 Diabetes (Type 2)168,169

Akt (protein kinase B) Diabetes (Type 2)14,168,169

Examples of proteins for which hypo- or hyper-S-nitrosylation has been implicated in the mechanism of disease. Note in addition that S-nitrosylation

of multiple substrates including Cox2, Hif-1α, the L-type Ca2+ channel, RyR2 and SERCA2 is implicated in the cardio-protective effects of both
statins and ischemia-or drug-induced preconditioning, and in amelioration of the effects of myocardial infarction (see text).
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