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Abstract
Many experiments have investigated visual search for simple stimuli like colored bars or
alphanumeric characters. When eye movements are not a limiting factor, these tasks tend to
produce roughly linear functions relating reaction time (RT) to the number of items in the display
(set size). The slopes of the RT × set size functions for different searches fall on a continuum from
highly efficient (slopes near zero) to inefficient (slopes > 25-30 msec/item). Many theories of
search can produce the correct pattern of mean RTs. Producing the correct RT distributions is
more difficult. In order to guide future modeling, we have collected a very large data set (about
112,000 trials) on three tasks: an efficient color feature search, an inefficient search for a 2 among
5s, and an intermediate color × orientation conjunction search. The RT distributions have
interesting properties. For example, target absent distributions overlap target present more than
would be expected if the decision to end search were based on a simple elapsed time threshold.
Other qualitative properties of the RT distributions falsify some classes of model. For example,
normalized RT distributions do not change shape as set size changes as a standard self-terminating
model predicts that they should.

Visual search has been one of the leading paradigms in the study of visual attention for more
than a generation. In part this is because laboratory visual search is an abstraction of very
real tasks we perform every day. In the world, we search for the can opener in the kitchen
drawer or the cat in the living room. In the lab, we search for the T among Ls or the red
vertical line among green verticals and red horizontals. In return for the artificiality of
standard lab search tasks, we gain the ability to tightly control the stimuli and to run the
same search for hundreds of trials. By measuring reaction time (RT) and/or accuracy, we
have been able to uncover regularities in search behavior (reviewed in Pashler, 1998;
Sanders & Donk, 1996; Wolfe, 1998; Wolfe, 1998; Wolfe & Horowitz 2007) and to build
models on those regularities (e.g. Cave, 1999; Grossberg, Mingolla, & Ross, 1994; Hamker,
2004; Hoffman, 1979; Humphreys & Muller, 1993; Pomplun, Reingold, & Shen, 2002;
Thornton & Gilden, 2007; Treisman & Gelade, 1980; Tsotsos et al., 1995; Verghese, 2001;
Wolfe, 1994).
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The bulk of work on visual search has used mean RT or accuracy measures. Here we will
focus on tasks where the stimulus is visible until response and where RT is the primary
measure of interest. Mean (or median) RT data are very useful, with the standard measure
for search efficiency being the slope of a linear function relating RT to the number of items
in the display (set size). Patterns of RT × set size functions have been used to argue for
various models of search. For example, slopes of target-absent trials tend to be about twice
those of target-present trials. This would be predicted if observers searched serially through
an average of half the items in order to find the target on target-present trials and then
searched exhaustively through all items to confirm that a target was absent on absent trials
(Sternberg, 1966; Treisman & Gelade, 1980). Unfortunately, these results from mean RT
have been less constraining than might be hoped. Continuing with the example, it has been
shown that various parallel models can be induced to produce the 2:1 slope ratio (J. Palmer,
1995; Townsend, 1971; Townsend & Wenger, 2004). Moreover, it is unlikely that items are
sampled exhaustively and without replacement on target absent trials (Horowitz & Wolfe,
1998; Horowitz & Wolfe, 2001) and, as it happens, the real absent/present slope ratio is
probably significantly greater than the predicted 2.0 (Wolfe, 1998).

The purpose of this paper is to bring new constraints on theory from RT data by looking at
the distributions of RT as well as measures of their central tendency. Though only a limited
amount of prior work has been done, there are some notable examples of work on RT
distributions in search. Hockley (1984) compared visual search to memory search and
argued that increases in mean RT with set size were driven by different parameters of the
functions that capture RT distribution shape in the two tasks. Cousineau & Shiffrin (2004)
used analyses of distributions to test the standard serial self-terminating search model. They
found evidence for serial search, but also showed that termination rules vary from observer
to observer. Sung (2008) looked at RT distributions for displays of set size of four in an
effort to distinguish parallel from serial mechanisms.

In the present work, our particular interest was to collect a body of data that would permit us
to look at RT distributions in the sorts of tasks that have been important in the literature on
mean RT in search. Such a data set has not existed because it requires a large number of
trials from a reasonable number of observers.

To obtain this data set, we collected 1000 trials from nine or ten observers at each of four set
sizes for three of the most popular laboratory search tasks (4000 trials per observer per task,
approximately 112,000 RTs in total). This allows us to present the most robust RT × set size
functions yet published for these tasks. More importantly, we have enough trials in each cell
of the design to create meaningful characterizations of the RT distributions. In this paper, we
will discuss the important qualitative properties of these distributions. It is also possible to
look at the data more quantitatively. For example, like Hockley (1984), one could fit
different functions to the data and base conclusions on the goodness of fit and the values of
the fitting parameters. We do this elsewhere (E. M. Palmer, Horowitz , Torralba, & Wolfe,
2009).

Looking at the distributions without a commitment to specific underlying functions, their
most striking aspect is the similarity in their shapes across set sizes, and for the most part,
across tasks and target presence/absence. We will show how this constrains models of
search by discussing how the pattern of results eliminates various classes of model. On the
assumption that it is best to throw stones at one's own glass house first, we will show how
these results raise problems for current versions of models like our own Guided Search
(Wolfe, 2007) but we note that these data challenge most models.
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Methods
We ran three standard visual search tasks, intended to span a range of processing difficulties.
Illustrations of target present trials are shown in Figure 1. Task 1 tested participants on a
simple feature search for a red vertical rectangle among green vertical rectangles. This task
typically yields RT × set size search slopes near zero. Task 2 was a conjunction search task
for a red vertical rectangle among green vertical and red horizontal rectangles. This task
typically yields RT × set size functions with a moderate slope of around 10 ms/item. Finally,
in Task 3 observers searched for a digital “2” among digital “5”s (‘2 vs. 5’ ). These targets
and distractors are composed of the same horizontal and vertical components, but in
different configurations. This “spatial configuration” task typically yields RT × set size
functions with steep slopes of 30 or more ms/item. Such tasks are often called “serial search
tasks”. While there is evidence supporting serial deployment of attention in such tasks
(Bricolo, Gianesini, Fanini, Bundesen, & Chelazzi, 2002;Kwak, Dagenbach, & Egeth,
1991;Woodman & Luck, 2003) calling the task “serial” is a theoretical claim so we will
instead refer to this as a “spatial configuration task” (Wolfe, 1998). Similarly, we will not
refer to slope values as “parallel” and “serial”. Again, we will avoid the ideological
commitment by calling slopes near zero “efficient” and slopes of greater than about 30
msec/item “inefficient”. Of course, it is possible to devise searches that produce slopes far
greater than 30 msec/item. For example, a task that forces fixation on each item before it can
be identified will have a slope of at least 125-250 msec/item (Findlay, Brown, & Gilchrist,
2001;Porter, Troscianko, & Gilchrist, 2007). However, here we are working with stimuli
that can be easily identified outside of the fovea.

These three tasks were chosen because they span a range of search difficulty that has been of
theoretical interest for many years. One way to interpret the variation of slopes in this range
is to propose that it reflects a variation in the amount of available ‘guidance,’ (roughly, the
strength of the signal attracting deployments of attention towards the target item, Wolfe,
Cave, & Franzel, 1989). In feature search, color guides attention to the target the first time,
almost every time; consequently distractors get little or no attention and search slopes are
near zero. In spatial configuration search, no basic attribute can guide attention so selection
mechanisms must sample randomly from the display at a rate that produces target-present
slopes of about 30 msec/item. In conjunction search, no single feature can direct attention
straight to the target but the combination of relevant color and orientation provide enough
guidance to bias selection imperfectly toward the target item. The result is a reasonably
efficient slope of around 10 msec/item. Conceptualizing visual search as a series of
prioritized deployments of attention is not the only approach to understanding search. Many
alternative accounts can describe the continuum of search efficiencies. These include models
grounded in a signal detection (Cameron, Tai, Eckstein, & Carrasco, 2004; Verghese, 2001;
Verghese & Nakayama, 1994) or biased-choice framework (Bundesen, 1990, 1998). By
using these tasks we have collected a data set that should be useful to modelers with a range
of approaches. Of course, the choice of these three tasks will not allow all theoretically
interesting issues to be addressed. For example, in the present work, the target is fixed
across all trials in a block. There might be interesting differences between these tasks and
odd-man-out tasks where targets change from trial to trial. Similarly, one would like to have
data on hard feature searches that produce inefficient search, several different conjunction
searches, and so forth. Thus, the present selection of tasks can be seen as a start of what
could be a far larger project.

Participants
Thirty observers between the ages of 18-55 (all but one younger than 30) participated in the
three tasks. One observer completed both the conjunction search and spatial configuration
search tasks. Another observer participated in both the feature search and spatial

Wolfe et al. Page 3

Vision Res. Author manuscript; available in PMC 2011 June 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



configuration search tasks, but was subsequently removed from the data set for failing to
follow experimental instructions and protocol in several other studies. The excluded
observer's data were qualitatively and quantitatively very different from the other nine
observers in each of the two tasks. Consequently, nine observers were analyzed in the
feature and spatial configuration search tasks, while ten observers were analyzed in the
conjunction search task.

Each observer passed the Ishihara color test and had 20/25 vision or better (with correction,
if necessary). All observers gave informed consent before participating and were paid $8 per
hour for approximately four to six hours of testing time.

Materials
Stimuli were presented on an Apple Macintosh G4 450 MHz computer driving a 20”
(diagonal) CRT monitor at a resolution of 1024 × 768 pixels. Responses were gathered with
an Apple Macintosh USB keyboard. The experiment was controlled using Matlab 5.2.1 and
the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

At the viewing distance of 57.4 cm, the display area was a square measuring 22.5 degrees
visual angle (°) on a side. This region was divided into an invisible 5 × 5 array of cells, with
each cell subtending 4.5° × 4.5°. If the cell contained a display item, it was positioned at a
random location within the cell.

Procedure
Observers were seated at the computer in a quiet, darkened room. A white fixation cross
(0.7° × 0.7°) appeared in the center of the screen throughout the experiment. Observers were
instructed to keep their eyes focused on this cross, but we did not monitor eye movements.
In this class of task, RT data look similar with and without enforced fixation (Zelinsky &
Sheinberg, 1997). At the beginning of each trial, a short tone was played. After an interval
of 500 ms, the search display appeared and remained visible until the observer pressed a key
to indicate target-present or target-absent. Participants were instructed to respond as quickly
and accurately as possible, and were shown a feedback display for 500 ms after each trial,
reporting whether they responded correctly or not. The inter-trial interval was 1000 ms, and
participants could pause the experiment at any time by pressing the space bar.

Observers completed 30 practice trials at the beginning of each block and were tested on 12
blocks of 300 experimental trials and one block of 400 experimental trials, for a total of
4000 experimental trials and 390 practice trials. Practice trials were discarded from the
analyses. On each trial, both the presence or absence of the target and the set size of the
display were chosen randomly, with a 50% probability of either a target-absent or target-
present trial and a 25% probability of a display with 3, 6, 12, or 18 items.

Stimuli
Task 1: Feature Search—Search items were vertical bars, subtending 1.0° × 3.5°. The
target item was always a red vertical bar (CIE: x = .630, y = .375, luminance = 4.5 cd/m2),
while distractors were green vertical bars (CIE: x = .300, y = .600, luminance = 13.0 cd/m2).
All displays were shown on a black background (CIE: x=.322, y=.200, luminance=.02 cd/
m2).

Task 2: Conjunction Search—Search items consisted of horizontal and vertical bars,
subtending 3.5° × 1.0° or 1.0° × 3.5°, respectively. The target item was a red vertical bar,
while distractors were red horizontal bars and green vertical bars. The red and green items
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had the same luminance profiles as the stimuli used in Task 1. All displays were shown on a
black background with the same luminance profile as in Task 1.

Task 3: Spatial Configuration Search—Search items were digital 2s and 5s, each
subtending 1.5° × 2.7°. The target item was a white digital 2 (CIE: x=.300, y=.350,
luminance=14.7 cd/m2), while distractors were white digital 5s, both presented on a black
background with the same luminance profile as in Task 1.

Data Analyses and Procedures
Assuming that unreasonably fast RTs represented anticipations and unreasonably slow RTs
represented attentional lapses, we excluded all trials with RTs < 200 ms or > 4000 ms for the
feature and conjunction search tasks and RTs < 200 ms or > 8000 ms in the spatial
configuration search task. A total of just 80 trials or .07% of the entire data set for all
observers across all three tasks were removed by this method. Given the large sample sizes
of our data and the relatively few RTs that were excluded, we can expect that truncation of
the RT data set in this manner will have little or no effect on our distributional analyses.
Indeed, in our work fitting these data to specific distributions we find very modest (<3%)
differences in the goodness-of-fit with and without the excluded trials. Note that this is very
different from the practice of deleting, for example, all RTs more than 3 standard deviations
from the mean. The full data set is posted at our website, so interested parties can analyze
the data with any desired exclusion rule.

Results
Figure 2 shows RT from correct target present and absent trials. The figure shows data for
each individual (lighter lines) and the average data (darker). With each mean RT data point
representing about 500 trials, this is probably the most robust published data set for these
standard search tasks. The full data set is downloadable at
http://search.bwh.harvard.edu/new/data_set.html.

The mean RT data confirm the findings of many studies. Feature search is extremely
efficient. Search for a 2 among 5s is inefficient. A color orientation conjunction search is
quite efficient though clearly not as efficient as a feature search. For the conjunction and ‘2
vs. 5’ tasks, where the slopes are above zero, the slope ratios are somewhat greater than 2
msec/item (Wolfe, 1998), though the deviation from 2.0 msec/item is not statistically
reliable (Conjunction: t(9)=1.7, p=0.12; ‘2 vs. 5’ : t(8)=1.6, p=.15). Variability between
observers is greater on the target absent trials than on target present trials. This presumably
reflects differences in decision criteria (Cousineau & Shiffrin, 2004).

Error Analyses
Figure 3 shows average error rates for each task by set size. As is typical in these tasks, there
were more miss errors than false alarms (a ratio of 2.9:1). Miss error rates increased with set
size and with task difficulty (i.e., RT × set size slope). False alarm rates were relatively
constant or slightly declining across tasks. The apparent decline in false alarm rates with set
size is reliable for feature search (t(8)=5.23, p=0.0008) marginal for conjunction (t(9)=2.22,
p=0.05), and not significant for the ‘2 vs. 5’ task (t(8)=0.58, p=0.58). Such a decline, paired
with the increase in miss errors, would be consistent with a criterion shift toward a more
conservative position at higher set sizes. In general, the error rates were somewhat lower
than what is typically seen in these tasks, perhaps because of observers’ extensive practice.
Note that the most substantial error rates are the 5.2% and 9.3% miss error rates for the
larger set sizes in the ‘2 vs. 5’ task. This may reflect a type of speed-accuracy tradeoff in
which trials, which would have produced the longest RTs in this study were aborted by the
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observer, producing faster mean RTs at the cost of higher errors. The possibility that this
truncation may affect the RT distributions will be considered later.

RT Distributions
The primary purpose of this paper is to examine the RT distributions for these standard
search tasks. We put our observers through the pleasure of 4000 trials per task in order to
have 500 trials (minus error trials) with which to create distributions for target present and
target absent trials at each set size for each task. We tabulated the RTs in 50 msec-wide bins
to create histograms. Data for representative observers are shown in Figure 4. The mean RT
data for these observers fall close to the grand mean RTs of the group.

These data are similar to those for the other observers. One obvious feature of these plots is
that the RT distributions shift to the right as the mean RT increases. Thus, for the
conjunction and ‘2 vs. 5’ tasks, target absent distributions are generally to the right of target
present and distributions progress rightward as set size increases. Variance tracks mean RT.
Thus, the longer search for a 2 among 5s produces broader, shallower distributions than the
feature search. All of the distributions are positively skewed, a characteristic of RT
distributions in general (Luce, 1986; Van Zandt, 2002).

The best way to describe the shape of these functions is less obvious. Many functions have
the appropriate positively skewed shape if properly parameterized (e.g. ex-Gaussian, ex-
Wald, Gamma, and Weibull). Since there have been efforts to map the parameters of
different functions onto different psychological processes, we have fit the present data to a
number of these functions (E. M. Palmer, Horowitz , Torralba et al., 2009). However, one
could argue that this is a problematic approach to modeling RT distributions in visual search
because empirical distributions are likely to be complex mixtures of several components. As
a generic model of the variability in search, we might assume that there are, at least, three
components: initial visual processing, the search itself, and response generation. The
response/motor component produces a positively skewed distribution (Van Zandt, 2002) and
it is possible to separately influence these stages in search tasks (Wolfe, Oliva, Horowitz,
Butcher, & Bompas, 2002). Thus, while the formal analysis of the shapes of the distributions
may be valuable, in this paper, we will focus on the qualitative attributes that do not require
a commitment to any particular generating function.

Implications for models of search termination
Understanding how search is terminated on target absent trials has been a long-standing
problem in visual search (Chun & Wolfe, 1996; Cousineau & Shiffrin, 2004; Hong, 2005).
The distribution data can eliminate a range of “straw man” models and put strong constraints
on more plausible candidates. Consider a straw man version of a classic, serial, self-
terminating model of search (e.g. some simple version of Feature Integration Theory,
Treisman & Gelade, 1980). The distribution of times required to find a target when the
target is present should be essentially rectangular. If you have, say, ten items, then there is a
10% chance of finding the target on your first selection of an item, 10% on the second, and
so on. Target absent responses would occur after all ten items were rejected. Thus, in the
most simple-minded version, all target-absent RTs would be identical for a given set size. A
slightly less simple-minded version would predict that the variance of the absent trial RTs
should be lower than the variance of the present trial RTs.

Clearly, the data are at odds with these predictions. The distribution of target present RTs is
nothing like rectangular and, as has been noted elsewhere (Ward & McClelland, 1989), the
variance of the absent trials is greater than that of the target present trials. Moreover, the
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shapes of the present and absent distributions look rather similar where this account would
predict that they would be completely different.

We can propose, and then reject, a less artificial account of the termination of target-absent
trials. A generic account of search termination might predict that observers learn something
about the distribution of RTs for successful searches on target present trials and then use this
knowledge to develop a quitting threshold for absent trials. The observer's implicit logic
might be something like this: “If I have searched a display of N items for M msec, there is
only a P% chance that I have missed a target. Once P is below some threshold, I can safely
abandon this search with a ’target-absent‘ response.” Analyzing sequences of search RTs
yields evidence for an adaptive mechanism of this sort: RTs speed up after successful
responses and slow after errors (Chun & Wolfe, 1996).

This account would predict that the median absent RT should lie relatively far out on the
target present distribution. The exact position would depend on the model and the error rate
for the observer but, to a first approximation, one would imagine that the median absent RT
should lie around the 95th percentile on the target present distribution if the observer was
willing to tolerate about 5% miss errors. Looking at the data in Figure 4, the distributions
seem to overlap more than this prediction would allow. This point is illustrated more
quantitatively in Figure 5.

For illustrative purposes, Figure 5 shows the conjunction search data for the sample observer
of Figure 4. The median target absent RTs for this observer in the conjunction task lie
between the 75th and 85th percentiles on the target present distribution, meaning that half of
the absent RTs take less time than 15-25% of the present RTs. Table 1 shows these data
summarized across all observers for the conjunction condition.

Results are similar for the other two tasks. It is clear that placing a quitting criterion at the
position of the median absent RT would predict error rates much higher than the 2-5% errors
produced by our observers in this condition (bottom row of table). Whatever rule is being
used to terminate target absent searches, it is not simply to wait until there is only a 2-5%
chance of a longer target present RT. One possibility is that the post-decision component of
target present responses takes longer than the post-decision component of target absent.
Hypothetically, a decision to respond, “yes, I see the target”, might invoke additional
processes (perhaps the planning of a saccade) while the decision to respond “no” would not.
The result would be that the final target-present RT distribution would slide a bit closer to
the target absent distribution, producing the effect seen here. Alternatively, the decision to
quit might be based on an internal signal; for instance, some count of the number of
deployments of attention, rather than on elapsed time. These particular solutions to the
problem are, of course, entirely ad hoc, but the example serves to illustrate how examination
of distributions can shape theory.

The shapes of the distributions
As a general rule, we run multiple observers in experiments of this sort in order to allow us
to average or otherwise aggregate the data across observers. With RT distributions, however,
we cannot simply average across observers, since differences in the means and spread of the
distributions for different observers would distort the shape of the average distribution. We
would like a way to combine and/or compare distributions. One solution is to normalize the
distributions, but the standard z-score normalization, subtracting each value from the mean
and dividing by the standard deviation, would be inappropriate with clearly skewed
distributions. Instead, we have developed a non-parametric normalization procedure that we
have named the “x-score transform” (E. M. Palmer, Horowitz , & Wolfe, 2009), which
linearly scales distributions via quantile alignment. The x-score transform aligns the 25th and
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75th percentiles of a distribution to any two arbitrary values (e.g., −1 and +1, respectively).
This removes linear scaling differences in distributions while preserving non-linear
properties such as the skew and kurtosis. Unlike a z-score, it does not assume symmetry
around the mean, thus the peak of the distribution need not be at zero after x-transformation.
We have shown that this process is capable of distinguishing between, for example, gamma
and normal distributions with the same mean and standard deviation (E. M. Palmer,
Horowitz , & Wolfe, 2009).

Figure 6 shows the results of this non-parametric normalization on the present data set.
These are x-score distributions for each task at each set size for correct present and absent
trials, combined across observers. Each distribution was first x-scored so that the 25th and
75th percentile RT fell at -1 and +1, respectively, and then the x-scored distributions were
pooled across subjects before plotting.

The most striking observation is that, once rescaled, all of these distributions look very
similar. Within a condition, the set size variable disappears. Target present and target absent
distributions are very similar, with the possible exception of the ‘2 vs. 5’ task. In the paper
discussing the x-score method in detail (E. M. Palmer, Horowitz , & Wolfe, 2009), we
describe quantitative methods for determining if x-scored distributions are statistically
different from each other. Here, we continue to focus on the more general, qualitative
constraints on models that are implied by the similarity of the normalized functions. For
example, a model that predicts non-linear shape differences for target present and target
absent distributions will fail for feature and conjunction search. However, the ‘‘2 vs. 5’ ’
task does appear to produce a different shape for present and absent trials (note that the
present trial distributions rise more steeply on the left side than the absent distributions).

This disparity might reflect a difference between the mechanisms of inefficient 2v5 searches
and more efficient feature and conjunction searches. Alternatively, the difference might
reflect the effects of errors. It may be hard to see in the lower right panel of Figure 6, but the
distributions for the larger set sizes (darker) have a shallower rise on the left side than the
two smaller set sizes (lighter). Indeed, the x-score distributions for ‘2 vs. 5’ target absent, set
sizes 12 and 18, are each reliably different than both set sizes 3 and 6 according to the
Kolmogorov-Smirnov test, each p < .0083 (alpha of .05 corrected for six comparisons).
Recall from Figure 3 that set sizes 12 and 18 in the ‘2 vs. 5’ task produced markedly higher
miss error rates, which may have caused the differences in distribution shape. Modeling
speed-accuracy tradeoffs is tricky (McElree & Carrasco, 1999;Ruthruff, 1996) and even
correcting mean RTs for the effects of errors is more an art than a science. This question
might be addressed by a future experiment in which several RT distributions were collected
from the same observers while error rates were manipulated by use of different reward
structures, for example.

With the exception of those ‘2 vs. 5’ absent distributions, there is very little effect of varying
set size on the shape of the RT distributions. This is theoretically interesting. Consider the
very generic model discussed earlier. The measured RT will be the sum of three
components: initial visual processing, the search, and a motor/decision stage (two
components if one believes that the search and the visual processing are concurrent). Each
component contributes a time that is distributed in some fashion. Thus, the final RT
distribution is a mixture distribution. As set size increases, the search component increases
its mean and variance. Presumably, the motor/decision component does not scale with set
size. Thus, the mixture distribution is changing but it is doing so without changing shape.
This implies that if the search component scales with set size, it must do so in a linear
fashion that is removed by x-scoring.
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To see how this could falsify a model, we simulated a version of a standard, serial, self-
terminating search. For this simulation, we chose parameters that would roughly replicate
the mean RT data of the spatial configuration, ‘2 vs. 5’ task. Thus, in the simulation,
attention was deployed to an item on average every 98 msec. The deployment times were
drawn from a gamma distribution with shape parameter = 7 and scale = 14, in order to give
them a positively skewed distribution. On target absent trials, the simulated number of
attentional deployments was equal to the set size. On target present trials, the number of
deployments was drawn at random from the integers between 1 and the set size, as it would
be in a serial, self-terminating search with memory for rejected distractors (Todd S.
Horowitz, 2006). The simulated RT was the sum of the times for each deployment plus a
motor/decision component that was gamma distributed with shape parameter = 7 and scale =
14, adding an average of 200 msec to each RT. The choice of specific parameters, the choice
of a gamma distribution, and the choice of a search model with full memory are all arbitrary
choices for the purposes of illustration. The mean RTs, produced by simulation, have a
target present slope of 49 msec/item and a target absent slope of 98 msec/item, close to the
‘2 vs. 5’ results shown in Figure 2.

The value of RT distributions in evaluating models can be seen if we plot the distributions
for the simulated model.

Examining Figure 7, it is clear that the distributions are qualitatively different from the
distributions in Figure 4. In particular, the target-absent distributions look nothing like the
real distributions. Again, note that we are not making any claims about this specific
simulation beyond noting that it produces roughly the correct mean RTs. We use this
example to show how the distributions can be used to reject a model that an analysis based
on simple mean RT might have accepted (Cousineau & Shiffrin, 2004). In fact, we observe
with some regret that the model simulated here is quite close to the proposals of Guided
Search 2.0 for this condition (Wolfe, 1994). It is possible that other classes of model (e.g. a
parallel model like Palmer, 1995, or a race model like Bundesen, 1998) might fare better. It
is our hope that proponents of other types of model will test them against this data set.

Looking at Figures 4 and 7, we might conclude that, while our toy model fails spectacularly
for target absent trials, it does not do too badly for target present trials. Here it is useful to
normalize the data using the x-score method as shown above, in Figure 6. Figure 8 shows
the result of x-score normalization for the target present trials of the simulation.

Here we see that the shapes of the simulated target present distributions become more
rectangular with increasing set size, as the search component of the mixture comes to
dominate the perceptual and decision/motor components. The scale of the figure is
magnified to make this point clear. We re-plot the relevant data from Figure 6 at the same
magnification in order to demonstrate that there is no such variation in the shape of the
distributions in the real data.

Conclusion
To summarize, we have collected the most extensive data set on three of the standard tasks
in the visual search literature. We have posted the data on our website
(http://search.bwh.harvard.edu/new/data_set.html) and we encourage others to mine it for
new information about search. Looking at the usual mean RT data, we have replicated the
standard findings. However, our goal has been to show how the RT distributions can be used
to provide new information about the mechanisms of search. We have described three
examples. First, target present and target absent distributions overlap more than one might
expect. Observers can terminate absent trials successfully with median absent RTs that are
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faster than 15-25% of the target present RTs. Second, at least for feature and conjunction
search, the normalized distributions for present and absent trials are very similar. Finally,
under most conditions, set size has no observable impact on the x-score normalized
distributions. The challenge for modelers of human search behavior will be to propose
models that can meet these constraints. The published versions of our Guided Search model
would not succeed. Of course, we are working on the next generation of the model that takes
these new findings into account. We will leave it to proponents of other models to determine
how well those models can reproduce these findings.

Acknowledgments
We gratefully acknowledge support of this research from Ruth L. Kirschstein NRSA Grant EY016632 to EMP, and
AFOSR Grant FA9550-06-1-0392 and NIH MH056020 to JMW.

REFERENCES
Brainard DH. The Psychophysics Toolbox. Spatial Vision. 1997; 10:443–446. [PubMed: 9176954]
Bricolo E, Gianesini T, Fanini A, Bundesen C, Chelazzi L. Serial attention mechanisms in visual

search: a direct behavioral demonstration. J Cogn Neurosci. 2002; 14(7):980–993. [PubMed:
12419123]

Bundesen C. A theory of visual attention. Psychol Rev. 1990; 97(4):523–547. [PubMed: 2247540]
Bundesen C. A computational theory of visual attention. Philos Trans R Soc Lond B Biol Sci. 1998;

353(1373):1271–1281. [PubMed: 9770221]
Cameron EL, Tai JC, Eckstein MP, Carrasco M. Signal detection theory applied to three visual search

tasks--identification, yes/no detection and localization. Spat Vis. 2004; 17(4-5):295–325. [PubMed:
15559107]

Cave K. The FeatureGate model of visual selection. Psychol Res. 1999; 62(2-3):182–194. [PubMed:
10490397]

Chun MM, Wolfe JM. Just say no: How are visual searches terminated when there is no target present?
Cognitive Psychology. 1996; 30:39–78. [PubMed: 8635311]

Cousineau D, Shiffrin RM. Termination of a visual search with large display size effects. Spat Vis.
2004; 17(4-5):327–352. [PubMed: 15559108]

Findlay JM, Brown V, Gilchrist ID. Saccade target selection in visual search: the effect of information
from the previous fixation. Vision Res. 2001; 41(1):87–95. [PubMed: 11163618]

Grossberg S, Mingolla E, Ross WD. A neural theory of attentive visual search: Interactions of
boundary, surface, spatial and object representations. Psychological Review. 1994; 101(3):470–
489. [PubMed: 7938340]

Hamker FH. A dynamic model of how feature cues guide spatial attention. Vision Res. 2004; 44(5):
501–521. [PubMed: 14680776]

Hockley WE. Analysis of response time distributions in the study of cognitive processes. Journal of
Experimental Psychology: Learning, Memory, & Cognition. 1984; 10(4):598–615.

Hoffman JE. A two-stage model of visual search. Perception and Psychophysics. 1979; 25:319–327.
[PubMed: 461091]

Hong S-K. Human stopping strategies in multiple-target search. International Journal of Industrial
Ergonomics. 2005; 35:1–12.

Horowitz TS. Revisiting the variable memory model of visual search. Visual Cognition. 2006; 19(4-8):
668–684.

Horowitz TS, Wolfe JM. Visual search has no memory. Nature. 1998; 394:575–577. Aug 6. [PubMed:
9707117]

Horowitz TS, Wolfe JM. Search for multiple targets: Remember the targets, forget the search.
Perception and Psychophysics. 2001; 63(2):272–285. [PubMed: 11281102]

Humphreys GW, Muller H. SEarch via Recursive Rejection (SERR): A connectionist model of visual
search. Cognitive Psychology. 1993; 25:43–110.

Wolfe et al. Page 10

Vision Res. Author manuscript; available in PMC 2011 June 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Kwak H, Dagenbach D, Egeth H. Further evidence for a time-independent shift of the focus of
attention. Perception & Psychophysics. 1991; 49(5):473–480. [PubMed: 2057313]

Luce, RD. Response Times. Oxford U. Press; New York: 1986.
McElree B, Carrasco M. The temporal dynamics of visual search: evidence for parallel processing in

feature and conjunction searches. J Exp Psychol Hum Percept Perform. 1999; 25(6):1517–1539.
[PubMed: 10641310]

Palmer EM, Horowitz TS, Torralba A, Wolfe JM. What is the shape of response time distributions in
visual search tasks? J. Exp. Psychol: Human Perception and Performance. 2009 in revision.

Palmer EM, Horowitz TS, Wolfe JM. The x-score transform: A non-parametric technique for
normalizing RT distributions and its application to visual search. Behavior Research Methods.
2009 submitted.

Palmer J. Attention in visual search: Distinguishing four causes of a set size effect. Current Directions
in Psychological Science. 1995; 4(4):118–123.

Pashler, HE. Attention. Psychology Press Ltd.; Hove, East Sussex, UK: 1998.
Pelli DG. The VideoToolbox software for visual psychophysics: Transforming numbers into movies.

Spatial Vision. 1997; 10(4):437–442. [PubMed: 9176953]
Pomplun M, Reingold EM, Shen J. Area Activation: A Computational Model of Saccadic Selectivity

in Visual Search. Cognitive Science. 2002 ms01-103R.
Porter G, Troscianko T, Gilchrist ID. Effort during visual search and counting: Insights from

pupillometry Quart. J. Experimental Psychology. 2007; 60(2):211–229.
Ruthruff E. A test of the deadline model for speed-accuracy tradeoffs. Perception and Psychophysics.

1996; 58(1):56–64. [PubMed: 8668520]
Sanders, AF.; Donk, M. Visual search.. In: Neumann, O.; Sanders, AF., editors. Handbook of

perception and action, Vol. 3: Attention. Vol. 3. Academic Press; London: 1996. p. 43-77.
Sternberg S. High-speed scanning in human memory. Science. 1966; 153:652–654. [PubMed:

5939936]
Sung K. Serial and parallel attentive visual searches: evidence from cumulative distribution functions

of response times. J Exp Psychol Hum Percept Perform. 2008; 34(6):1372–1388. [PubMed:
19045981]

Thornton TL, Gilden DL. Parallel and serial process in visual search. Psychol Rev. 2007; 114(1):71–
103. [PubMed: 17227182]

Townsend JT. A note on the identification of parallel and serial processes. Perception and
Psychophysics. 1971; 10:161–163.

Townsend JT, Wenger MJ. The serial-parallel dilemma: A case study in a linkage of theory and
method. Psychonomic Bulletin & Review. 2004; 11(3):391–418. [PubMed: 15376788]

Treisman A, Gelade G. A feature-integration theory of attention. Cognitive Psychology. 1980; 12:97–
136. [PubMed: 7351125]

Tsotsos JK, Culhane SN, Wai WYK, Lai Y, Davis N, Nuflo F. Modeling visual attention via selective
tuning. Artificial Intelligence. 1995; 78:507–545.

Van Zandt, T. Analysis of response time distributions.. In: Pashler, H.; Wixted, J., editors. Stevens’
handbook of experimental psychology (3rd ed.), Vol. 4: Methodology in experimental psychology.
John Wiley & Sons, Inc.; New York, NY: 2002. p. 461-516.

Verghese P. Visual search and attention: A signal detection approach. Neuron. 2001; 31:523–535.
[PubMed: 11545712]

Verghese P, Nakayama K. Stimulus discriminability in visual search. Vision Research. 1994; 34(18):
2453–2467. [PubMed: 7975284]

Ward R, McClelland JL. Conjunctive search for one and two identical targets. J. Exp. Psychol: Human
Perception and Performance. 1989; 15(4):664–672.

Wolfe JM. Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin and Review.
1994; 1(2):202–238.

Wolfe, JM. Visual search.. In: Pashler, H., editor. Attention. Psychology Press Ltd.; Hove, East
Sussex, UK: 1998. p. 13-74.

Wolfe et al. Page 11

Vision Res. Author manuscript; available in PMC 2011 June 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Wolfe JM. What do 1,000,000 trials tell us about visual search? Psychological Science. 1998; 9(1):33–
39.

Wolfe, JM. Guided Search 4.0: Current Progress with a model of visual search.. In: Gray, W., editor.
Integrated Models of Cognitive Systems. Oxford; New York: 2007. p. 99-119.

Wolfe JM, Cave KR, Franzel SL. Guided Search: An alternative to the Feature Integration model for
visual search. J. Exp. Psychol. - Human Perception and Perf. 1989; 15:419–433.

Wolfe JM, Horowitz TS. Visual Search. Scholaropedia. 2007; 3(7):3325.
Wolfe JM, Oliva A, Horowitz TS, Butcher S, Bompas A. Segmentation of objects from backgrounds

in visual search tasks. Vision Research. 2002; 42(28):2985–3004. [PubMed: 12480070]
Woodman GF, Luck SJ. Serial deployment of attention during visual search. J. Exp. Psychol: Human

Perception and Performance. 2003; 29(1):121–138.
Zelinsky GJ, Sheinberg DL. Eye movements during parallel / serial visual search. J. Experimental

Psychology: Human Perception and Performance. 1997; 23(1):244–262.

Wolfe et al. Page 12

Vision Res. Author manuscript; available in PMC 2011 June 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Search displays corresponding to the three tasks. Experimental displays were presented on a
black background. On the left, participants searched for a red (solid) vertical rectangle
among green (outline) vertical rectangles (Feature search). In the middle, participants
searched for a red vertical rectangle among green vertical and red horizontal rectangles
(Conjunction Search). On the right, participants searched for a digital 2 among digital 5s
(Spatial Configuration Search).
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Figure 2.
RT × set size data: Lighter lines show data for individual observers. Darker lines and data
points show mean data. Solid lines show target present results. Dashed lines show target
absent. Since all tasks are plotted on the same y-axis, feature search present and absent data
overlap nearly completely.
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Figure 3.
Mean error rates for each set size and for each task. The four bars for each task represent the
four set sizes. Thus, for example, it can be seen that error rates are highest for spatial
configuration miss errors and that these rise with set size.
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Figure 4.
RT distributions for one observer from each of the three tasks (different observers for each
task). Each distribution represents one set size for target present (thin, green) or target absent
(fat, purple) trials. Set size is coded by lightness from the lightest lines, set size 3, through
set sizes 6 and 12 to the darkest, set size 18. Note the different X-axes for the different tasks.
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Figure 5.
Target-present cumulative distribution function plotted against target absent for the
conjunction data of Figure 4. Vertical line represents the median of the absent distributions.
Horizontal arrows show where those medians fall on the target present distribution. Each
line represents a different set size from thin, light blue (3) to fat, dark red (18).
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Figure 6.
Group RT distributions normalized by the X-score method

Wolfe et al. Page 18

Vision Res. Author manuscript; available in PMC 2011 June 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
RT distributions for simulated serial, self-terminating search. Solid lines represent target
present distributions; dashed, target absent. Lighter lines represent smaller set sizes.
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Figure 8.
X-score transformed distributions for the target present trials in the simulation (left) and the
‘2 vs. 5’ task (right).
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Table 1
Location of the median target-absent RT on the target-present RT distribution

The values in this table are obtained by finding the percentile on the target present distribution that
corresponds to the median target absent RT for the conjunction task. Mean percentile, standard deviations, and
confidence intervals are derived from the data of all observers. Average miss errors are tabulated in the bottom
row.

Set size 3 Set size 6 Set size 12 Set size 18

Mean percentile 70.05 76.83 82.03 82.67

Std. Deviation 9.928 7.448 7.174 8.863

Std. Error 3.139 2.355 2.269 2.803

Lower 95% CI of mean 62.95 71.50 76.90 76.33

Upper 95% CI of mean 77.15 82.16 87.16 89.01

Miss Errors 2.2% 2.5% 3.0% 4.9%
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