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Abstract
Many anti-viral vaccines elicit neutralizing antibodies as a correlate of protection. For HIV, given
the huge variability of the virus, it is widely believed that the induction of a broadly neutralizing
antibody (bNAb) response will be crucial in a successful vaccine against the virus. Unfortunately,
despite many efforts, the development of an immunogen that elicits bNAbs remains elusive.
However, recent structural studies of HIV-1 Env proteins, generation of novel bNAbs, maturation
of technologies for the isolation of further antibodies, insights into the requirements for antibody-
mediated protection, and novel vaccination approaches are providing grounds for renewed optimism.

Introduction
The hallmark of many successful anti-viral vaccines is the ability to induce neutralizing
antibodies [1]. One method of showing that antibodies can provide protection is by passive
administration followed by virus challenge in animal models. For many viruses, this approach
shows good correlation between protection in vivo and neutralizing activity in vitro [2]. For
HIV-1, passively administered NAbs provide protection after intravenous, vaginal, rectal, and
oral virus challenge in non-human primate models [3•,4•,5,6,7]. Importantly, several studies
demonstrate that vaccine-induced NAb responses can confer complete protection against
homologous SHIV challenge in macaques [8,9••,10], indicating that a vaccine capable of
eliciting sufficient levels of NAb against HIV-1 could prevent the establishment of infection.
For many viruses, extra-neutralizing mechanisms, such as those dependent on interaction of
antibody with Fc receptors, e.g. antibody-dependent cellular cytotoxicity (ADCC), or on
interaction with complement, also contribute to protection [2,11,12]. For HIV-1, experiments
in the macaque model suggest the importance of the interaction of antibody with Fc receptors
[11]. Although non-neutralizing antibodies can mediate extra-neutralizing activities, these
types of antibodies provide little or no protection against SHIV challenge in non-human
primates [5,13], suggesting that a vaccine should focus on the induction of NAbs. Overall,
given the observations in animal models, it seems highly likely that neutralizing antibodies to
HIV-1 induced by a vaccine would provide benefit on exposure to the virus.
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There are, however, major challenges in the development of immunogens that induce bNAbs.
These challenges include the extraordinary genetic diversity of the virus, the relative
inaccessibility of conserved epitopes that are targeted by bNAbs, the instability of the envelope
glycoprotein (Env, the only known target for neutralizing antibodies), and difficulties
sustaining NAb titers following vaccination. Optimism in the field has risen following recent
studies in humans and non-human primate models. First, a series of serum mapping studies
show that 10–30% of HIV-1 infected individuals develop moderate to broadly neutralizing
sera over time, demonstrating that the human immune system is capable of generating bNAb
responses against HIV-1 [14]. Studies underway on how these bNAb responses develop may
prove valuable in vaccine design. Second, broadly neutralizing monoclonal antibodies with
outstanding potency have recently been isolated from infected donors [15••, GJ Nabel et al.,
personal communication]. Third, recent passive immunization studies in non-human primate
models indicate that bNAbs can provide benefit against SHIV challenge at much lower serum
neutralizing titers than originally considered obligatory for protection [3•,16••]. Fourth, several
studies show that productive HIV-1 infection may often be mediated by one or a few virions,
providing a vulnerability of the virus to antibody neutralization early in infection [17].

Initial attempts to generate a protective vaccine against HIV-1 focused on the elicitation of
Env-specific humoral immune responses using gp120 subunit immunogens. Unfortunately, the
results of Phase 1 clinical trials indicated that the antibodies elicited by monomeric gp120
failed to neutralize HIV-1 primary isolates (representative of circulating viruses as opposed to
laboratory adapted strains) [18,19]. The results of two Phase 3 efficacy trials showed that the
vaccine failed to prevent HIV-1 infection, reduce viral loads, or delay disease progression
[20,21]. Over the ensuing years, HIV-1 researchers have pursued many different approaches
to the generation of an antibody-based vaccine, but none of the immunogens generated to date
have induced NAb responses of the required breadth and potency. Much effort has focused on
rational vaccine design. The Env proteins, more specifically the functional Env heterotrimer
(gp120)3(gp41)3, and bNAbs are the two molecular species that are at the heart of such rational
HIV-1 vaccine design. Insight into the molecular structures of Env proteins, both alone and in
complex with bNAbs, is crucial for attempts to, in effect, reverse engineer vaccine candidates
[22] (Fig 1). This review will discuss recent advances in HIV vaccine design with a focus on
rational approaches.

Soluble trimers
The native functional HIV-1 trimer (either prior to or during the fusion process) is the sole
target for neutralizing antibodies, and it seems that antibody binding to the trimer is necessary
and sufficient for neutralization [2]. Therefore, in principle, a recombinant native trimer
represents an ideal immunogen for the elicitation of NAb responses. However, the inherent
instability of the functional HIV-1 spike has presented challenges to the development of native
recombinant trimers [23]. Various strategies, including the introduction of disulfide bonds to
covalently link gp120 and gp41, deletion of the furin cleavage site in gp160, and the
incorporation of a number of trimerization motifs into the gp41 ectodomain, have been
employed to stabilize recombinant trimers [23]. Although none of these recombinant trimers
display antigenic profiles that accurately mimic the native HIV-1 spike, some elicit antibodies
that neutralize heterologous isolates with very modest potency [24,25,26,27]. For example,
both YU2 gp140 GCN4 and KNH1144 gp140 SOSIP trimers induce NAbs with increased
breadth and potency relative to those elicited by monomeric gp120 [25,26], although the
improvements are small. On a positive note, recent cryoelectron tomographic structures of
native HIV-1 trimers [28••,29,30], as well as the isolation of new broadly neutralizing trimer-
specific antibodies [15••], will likely aid the design of recombinant trimers that better mimic
the native HIV-1 spike.
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Immunogens based on the epitopes recognize by bNAbs
HIV-1 tends to elicit a high abundance of NAbs against variable regions of the virus, whereas
NAbs that target conserved regions are rare and only develop in a subset of individuals [14].
Nonetheless, a small number of broadly neutralizing human monoclonal antibodies have been
isolated, and the epitopes targeted by these antibodies have served as templates for immunogen
design (Figure 1 and Figure 2) [23]. Recent crystallographic, cryoelectron tomographic, and
molecular modeling studies have provided valuable insights into the molecular surfaces
recognized by the antibodies and assisted the rational design of immunogens [31].

The CD4 binding site (CD4bs) is a prime target for the elicitation of bNAbs due to its high
degree of conservation and the requirement for accessibility, at least to CD4. Indeed, the well-
characterized bNAb b12, as well as several broadly neutralizing sera, have been shown to target
this site [14,32]. Furthermore, two new CD4bs-directed bNAbs have recently been reported
[33, GJ Nabel et al., personal communication]. One of these, HJ16, exhibits similar breadth
and potency as b12 but shows a different pattern of neutralization sensitivity [33]. The other
bNAb, VRC01, displays greater breadth and potency compared to b12 [GJ Nabel et al.,
personal communication]. Until the recent findings, b12 was the most broad and potent CD4bs-
directed mAb, and therefore a variety of strategies were employed to focus the immune
response on its epitope. In a series of studies, gp120 and gp140 were engineered using alanine
substitutions and hyperglycosylation to maintain b12 binding while reducing the binding of
most non-neutralizing mAbs [34,35,36]. However, several designs failed to induce b12-like
antibodies in rabbits [37]. This may be due to the inherent conformational flexibility of
recombinant gp120 and gp140 that militates against uniquely fixing the b12 epitope.
Interestingly, a recent crystal structure of b13, a non-neutralizing CD4bs-directed antibody,
bound to gp120 revealed a remarkably similar footprint to that of b12 [38•]. This result suggests
that either extremely precise targeting induced by the immunogen or presentation of the b12
epitope in the context of the functional trimer may be required for the elicitation of b12-like
antibodies. Since b12 and 2G12 primarily interact with the outer domain (OD) of gp120 [39],
this surface also represents an attractive target for immunogen design. The OD is poorly
immunogenic in the context of gp120, and therefore researchers have focused on the generation
of isolated OD constructs that expose the b12 and 2G12 (see below) binding sites. However,
when the OD of YU2 gp120 was expressed independently, it bound 2G12 and V3 loop-directed
antibodies with high affinity but failed to bind b12 [40]. More recently, the crystal structure of
the b12-gp120 complex was used to guide the design of a membrane-anchored OD construct
that specifically bound to b12 but not most other non-neutralizing CD4bs-directed antibodies
[41]. This construct is currently being tested as a vaccine immunogen.

The bNAb 2G12, which adopts an unusual domain-exchanged structure to recognize a
conserved cluster of oligomannose residues on the OD of gp120, has provided a basis for the
design of immunogens to target the HIV-1 glycan shield. Attempts to generate immunogens
based on the 2G12 epitope initially focused on the multivalent display of chemically
synthesized oligomannose-containing glycoconjugates [42,43]. 2G12 recognized the
glycoconjugates weakly, and they were poorly immunogenic in rabbits and predominately
elicited linker-specific antibody responses. The next generation of synthetic glycoconjugates
better mimicked the oligomannose cluster that comprises the 2G12 epitope on the HIV-1 trimer
and bound 2G12 in the nM affinity range. Some of these approaches, including the construction
of oligomannose dendrons [44], Man4 containing neoglycoconjugates [45], and cyclic
glycopeptides [46], successfully induced anti-carbohydrate antibody responses, but to date
these responses have failed to cross-react with gp120 or neutralize HIV-1. A second approach
to the design of immunogens for the elicitation of 2G12-like antibodies has been to identify
heterologous glycoproteins that express carbohydrates structures that mimic the clustered high
mannose glycans on the HIV-1 trimer [47,48]. Recently, Luallen et al. engineered a S.
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cerevisiae triple mutant that exclusively produced homogenous high mannose glycans [49•].
Since 2G12 efficiently bound to the triple mutant, but not wild-type S. cerevisiae, whole yeast
cells were used in preliminary immunization studies. Although the triple mutant-immunized
rabbit sera cross-reacted with a diverse range of HIV-1 Env proteins in a glycan-specific
manner, the sera failed to neutralize the corresponding HIV-1 isolates. These results suggest
that the glycan epitopes recognized by these antibodies differ from that of 2G12, and/or that
the titer of 2G12-like antibodies was too low to observe potent neutralization activity.

The bNAbs 2F5, 4E10, and Z13e1 bind to a conserved tryptophan rich region on gp41 referred
to as the membrane-proximal external region (MPER), and this region has attracted
considerable interest as a vaccine target. This interest is enhanced by the recent demonstration
that both 2F5 and 4E10 can protect against mucosal SHIV challenge [4•]. Of note, some reports
suggest that 4E10, and controversially 2F5, cross-react with lipids, and it has been proposed
that these types of antibodies may be difficult to elicit by vaccination due to B cell tolerance
mechanisms [50,51]. The crystal structures of 2F5, 4E10, and Z13e1 bound to their cognate
peptides reveal that 2F5 recognizes an extended loop structure, 4E10 recognizes a helical
conformation, and Z13e1 binds to an elbow in the MPER [52,53,54•]. These structural studies,
as well as complementary biochemical studies [55,56••,57], also suggest that the viral
membrane may play a role in formation of the 2F5 and 4E10 epitopes. Notably, recent studies
illustrate the importance of hydrophobic residues at the tip of the 4E10 CDRH3 loop for
interaction with the viral membrane and potent neutralization activity [57,58,59]. The crystal
structure data has been used to rationally design constrained peptides that mimic the
conformations recognized by 2F5 and 4E10 [60,61] and/or to present the 2F5 and 4E10 peptides
in the context of a lipid membrane [62,63,64]. However, none of these immunogens have to
date elicited 4E10 or 2F5-like antibodies.

Recently, two new broad and potent NAbs, PG9 and PG16, were isolated from a clade A
infected donor using a high-throughput functional screening approach [15••,65]. These
somatically related antibodies bind to conserved residues in the V1/V2 and V3 loops of gp120
and their epitopes are preferentially expressed on trimeric HIV-1 Env. Both antibodies
neutralize a diverse range of HIV-1 isolates at concentrations (sub-µg/ml range) about 10- to
100-fold lower than the previously identified bNAbs. Such concentrations might readily be
achieved through vaccination. Vaccination strategies are currently being explored to focus the
immune response on conserved regions of the variable loops in the context of the trimeric spike.
The identification of potent trimer-specific bNAbs again underscores the limitations of
monomeric gp120 as an immunogen and emphasizes the importance of generating trimers that
closely resemble the functional spike.

Virus-like particle based immunogens
Although most successful anti-viral vaccines have relied on the use of live-attenuated viruses
[66], they are not currently considered safe for HIV-1 vaccine development due to the risk of
mutation and reversion to a pathogenic form [67,68]. As an alternative, researchers have turned
their attention to the use of virus-like particles (VLPs). VLPs resemble infectious virions but
are non-pathogenic because they lack a viral genome. Since viruses display multivalent
structures, VLPs are usually highly immunogenic and induce antibody responses in the absence
of adjuvant. Another attraction of VLP-based immunogens is the presence of native trimers on
the VLP surface. However, due to the instability of the HIV-1 spike, non-functional forms of
Env are also expressed on the surface of VLPs [69]. Indeed, in a comparative immunogenicity
study of VLPs bearing various forms of HIV-1 Env, the binding activity of the VLP immunized
sera was primarily focused on non-functional forms of Env [70]. Furthermore, there are
relatively few native spikes on the surface of HIV-1, which is likely to reduce the elicitation
of antibodies against native structures. Other complicating factors, such as the induction of
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antibodies against cellular proteins and the elicitation of strain-specific NAbs, also contribute
to the limited success of VLPs as immunogens. Although a number of strategies to overcome
these hurdles have been employed, including pseudotyping HIV-1 with heterologous envelopes
[71,72], truncating the cytoplasmic tail of gp41 to increase Env expression [73], and generating
VLPs with cleavage-defective or disulfide-shackled Env to prevent gp120-gp41 dissociation
[70], so far none of these approaches have induced potent heterologous antibody responses in
non-human primate models.

Prime-boost strategies
DNA vaccines are typically poorly immunogenic in non-human primates and humans; multiple
immunizations are required to elicit even moderate titers of NAbs and these titers rise and fall
with successive immunizations. On the other hand, results from numerous studies suggest that
DNA priming followed by Env protein boosting induces NAbs with increased titer and
persistence relative to either approach alone. In proof-of-concept studies, DNA priming and
Env protein boosting induced high titers of NAbs that correlated with protection against
homologous SHIV challenge in rhesus macaques [8,74,75]. In a recent Phase I clinical trial,
polyvalent Env antigens were delivered to healthy human volunteers in a DNA prime-boost
approach [76]. Despite the weak neutralizing activity in the sera of the vaccinated individuals,
a single Env protein boost elicited higher titers of anti-Env antibodies than has been previously
achieved with multiple immunizations of recombinant Env proteins alone [76,77]. Thus,
although further modifications of the vaccine formulation may be required to elicit NAbs with
increased breadth and potency, the results of this study demonstrate the potential of the DNA
prime-protein boost strategy for vaccine development. Indeed, the DNA prime-boost approach
is currently being employed for many ongoing and planned Phase I and II clinical trials.

DNA priming followed by viral vector boosting has also been shown to improve the magnitude
of the NAb response. For example, results from a non-human primate study demonstrate that
a DNA prime-recombinant serotype 5 adenovirus boost strategy elicits higher levels of NAbs
than either approach alone [78]. Viral vectors have also been used to prime B cells for higher
titer NAb responses after boosting with recombinant Env proteins or heterologous viral vectors.
For instance, several studies in human volunteers show that ALVAC priming and Env protein
boosting elicits higher NAb titers than vaccination with Env protein alone [79,80,81]. Recently,
a Phase III HIV-1 vaccine clinical trial in Thailand (RV 144) tested a heterologous prime-boost
regimen using a canary pox-HIV vector (ALVAC-HIV) prime and a recombinant gp120 boost
(AIDSVAX B/E) [82••]. To the surprise of many HIV researchers, the vaccine showed modest
efficacy in preventing HIV-1 infections. Interestingly, the modest protective effect appeared
limited to low-risk individuals, and there was suggestion that the effect was confined to the
first year following the commencement of vaccination. Also, in contrast to the results of many
protection studies in non-human primate models, vaccinated individuals who became infected
did not have lower viral loads or decreased loss of CD4+ T cells compared to the placebos.
Efforts are currently focused on evaluating the immune responses induced by the vaccine to
establish potential correlates of protection.

Genetic approaches
The difficulties faced in eliciting broad and potent NAbs using the approaches described above
have led researchers to develop innovative genetic strategies that essentially bypass
immunization. In a proof-of-concept study, Lewis et al. used an adeno-associated virus (AAV)
vector to deliver the IgG1 b12 gene into mouse muscle and discovered that the antibody
molecules imparted neutralization activity in the sera for over 6 months [83]. Encouraged by
this result, this approach was then tested in a non-human primate model by delivering
neutralizing immunoadhesins (antigen-binding variable fragment domains of Fabs fused to the
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Fc fragment of a rhesus IgG2 molecule) into macaques [84••]. The immunoadhesins were
expressed in the macaque muscle myofibers, and serum neutralization activity was sustained
for over 1 year. More importantly, sterilizing protection against SIV challenge was achieved
in six out of nine immunized monkeys, and all nine monkeys were protected from AIDS. In
another genetic approach, lentiviral vectors were used to engineer human hematopoietic stem
cells to produce IgG1 b12 after in vitro maturation into B cells [85••]. This study substantiates
that human B cells can be “programmed” to secrete antibodies of pre-defined specificity in a
tissue culture system.

Conclusion
Traditional vaccination approaches have thus far failed to elicit NAb responses against HIV-1
of sufficient breadth and potency, and therefore the field has turned to alternative, particularly
rational structure-based, vaccine design strategies. Although these approaches have provided
insight into the link between Env antigenicity and immunogenicity, immunogens that focus
the antibody responses to conserved epitopes still remain elusive. However, recent
technological and scientific advances have reignited the field, and hopes for an antibody-based
vaccine are notably higher than in previous years.
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Figure 1. An approach to vaccines for highly mutable pathogens
For these pathogens, e.g. HIV, classical vaccine approaches are problematic but a subset of
individuals do produce the types of antibody response that, if they could be elicited by
vaccination, would likely provide benefit on exposure to the pathogen. Isolation of monoclonal
antibodies (mAbs) constituting these responses together with a molecular characterization of
the interaction of the mAbs with their pathogen target antigens (Ag) is proposed as a route to
the design of immunogens that can elicit protective responses. For HIV, Ag is the envelope
spike.
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Figure 2. Modeling the epitopes recognized by bNAbs onto the HIV-1 trimer
The above model is adapted from a recent cryo-electron tomographic structure of the HIV-1
trimer [28••,86]. The crystal structure of the b12-bound monomeric gp120 core has been fitted
into the density map [39]. The V1/V2 and V3 loops, which are not resolved in the structure,
are represented as yellow and magenta ovals, respectively. The red structure located above the
trimer is representative of a human IgG1 molecule. The approximate locations of the epitopes
targeted by the existing bNAbs are indicated with arrows. Carbohydrate chains are shown in
blue, and the oligomannose cluster targeted by mAb 2G12 is shown in orange.
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