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Abstract
In genetic family studies, ages at onset of diseases are routinely collected. Often one is interested
in assessing the familial association of ages at onset of a certain disease type. However, when a
competing risk is present and is related to the disease of interest, the usual measure of association
by treating the competing event as an independent censoring event is biased. We propose a
bivariate model that incorporates two types of association: one is between the first event time of
paired members, and the other is between the failure types given the first event time. We consider
flexible measures for both types of association, and estimate the corresponding association
parameters by adopting the two-stage estimation of Shih and Louis (1995) and Nan et al. (2006).
The proposed method is illustrated using the kinship data from the Washington Ashkenazi Study.
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1. Introduction
In family studies, often one is interested in assessing the familial association in diseases with
ages at onset. When only one disease type is considered (e.g. cancer), there exists an
extensive literature for the analysis of correlated failure time data. These methods can be
used to model and estimate the association between ages at onset of family members
(Hougaard, 2001). For example, Shih and Louis (1995) proposed a two-stage estimation
procedure for estimating the association of paired failure times. Hougaard et al. (1992)
proposed bivariate survival models which were used to measure the similarities between the
lifetimes of adult Danish twins. Li et al. (1998) proposed a parametric likelihood approach
to study the familial aggregation in lung cancer risk from case-control family studies. When
the competing risk is present, all the above mentioned methods censor the failure of interest
at the time of the competing event and proceed with the proposed modeling and analysis of
correlated failure time data. Such censoring implicitly assumes that the competing events are
independent and that the estimate of the marginal distribution for the event of interest (e.g.
the Kaplan-Meier estimate) is consistent (Kalbfleish and Prentice, 2002). Bandeen-Roche
and Liang (2002), Chatterjee et al. (2003), and Bandeen-Roche and Ning (2008), showed
that censored observations due to a competing risk may affect the estimation of association
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of correlated failure times of the event of interest. It is well recognized that if the competing
events are dependent, the marginal distribution of the failure time for the event of interest is
not identifiable, because only the failure time of the first event is observable. Instead of the
marginal distribution, the univariate cause-specific hazard (Prentice et al.,1978) and
incidence function are observable quantities, and have been used in making cause-specific
inference (Kalbfleish and Prentice, 2002). Bandeen-Roche and Liang (2002) extended the
concept of univariate cause-specific hazard to a bivariate setting. They proposed a cause-
specific cross-ratio which accommodates competing risks in measuring the association of
paired failure times. Recently Bandeen-Roche and Ning (2008) proposed a nonparametric
estimation method to estimate the constant cause-specific cross-ratio. Cheng and Fine
(2008) gave an alternative representation of the cause-specific cross-ratio, and proposed a
simple plug-in nonparametric estimate.

In this article, we are interested in assessing the familial association of disease in the
presence of competing risk of the kinship data collected from the Washington Ashkenazi
Study (Struewing et al., 1997). In this study, more than 5000 volunteer Ashkenazi Jews
living in Washington D.C. provided blood samples for genotyping of BRCA1/BRCA2
mutations. They also gave family history information on cancers and mortality. One primary
interest of the study was to estimate the breast cancer risk among the carriers and non-
carriers of the gene mutations. For our application, we consider female first-degree relatives
of the volunteer participants, and are interested in studying their familial association of ages
at onset of cancer and non-cancer mortality. Here cancer and non-cancer mortality are
competing risks. To this end, we propose a bivariate survival model for correlated failure
times of relatives which incorporates competing risks. The proposed model is decomposed
into two parts: one based on the time to first event, and the other is based on the event type.
For the former, we generalize the bivariate survival model of Clayton (1978) to one which
allows for piecewise constant cross ratios. For the latter, we generalize the bivariate logistic
model to one with piecewise constant odds ratios. Different from the methods of Bandeen-
Roche and Ning (2008) and Cheng and Fine (2008) which treat each bivariate failure type
one at a time, we incorporate all possible bivariate failure types, namely both cancers, both
non-cancer deaths, and one cancer and one non-cancer death, to model the association
related to failure types. In addition, since we separately model the association of times to
first event and failure types, we are able to assess the effects of these two types of
associations on the cause-specific cross-ratio. One important feature of our model is that
even though both cross-ratio and odds-ratio are piecewise constant, the cause-specific cross-
ratio generally is non-piecewise constant.

The remainder of the paper is organized as follows. In Section 2 we propose bivariate
survival models for the association of correlated failure times and in the presence of
competing risks. In Section 3, we propose a quasi-likelihood estimation procedure for
familial association. In Section 4 and 5, we use simulations and the WAS study data to
illustrate the proposed methodology. A discussion follows in Section 6.

2. Model
2.1 Setup

Consider two competing events. Under the usual assumption of competing risks, for any
given subject, only the first event is observable. For each individual, in the absence of
censoring, the observable data is time to the first event and failure type. For a pair of
individuals, j = 1, 2, let Tj define the time to the first event for individual j and Yj the failure
type, where Yj = 1 if failure type one is observed, and 2 if failure type 2 is observed. In terms
of our WAS study application, cancer is failure type one and non-cancer mortality is failure
type two. We first model the distribution of (Tj, Yj) for each pair member j = 1, 2. Let Sj(t)
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and fj(t) denote the marginal survival function and probability density function of Tj. Let

 denote the sub-density function for failure type k.
The cause-specific hazard (Prentice et al., 1978), defined as

equals . Then  equals , where  is the hazard

function of Tj. In the case of only one event type, . For convenience, we write

 to denote the probability of the event being type k given the failure time
at t for pair member j.

2.2 Association
The next stage of the model involves specifying a dependency structure between the
members of the pair. We consider two types of association: one is between the first event
times (T1 and T2), and the other is between the failure types (Y1 and Y2) given (T1, T2). For
the measure of association between T1 and T2, we consider the cross ratio (Oakes, 1989)
defined by

(1)

where S is the joint survival function of T1 and T2, and f is the joint density function. Most
research has imposed models or constraints on θ(t1, t2) such as θ(t1, t2) is constant or S
belongs to the archimedean copulas (Oakes, 1989). Nan et al. (2006) proposed a piecewise
constant cross-ratio model which allows θ(t1, t2) to be piecewise constant in one dimension
of time. For our application, since each pair consists of first-degree relatives to each other
and their event times are paired in an arbitrary order, it is more reasonable to allow the cross
ratios to vary in both time dimensions. Therefore, in this work, we model the cross-ratio as a
piecewise constant function of the event times of both members in the pair. Specifically the

cross-ratio is modelled as , where 0 =
w0 < w1 < ⋯ < wK are a set of pre-specified knots in the appropriate age range of interest.
Extending the work of Nan et al. (2006) which assumes θ changes only in one dimension of
time, it follows that under the assumption that θ(t1, t2) = θij for (t1, t2) ∈ Aij = [wi−1,wi) ×
[wj−1,wj), the bivariate survival function is given by

(2)

When θ(t) ≡ θ for all t1 > 0, t2 > 0, the above bivariate survival function is equivalent to the
Clayton model (1978). When θ(t1, t2) ≡ 1, T1 and T2 are independent, and S(t1, t2) =
S1(t1)S2(t2). In the appendix, we show the bivariate survival function S is determined by the
marginal survival functions S1, S2 and θij’s.

For the measure of association for failure types Y1 and Y2 given the event times T1, T2, we
consider the odds ratio defined by
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where pk1k2(t1, t2) = Pr(Y1 = k1, Y2 = k2|T1 = t1, T2 = t2) = fk1k2(t1, t2)/f(t1, t2) with fk1k2(t1,
t2) = f(t1, t2, Y1 = k1, Y2 = k2).

Let  denote the conditional probability Pr(Yj = k | T1 = t1, T2 = t2), j = 1, 2, k = 1, 2.

The joint probability of the failure types, pk1k2(t1, t2), is determined by  and
ϕ, and given by

(3)

where . In order to allow for flexibility, we will
model the odds ratio as a piecewise constant function of the event times, expressed by

,

The cause-specific bivariate distribution of event times can be characterized with the above
marginal distributions and two types of association θ and ϕ. Specifically, we can combine
these two types of association to derive cause-specific time-dependent measures of
association of practical interest. It may be more meaningful to evaluate the association with
the cause-specific cross-ratio (Bandeen-Roche and Liang, 2002), since the above cross-
ratios θijs are associated with times to first failure and provide little practical interest. For a
given (t1, t2), the cause-specific cross-ratio is defined by

where  is the conditional hazard at time t1 with failure type k1 given the

other pair member has an event at time t2 with failure type k2 and  is the
conditional hazard at time t1 with failure type k1 given the other pair member has survived
time t2. It is straightforward to show that θk1k2(t1, t2) can be alternatively represented by

(4)

Thus θk1k2(t) is decomposed into the product of two terms: the first term is the overall cross-
ratio, and the second term provides additional contribution to the dependency of cause-
specific event times arising from the dependency of failure types between correlated
members. Note that according to (4), even if θ(t1, t2) and ϕ(t1, t2) are both piecewise
constant, θk1k2(t1, t2) may not be.
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Although the cause-specific cross-ratio is a meaningful association measure, it is expressed
as an instantaneous odds-ratio which may be difficult to interpret for practitioners. We
consider another function, namely the conditional cumulative incidence defined as Pr(T1 <=
t1, Y1 = k1 | a ≤ T2 < b, Y2 = k2), which is simpler to interpret, since it simply measures the
cumulative cause-specific incidence of one pair member given the other member’s failure
time and failure type. The impact of the other pair member’s failure time and failure type on
the cumulative incidence can be assessed by comparing the conditional cumulative
incidence with its marginal cumulative incidence counterpart.

3. Estimation
Let Tij and Cij denote the failure and censoring times to the first event for the jth member of
the ith family, j = 1, ⋯ ,mi i = 1, ⋯ , n. Assume Tij and Cij are independent and let Xij =
min(Tij, Cij) denote the observed failure time and Yij the failure type, where Yij = k, k = 1, 2,
if failure type k is observed, and 0, if the failure time is censored. We consider a setting
suitable for the application of the WAS study. We assume that individuals within a family
have a common marginal distribution. Thus we suppress the subscript denoting pair
membership to simplify the notation presented in the previous sections. Specifically let λ
denote the overall hazard, fk and λk the sub-density and cause-specific hazard for failure time
of failure type, and pk(t) the probability of failure type given the failure time at t, k = 1, 2.
We assume that the joint distribution of the failure times and failure types for any pair of
individuals in the same family follows the model proposed in the previous section.
Assumptions on third or higher order dependency structures are left unspecified.
Specifically, we formulate the composite likelihood as in Chatterjee et al. (2006), where
number of observations in each family were broken into doublets and each doublet was
treated independent of the others, ignoring possible dependence between doublets of the
same family.

3.1 Estimating θijs
We first consider estimating the piecewise constant cross-ratios θijs by adopting the two-
stage estimation method of Shih and Louis (1995) and sequential two-stage method of Nan
et al. (2006). For estimation of each θlm, we use the subset Dlm of paired data {Xip, Xiq, Yip,
Yiq}, p, q = 1, ⋯ ,mi, j ≠ k, i = 1, ⋯ , n in the study cohort such that Xip ≥ wl−1 and Xiq ≥
wm−1. For each observation in Dlm, we right censor the observed failure time at the upper
bound of the region Alm as X̃ip = min(Xip, wl), δ̃ip = I[wl−1 ≤ Xip < wl, Yip > 0] for the first
pair member and X̃iq = min(Xiq, wm), δ̃iq = I[wm−1 ≤ Xiq < wm, Yiq > 0] for the second pair
member. In our application of the WAS data, since the bivariate survival function is
symmetric, θij is symmetric, i.e. θij = θij, and hence for l ≠ m we use both data sets Dlm and
Dml to estimate θlm. We estimate each θij in the same order as laid out in the appendix for
computing the bivariate survival function. That is, we begin with θ11 and proceed with the
estimation for θ1j, j = 2, ⋯ ,K sequentially. After all the θ1i ’s are estimated, we proceed with
the estimation for θ22 followed by θ2i, k = 3, ⋯ , K. We continue the process until the last
cross-ratio parameter θKK is estimated.

In the following, we describe how to estimate θ11. At the first stage we estimate the common
marginal survival function by the Nelson estimate ignoring dependency between failure
times in the same family. The Nelson estimate specifies the probabilities for the bottom
boundaries of A1j, j = 1, ⋯, K and left boundaries of Ak1, k = 1, ⋯ ,K. At the second stage,
we treat the estimated probabilities at the bottom and left boundaries of A11 as known, and
use data set D11 to obtain the estimate of θ11 which maximizes the following composite-
likelihood with l = 1, m = 1
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(5)

where ip is the collection of pairs in data set Dip, Mi is the number of doublets in the ith
family, C(u, v; θ) = {u−(θ−1) + v−(θ−1) −1}−1/(θ−1),

. The function
C(ulm, vlm; θlm) is the conditional bivariate survival function given the pair having survived
time (wl−1,wm−1). Note that for l = m = 1,

 are the
non-parametric Nelson’s estimate of the univariate survival function. After the estimate of
θ11 is obtained, ŜA11(t1, t2) is readily calculated, and so are the survival probabilities on the
upper and right boundaries of A11. The probabilities on these boundaries in turn specify the
survival probability ŜA12 (t1, w1) on the bottom boundary of A12 and ŜA21 (w1, t2) for the left
boundary of A21. Plugging these estimates along with ŜA12 (0, t2) and ŜA12 (t1, 0) into L(θ12),
and maximizing L(θ12) with respect to θ12, we obtain the quasi-MLE of θ12. We iterate the
above estimation until the last cross-ratio θKK is estimated.

Assume that the marginal survival function is continuous and Pr(wi−1 ≤ T1 < wi, wj−1 ≤ T2 <
wj) > 0, for all i = 1, ⋯ , K, j = 1, ⋯ , K. The non-parametric Nelson’s estimate of the
marginal survival function is consistent in the support t ∈ (0, ν), where ν denotes the
maximal follow-up time. Following Shih and Louis (1995), θ̂11 is consistent and normally
distributed with mean θ11 as the sample size n → ∞. Then one can establish the consistency
of the estimates of the survival functions in the upper and lower boundary in each grid
element Aij. Hence similar to the sequential estimation approach of Nan et al. (2006), as the
number of pairs used in estimating θij goes to ∞ proportionally as the sample size n → ∞,

θ ̂ij converges to the true value θij and  converges weakly to a mean 0 and
normally distributed random variable under regularity conditions and model (2).

3.2 Estimating ϕijs
To estimate the association of failure types between paired members, only paired data with
failure observed in both members are used, because pairs with censored observations contain
no information about the correlation. Specifically, for the estimation of each ϕlm, l = 1, ⋯ ,
K, m = 1, ⋯ , K, we use the subset D ̄lm of paired data {Xip, Xiq, Yip, Yiq}, p, q = 1, ⋯ ,mi, j ≠
k, i = 1, ⋯ , n in the study cohort such that wl−1 ≤ Xip < wl, Yip > 0 and wm−1 ≤ Xiq < wm, Yiq
> 0. That is, the contribution to the estimation comes from a subset of the paired data where
failures are observed in both members and occur in the region where ϕlm is defined. Similar
to the set up of θij’s, ϕij is symmetric and hence for l ≠ m we use both D ̄lm and D ̄ml to
estimate ϕlm. The estimate of ϕlm, denoted by ϕ̂lm, is obtained by maximizing the following
composite-likelihood

(6)
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where 𝒟 ̄ij is the collection of pairs in data set D ̄ij, and ˜ over pk1k2 indicates that the

probability of failure type , k = 1, 2 in (3) is substituted by
its estimate. The non-parametric estimation technique used to calculate the probability of
failure type for the univariate data (Kalbfleisch and Prentice, 2002) can be generalized here

to estimate . Specifically let (t̃i1, t̃i2), i = 1, ⋯ , m denote the m distinct paired failure

times in the data. Let  denote the number of pairs with failure type j in pair member 1 and
failure type k in pair member 2 at time (t̃1i, t̃2i). Then the non-parametric estimate of

 equals , and the non-parametric estimate of  equals

. In the case of the paired data being exchangeable as in the WAS data,

the above non-parametric estimate is modified as follows. Let  denote the number of pairs
with failure type j in pair member 1 at time t̃i1 and failure type k in pair member 2 at time t̃i2,

and  denote the number of pairs with failure type j in pair member 2 at time t̃i1 and failure
type k in pair member 1 at time t̃i2. Then the non-parametric estimate of  equals

, and the non-parametric estimate of  equals

. However, this non-parametric estimate may be
unstable, because unless the data set is very large, the number of observations at each
observed paired failure times is likely few. One can have a more stable estimate by

assuming  to be piecewise constant in the same fashion as θ and ϕ are specified.

Then the estimate of  is calculated according to how many pairs with failures
occurring in a specific sub-region defined by the grid points. Alternatively one may assume
the event type probability depends on individual’s own failure time only, i.e. p(Yj = k | Tj =
tj, Tj′ = tj′) = p(Yj = k | Tj = tj) = pk(tj). In that case, its non-parametric estimate is readily

calculated as  where  is the number of individuals with failure type k at
time t̃j, and where t̃1, ⋯ , t̃q are q distinct failure times in the data (Kalbfleisch and Prentice,
2002).

In addition to the assumptions required to establish the consistency for the estimate of θij,
assume that Pr(Y1 = k1, Y2 = k2 | T1 = t1, T2 = t2) > 0, (t1, t2) ∈ Aij for all i = 1, ⋯ ,K, j = 1,

⋯ ,K, and k1 = 1, 2, k2 = 1, 2. Since the non-parametric estimate  of the probability
of failure type being k for pair member j given T1 = t1, T2 = t2 is a continuous function of the
Nelson-type estimate for the bivariate cause-specific hazard function (Cheng, Fine and

Kosorok, 2009) which is consistent for ti ∈ (0, ν), i = 1, 2,  is consistent. Following
regularity conditions of asymptotic theory,  converges weakly to a mean 0 and
normally distributed random variable under the piecewise-constant odds-ratio model,

.

With the above complex sequential estimation procedure, further work is needed to derive
the asymptotic properties of the estimates of θij’s and ϕij. In this paper, we use the bootstrap
approach (Efron and Tibshirani, 1993) with family as the bootstrap sampling units to obtain
the variance of these semi-parametric estimates.

After these parameters are estimated, we are able to plug them in (2) to obtain the estimate
of the cause-specific cross-ratios. We can also calculate the estimate of the conditional
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cumulative incidence function Pr(T1 ≤ t1, Y1 = k1 | a ≤ T2 < b, Y2 = k2), kj = 1, 2, j = 1, 2
given by

where Ŝ is the semi-parametric estimate, the subscript it = l, if wl−1 ≤ t < wl, and fk(u) = Ŝ(u,
0)λ ̂k(u). Recently Cheng, Fine and Kosorok (2007,2009) proposed a non-parametric
estimator of the bivariate cumulative incidence function, which offers an alternative to our
semi-parametric estimator. As with the approach of Bandeen-Roche and Ning (2008), they
consider one bivariate failure type (e.g. cancer-caner) at a time. The merits and
disadvantages of our approach vs. theirs would be an interest for future study.

4. Example
We applied the proposed model and estimation method to the WAS study data. We analyzed
a subset of the data in which the first-degree relatives of the female probands are also first-
degree relatives to each other. That is, (mother, sister), (daughter, daughter) and (sister,
sister) pairs were included in the analysis. The subset was chosen because the pairwise
association should be similar among these pairs of first-degree relatives. Cancer and non-
cancer mortality are the two competing events considered in this example. Among these
women, the majority of the cancer incidences were breast and ovarian tumors. The ages of
the relatives at the time of the interview of the proband define the censoring times. The data
of 12,255 subjects coming from 4,235 distinct families were used to obtain the Nelson-type
nonparametric estimate of the marginal survival of time to the first failure, overall hazard
and cause-specific hazard, and the probability of failure type given the individual’s failure
time. The estimates of the probability of failure type being cancer is displayed in Figure 1. It
shows that cancer risk is higher than non-cancer death in mid-age but lower in young and
old ages.

Table 1 shows the estimation results for the association parameters. The number of pairs
with both members having cancer(d11), number of pairs with one member having cancer and
the other member dead of non-cancer (d12), and number of pairs with both members dead of
non-cancer (d22) are listed in the second column. The bootstrap standard errors were
obtained from 500 bootstrap samples. In estimating the association parameters, to assure
there are sufficient number of paired events in each sub-region to calculate the piecewise
cross-ratios and odds-ratios, and to choose each region which is biologically meaningful, the
number of knots was set at K = 3 with w1 = 50, w2 = 70, and w3 = ∞ (see Table 1). The cut-
off values 50 and 70 divide the cohort into young (< 50 years old), mid-age (50−70) and old
(> 70) subgroups. The data of 13,962 pairs from 4,152 families were used to estimate the
cross-ratios. All the piecewise cross-ratios are close to 1, indicating the association of times
to first failure between first-degree relatives is modest and almost time invariant.

Nine hundred and fifty pairs with failures observed in both pair members were used to
estimate the odds-ratios. Of these 950 pairs, there were 767 distinct paired failure times.
Because at each of these distinct paired failure times, most of the time there was only one
observation, the non-parametric estimate of the probability of failure type given the paired

failure time,  is mostly 0 or 1. Thus, ϕijs cannot be estimated reliably under this non-
parametric estimation. Therefore, we considered the two alternative approaches for the

estimation of  described in the previous Section: assuming  to be piecewise
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constant vs. the probability of failure type depends only on the individuals’ own failure time.
The estimated odds-ratios in the six sub-regions as ordered in Table 1 for the two
approaches are (4.25, 1.95, 0.86, 1.35, 1.63, 1.65) and (5.22, 1.20, 0.88, 1.57, 2.07, 1.97),
respectively. Both approaches yielded similar estimates of the odds-ratios. The estimates
based on the latter approach are shown in Table 1. The distributions of the bootstrap
estimates of θijs were close to normal, but those of ϕijs were skewed. Hence the estimates of
ϕijs were log-transformed. Compared to the estimates of the cross-ratios, the odds-ratios for
the association of failure types between the first-degree relatives vary in magnitude over
different ranges of ages at onset. Of particular note is the large odds ratio for the ages at
onset younger than 50. It implies that the probability of having cancer for a woman who had
an event before age 50 is more than 5 times higher when her first-degree relative had cancer
before age 50 than if her first-degree relative died of non-cancer before age 50. For women
older than 70 years, there is a trend that her chance of developing cancer is doubled if her
first-degree relative had developed breast cancer after age 50 than if her first-degree relative
died of non-cancer after age 50 (ϕ22 = 2.07, ϕ23 = 1.97).

The estimates of cause-specific cross-ratios are displayed in Figure 2. The cross-ratio for
cancer is high (> 2) when the ages at onset in both members are young and slightly elevated
(1.5 − 2) when both members are old. However these elevations, likely due to few cancer
cases in both pair member in these age ranges, are not statistically significant.

To see the impact of the failure time and failure type of one family member on the
cumulative incidence of the other family member, we plot the conditional incidence function
along with the unconditional counter part. The four plots in the left panel of Figure 3 display
the marginal and conditional cumulative risk of a woman developing cancer, and the four
plots in the right panel display the marginal and conditional cumulative risk of a woman
dead of non-cancer. These plots show that a woman’s cumulative risk of cancer, compared
to the marginal cumulative risk, is increased if her first-degree relative had cancer before age
70, and decreased if her first-degree relative had cancer after age 70. If the first-degree
relative died of non-cancer before age 50, then the woman’s cumulative risk of cancer is still
increased (top two plots in the left panel), although the magnitude of the increase is lower
than if her first-degree had cancer. In contrast, if the first-degree relative died of non-cancer
after age 50, the woman’s cumulative risk of cancer is decreased slightly, and her
cumulative risk of non-cancer death is increased.

One may be also interested in the conditional cumulative incidence given the failure type of
the first-degree relative. In Figure 4, the top panel shows that a woman’s conditional
cumulative cancer incidence increased if her first-degree relative had cancer, and decreased
if her first-degree relative had died of non-cancer. The lifetime (up to age 100) cumulative
incidence of cancer increased from 40% to 46%, if a woman’s first-degree relative had
cancer. Such a pattern also holds for non-cancer mortality. The lower panel of Figure 4
shows that the conditional cumulative non-cancer increased if the first-degree relative had
died of non-cancer, and decreased if the first-degree relative had cancer. The lifetime risk of
non-cancer death increased from 58% to 61%, if a woman’s first-degree relative had died of
non-cancer.

5. Simulations
We used simulations to study the performance of the estimation procedure proposed in the
previous section. Initially, we generated 5,000 pairs of (T1, T2) and (Y1, Y2) according to the
proposed model described in Section 2. Specifically, we first generated (T1, T2) followed by
(Y1, Y2) conditional on (T1, T2). We assumed the marginal distribution of T1 and T2 follows
a Weibull model with the shape and scale parameters estimated from the WAS data. The
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number of knots and cutoff values used to define the piecewise cross-rations and odds-ratios
were set at the same values as in the WAS data analysis (w1 = 50, w2 = 70, w3 = ∞). We
took the constant value of 1.2 for all the cross-ratios, because it is close to the estimates seen
in the WAS study. We generated the failure time t1 for the first member in each pair from
the Weibull model and the bivariate survival function values on the bivariate knots on each
grid in the sample space in the order laid out in the Appendix. Then we generated the event
time for the second pair member, t2, by solving

where u is a uniform deviate and i1, i2 are the knots such that (t1, t2) ∈ Ai1,i2. We fitted a
fourth-degree polynomial model to the probability of failure type being cancer (Figure 1)
and used the fitted model to generate bivariate failure types. The fitted model is given by

where t* = t/100. The failure type for the first member of each pair was generated from the
bernoulli distribution with p = P(Y1 = 1 | T1 = t1). The failure type for the second member
was generated from the bernoulli distribution with p = P(Y2 = 1 | T1 = t1, T2 = t2, Y1 = k;
ϕi1i2), where k is the failure type of the first member. Each individual is subject to
independent censoring, where for the first member of each pair the censoring variable
follows a normal distribution N(82, 14) corresponding to 40% censoring and N(60, 10) for
the second member corresponding to 75% censoring. The censoring pattern was devised to
mimic that of the (mother, sister) pairs in the WAS study. Randomly generated failure times
were truncated to integer to represent ages at onset as recorded in the WAS study.

The simulations were repeated 1,000 times and the results were summarized in Table 2. It
shows that most of the Monte-Carlo means are close to the true parameter values. One
exception is ϕ13, where ϕ̂13 is slightly over-estimated. Consistent with the observations seen
in the example, the standard errors of odds-ratios overall are larger than those of cross-
ratios. This is due to the fact that for the cross-ratios all paired data, whether censored or not,
contribute to the estimation, but for the odds-ratios, only pairs with both failures observed
enter the likelihood for estimation. In addition, the estimate of the marginal probability of
failure type given the individual’s failure time is highly variable if the number of failures at
that failure time is small. Therefore, in order to obtain a stable estimate of ϕij, an adequate
number of bivariate failures for each bivariate failure type in each grid region is essential.
The coverage probability for most of the parameters are close to the 95% nominal level.
Hence the parameter estimators are approximately normally distributed.

We performed additional simulations to compare the performance of our estimator of the
cause-specific cross-ratio with that of Bandeen-Roche and Ning (2008). Their method was
an extension of the non-parametric estimator of the Kendall’s tau ignoring competing risks
(Oakes, 1982). In their approach, only data with failure observed in both pair members and
with failure type of interest were included. For example, if one is interested in cancer-cancer
cross-ratio, their method would eliminate all censored pairs, pairs with cancer vs. non-cancer
death, and pairs with non-cancer death in both members.

We first generated the bivariate competing risk data using the same scenario as presented
above. Under this scenario, the probability of event type is time-dependent, and the odds-
ratios for the bivariate failure types are piecewise constant. As a result, the cause-specific
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cross-ratio according to (4) is time-varying. In our approach, the cause-specific cross-ratio in
each grid element was averaged with the bivariate incidence function as its weight to
represent the cause-specific cross-ration in that grid element, whereas the Bandeen-Roche
and Ning approach used the probability of discordance as the weight. The simulation results
are presented in Table 3. The cause-specific cross-ratios for bivariate failure type (1, 1) was
underestimated by the Bandeen-Roche and Ning approach except in the last grid element
[70, ∞) × [70, ∞) where the estimate was overestimated. However, as one referee pointed
out, since the two approaches use different weights and estimate different quantities under
the time-vary cause-specific cross-ratio model, the two estimates are not directly
comparable. Nevertheless, the estimate from our approach had substantially lower standard
deviation.

Second, we generated bivariate failure time data with constant cause-specific cross-ratio.
Specifically, bivariate failure times to first event were generated according to the gamma
frailty model with same parameter values as our original simulation study presented in the
manuscript (i.e. Weibull marginal survival and constant cross-ratio θ = 1.2). The bivariate
failure types were generated from the beta-bernoulli distribution as described in Bandeen-
Roche and Liang (2002) with scale parameter 1 and the probability of failure type being 1
equal to 0.2. Under this scenario, the cause-specific cross-ratio for bivariate failure types (1,
1) equals 3.6. In the case of no censoring, the sample size was set at n = 1000. With
censoring, censoring time was generated from normal with mean 65 and standard deviation
10. Approximately 25% of the failure times were censored and the sample size was set at n
= 2000. Since the probability of failure type being 1 does not change with time, the estimate
of the probability of failure type given the failure time from the simulated data fluctuates
around the true value. Hence in our estimation procedure for the odds ratio, the marginal
probability of failure type was assumed constant. We mimicked the simulation study of
Bandeen-Roche and Ning (2008) in setting the bins by bisecting each time dimension at its
median in each simulation run. Under this scenario, the averaged cause-specific cross-ratio
in each grid is constant regardless of the weight used in averaging and equals 3.6. The
simulation results are summarized in Table 4. It shows that when there is no censoring, the
estimate of the cross-ratio for bivariate failure types (1, 1) has little bias for both approaches.
Consistent with the findings in the second simulation study above, the variance of the
Bandeen-Roche and Ning’ approach is considerably larger than that of our approach. Such
an inflation in the variance is due to the fact that our approach uses all data in the estimation,
while the Bandeen-Roche and Ning’s appraoch only uses the pairs with bivariate failure
types (1,1), which on average consists of only 12% of the total number of pairs. With
bivariate failure types (2,2) which consists of about 75% of the data, the variability of the
estimate of the Bandeen-Roche and Ning approach is still larger but closer to our approach
(results not shown). In the presence of censoring, The Bandeen-Roche and Ning’s appraoch
is more biased and the variance of their estimate is more inflated than for the uncensored
case.

In summary, these simulation studies indicated that, in general, our proposed approach has
less bias and is more efficient than Bandeen-Roche and Ning’s approach.

6. Discussion
In this paper, we have proposed a flexible model for bivariate competing risk data. In our
approach, we decompose the bivariate competing risk data into bivariate times to first failure
and bivariate failure types given the failure times. To each bivariate component, we apply a
piecewise-constant association model to measure the dependency. We have shown that with
a given marginal distribution of time to first failure and piecewise constant cross-ratios, the
bivariate distribution is determined. With this approach, we are able to assess the
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contribution of each component of the bivariate data to the cause-specific association. In
practice, the knots and the number of knots used to specify the piecewise-constant cross-
ratios and odds-ratios are primarily determined by the data such that sufficient number of
paired failures in each grid elements are observed. Such an approach is often necessary in
the analysis of rare events such as cancer.

We have proposed a semi-parametric two-stage procedure for estimation. For the estimation
of cross-ratios θijs, at the first stage, the marginal distribution of the first failure time is
estimated non-parametrically by the Nelson estimate. In the second stage, these cross-ratios
are estimated sequentially in each coordinate such that the estimation of each cross-ratio
depends on the estimates of the cross-ratio and in turn the bivariate survival function at
times preceding it. For the estimation of odds-ratios ϕijs, at the first stage, the probability of
event type given the bivariate failure times is estimated non-parametrically. In the WAS
study, the integer age was recorded and thus the probability of failure type was estimated at
each observed age at onset. In the case of continuous time, the failure time needs to be
binned in order to reliably estimate the probability of failure type. At the second stage, the
odds-ratio in each region is estimated assuming the event type probability is known and
using the paired data with failures observed in that regions for both pair members. Since the
number of observations used in estimating each odds-ratio is smaller than that used in
estimating the cross-ratio, the variation of the odds-ratio estimates tends to be larger than
that of the cross-ratio. This is seen in the analysis of the WAS data as well as in simulated
data. Therefore, in order to be able to assess the effect of the event type of one member on
that of the other family member, it is necessary to observe sufficient number of failures for
each bivariate failure type. The number of bivariate failures required to have a reliable
estimate for each odds-ratio depends on the probability of failure type in each sub-region. If
the probability does not change with time, then the rule of thumb for the estimation of odds-
ratio in a 2 × 2 table applies here. In this case, a minimal number of 30 pairs would usually
be sufficient. However, if the failure type probability changes with time, as the case for the
WAS study shown in Figure 1, a larger sample size is required. This is because the non-
parametric estimate of the failure type probability is more variable and hence the estimate of
the odds-ratio is more variable as well.

Because of the complex nested structure of the piecewise-constant bivariate survival model
for the times to first failure and sequential dependency of the estimation of cross-ratios,
derivation of the theoretical properties of the proposed estimates is complex and a topic for
future research. We used the bootstrap to estimate the standard errors and to draw inference.
For the WAS study data, it took about one minute of CPU to estimate the parameters. With
500 bootstrap samples, it took about 8 hours to compute the standard errors. We used
simulations to study the properties of the proposed parameter estimates. The simulation
result shows that there is little bias for the parameter estimates, and the estimators are close
to be normally distributed.

There are several interesting findings from our analysis of the WAS data. In this cohort, the
majority of the cancers among women are breast and ovarian cancers, and the probability of
having cancer is higher than non-cancer death when the age at onset is between 30 to 70
years old. An individual’s failure type also affects her first-degree relative’s failure type
especially at young ages. Based on ϕ̂11 = 5.22, the probability of having cancer for a woman
who had an event before age 50 is more than 5 times higher when her first-degree relative
had cancer before age 50 than if her first-degree relative died of non-cancer before age 50.
However, such a large increase in the conditional probability of failure type being cancer
before age 50 does not result in the same degree of increase in the cumulative risk of cancer.
For example, a woman’s cumulative risk of having cancer at age 30–50 increases 1.4–1.9
times if her first-degree relative had cancer between age 30 and 50 then if her first-degree
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relative died of non-cancer between age 30 and 50. Overall, a woman’s cumulative risk at all
ages is increased if her failure type is the same as her first-degree relative’s. This translates
into 6% and 3% increase of lifetime risk of cancer and non-cancer mortality, respectively.
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APPENDIX

Construction of the bivariate survival function of times to first event
We arrange the sample space of T1 and T2 into a grid with elements Aij, i = 1, ⋯ , K, j = 1,
⋯ ,K where Aij = [wi−1, wi) × [wj−1, wj) as shown in Figure 5.

We show that the bivariate survival function (2) is completely determined by the two
marginal survival functions S1, S2 and the piecewise constant cross-ratios θij’s. Notice that if
the survival functions on the bottom and left boundaries in each region Aij are known, the
joint survival function in that region is determined according to (2). Hence it is sufficient to
show that the survival functions on the bottom and left boundaries for each Aij are
determined by the marginal survival functions S1, S2 and θij’s. Note that for each Aij, i > 1, j
> 1, the bottom boundary [wi−1, wi) × wj−1 is the upper boundary of its adjacent lower
region Ai,j−1 on which the joint survival function is determined by S(t1,wj−2) on the bottom
boundary [wi−1, wi) × wj−2, S(wi−1, t2) on the left boundary wi−1 × [wj−2, wj−1), and θi,j−1
for (t1, t2) ∈ Ai,j−1. Similarly the left boundary wi−1 × [wj−1, wj) in Aij is the right boundary
of its adjacent left region Ai−1,j on which the joint survival function is determined by S(t1,
wj−1) on the bottom boundary [wi−2, wi−1) × wj−1, S(wi−2, t2) on the left boundary wi−2 ×
[wj−1, wj), and θi−1,j for (t1, t2) ∈ Ai−1,j. These lower and left boundaries of Ai−1,j and Ai,j−1
in turn are the right and upper boundaries of the adjacent lower and left regions. We repeat
the iterations until we reach the bottom and left boundaries of A11 on which the survival
function is equal to the marginal survival function S1(t1) and S2(t2) respectively for (t1, t2) ∈
A11. This shows that the survival functions on the boundaries are determined by the
marginal survival functions and θij’s. For a K × K grid on the first quadrant for the sample
space of (T1, T2), it contains a total of K(K + 1)/2 boundaries. Of these boundaries K lie on
the first coordinate (i.e. t2 = 0) and similarly K lie on the second coordinate (i.e. t1 = 0),
where their corresponding survival probabilities are equal to the respective marginal survival
probabilities. The rest of the boundaries are either the upper or right boundary of a grid
element. In terms of actual computation of the survival probabilities on these boundaries, we
start from the upper and right boundaries of A11 because the survival probabilities on the
bottom and left boundaries are known and equal to the marginal survival probabilities. We
use (2) to calculate the survival probabilities on the right and upper boundaries of A11.
Equating these probabilities to the survival probabilities on the left and lower boundaries of
A21 and A12, using (2) again, the survival probabilities on the upper and right boundaries of
A12 and A21 are readily computed. We iterate the above computation procedure by
sequentially moving the grid element horizontally and vertically until all the boundary
probabilities are computed. Figure A1 is used to illustrate the order of constructing the
bivariate survival function on the boundaries. It begins with the upper and right boundaries
of A11. Then we compute the joint survival on upper and right boundaries for A12, ⋯ , A1K
and A21, ⋯ ,Ak1 sequentially. After the boundaries probabilities for the grid regions on the
first row and first column are computed, we computes the boundary probabilities for A22
next, and repeats the procedure until the boundaries probabilities of AKK are obtained.
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Figure 1.
The non-parametric estimate of the probability of failure type being cancer given the age at
onset (solid circle) and a fitted line of a fourth-degree polynomial model to this non-
parametric estimate. The fitted model is used in the simulation study to generate the failure
type given the age at onset.
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Figure 2.
Top left: cancer vs. cancer cross-ratio; top right: cancer vs. non-cancer death cross-ratio;
bottom left: non-cancer death vs. non-cancer death cross-ratio. The averaged cancer-cancer
cross-ratios in the six sub-regions ordered in Table 1 are 1.22, 1.19, 1.29, 1.20, 1.40 and
1.34 with corresponding standard error 0.17, 0.10, 0.11, 0.14, 0.12 and 0.25. The alternative
Bandeen-Roche and Ning estimate described in the simulation study in Section 5 equals
2.36, 1.94, 1.80, 1.57, 1.45 and 1.94 with corresponding standard error 0.43, 0.24, 0.28,
0.31, 0.27, and 0.87.
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Figure 3.
Left panel: marginal and conditional cumulative cancer incidence; right panel: marginal and
conditional cumulative non-cancer mortality incidence.
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Figure 4.
Top: marginal and conditional cumulative cancer incidence given the failure type of the
other family member; bottom: marginal and conditional cumulative non-cancer mortality
incidence given the failure type of the other family member.
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Figure 5.
A diagram used to illustrate the order of constructing the bivariate survival function on the
boundaries.
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