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Expectancies in decision making, 
reinforcement learning, and ventral striatum
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Decisions can arise in different ways, such as from a gut feeling, doing what worked last 
time, or planful deliberation. Different decision-making systems are dissociable behaviorally, 
map onto distinct brain systems, and have different computational demands. For instance, 
“model-free” decision strategies use prediction errors to estimate scalar action values from 
previous experience, while “model-based” strategies leverage internal forward models to 
generate and evaluate potentially rich outcome expectancies. Animal learning studies indicate 
that expectancies may arise from different sources, including not only forward models but also 
Pavlovian associations, and the fl exibility with which such representations impact behavior may 
depend on how they are generated. In the light of these considerations, we review the results 
of van der Meer and Redish (2009a), who found that ventral striatal neurons that respond 
to reward delivery can also be activated at other points, notably at a decision point where 
hippocampal forward representations were also observed. These data suggest the possibility 
that ventral striatal reward representations contribute to model-based expectancies used in 
deliberative decision making.
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INTRODUCTION: ANATOMY OF A DECISION
Defi nitions from different approaches to deci-
sion making commonly emphasize that a deci-
sion should involve “choice among alternatives” 
(Glimcher et al., 2008). This rules out the extreme 
case of a (hypothetical) pure refl ex where a given 
stimulus is always followed by a fi xed response, 
and is more in line with “…the delay, between 
stimulation and response, that seems so charac-
teristic of thought” (Hebb, 1949). A genuine deci-
sion depends on more than external circumstances 
alone: the chosen response or action can refl ect 
the agent’s experience, motivation, goals, and per-
ception of the situation. Thus, theories of decision 
making, by defi nition, are concerned with covert 
processes in the brain; with the representations and 
computations internal to the decision-maker that 
give rise to behaviorally observable choice.

A useful simplifi cation in studies of economic 
decision making has been to focus on “static” deci-
sion making (Edwards, 1954), where internal vari-
ables are assumed fi xed and the decision-maker’s 
response to a variety of different choice menus is 
observed (for instance, would you rather have one 
apple or fi ve grapes?). This tradition gave us the 
concept of value or utility, a common currency 
that allows comparison of the relative merits of 
different choices (Bernoulli, 1738; Rangel et al., 
2008). In experimental studies of animal learning, 
the complementary “dynamic” approach has been 
popular, in which the stimulus or situation is held 
constant and changes in choice behavior result-
ing from internal variables, such as learning and 
motivation, can be studied (Domjan, 1998).

The reinforcement learning (RL) frame-
work integrates both of these traditions to form 
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chosen approximately equally. From experience, 
the agent learns action values for action A and B. 
Next, the agent is made thirsty and returned to the 
testing chamber where actions A and B are avail-
able but do not lead to reward. All the agent has to 
go on is its previously learned, cached values for 
A and B, thus expressing no preference between 
them1. However, what can be observed experi-
mentally is that animals now prefer the left lever 
(which previously led to water) indicating that 
they can adjust their choice depending on moti-
vational state (Dickinson and Dawson, 1987)2. 
In contrast, the model is limited by its previously 
learned values that do not take the motivational 
shift into account3. Furthermore, there are other 
experimental results which are diffi cult to explain 
if decisions are based on cached values that do 
not include sensory properties of the outcome, 
such as the differential outcomes effect (Urcuioli, 
2005), “causal reasoning” (Blaisdell et al., 2006), 
shortcut behavior (Tolman, 1948) and specifi c 
Pavlovian-instrumental transfer (discussed in 
detail below).

Such considerations motivated the notion that 
animals have knowledge about the consequences 
of their actions, and that they can use such knowl-
edge, or expectancies, to make informed deci-
sions (Tolman, 1932; Bolles, 1972; Balleine and 
Dickinson, 1998). An expectancy can be loosely 
defi ned as a representation of an outcome before it 
occurs; as we discuss in the fi nal section, they may 
be generated in different ways including action–
outcome as well as stimulus–stimulus (Pavlovian) 
associations. In the context of a motivational 
shift, an expectancy-based decision mechanism 
is thought to require two components:  generation 

an explicit computational account of not only 
how an agent might choose among alternatives 
based on a set of internal variables, but also how 
those variables are learned and modifi ed from 
experience. The RL framework covers a range of 
models and methods, but most share common 
elements exemplifi ed by the basic temporal-
difference (TD) algorithm (Sutton and Barto, 
1998). Briefl y, TD-RL algorithms, such as the 
actor–critic variant, operate on a set of distinct 
situations or states (such as being in a particular 
location, or the presentation of a tone stimulus; 
this set is known as the state space), in which one 
or more actions are available (such as “go left”). 
Actions can change the state the agent is in and 
may lead to rewards, conceptualized as scalars in 
a common reward currency; the agent has to learn 
from experience which actions lead to the most 
reward. It does this by updating the expected value 
of actions based on how much better or worse 
than expected those actions turn out to be: that 
is, it relies on a TD prediction error. A single static 
decision consists of the actor choosing an action 
based on the learned or “cached” values of the 
available actions (perhaps it picks the one with 
the highest value). From the observed outcome, 
the critic computes a prediction error by compar-
ing the expected value with the value of the new 
state plus any rewards received. If the prediction 
error is non-zero, the critic updates its own state 
value, and the actor’s action value is updated in 
parallel. Thus, by learning a value function over 
states, the critic allows the actor to learn action 
values that maximize reward.

In the dynamic (learning) sense, such TD-RL 
algorithms are very fl exible in that they can 
learn solutions to a variety of complex tasks. 
However, a key limitation is their dependence 
on cached action values to make a decision, 
which means there is no information available 
about the consequences of actions. This limita-
tion renders decisions infl exible with respect to 
changing goals and motivations (Dayan, 2002; 
Daw et al., 2005; Niv et al., 2006). Furthermore, 
because such cached action values are based 
only on actual rewards received in the past, they 
cannot support latent learning, are not available 
in novel situations, and are only reliable if the 
world does not change too rapidly relative to the 
speed of learning. The fi rst limitation is illus-
trated, for instance, by experiments that involve 
a motivational shift (Krieckhaus and Wolf, 1968; 
Dickinson and Balleine, 1994). In an illustrative 
setup (Dickinson and Dawson, 1987), there is a 
training phase where action A (left lever) leads 
to water reward, and action B (right lever) to 
food reward, calibrated such that both actions are 
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Reinforcement learning (RL)
A computational framework in which 
agents learn what actions to take 
based on reinforcement given by the 
environment. Provides tools to deal 
with problems, such as reinforcement 
being delayed with respect to the 
actions that lead to it (credit assignment 
problem) or how to balance taking 
known good actions with unknown 
ones that might be better (exploration–
exploitation tradeoff).

Actor–critic architecture
A class of RL algorithm with two 
distinct but interacting components. 
The “actor” decides what actions to 
take, and the “critic” evaluates how well 
each action turned out by computing a 
prediction error. Several studies report a 
mapping of these components onto 
distinct structures in the brain.

State space
In order to learn what action to take in 
a given situation, an agent must be able 
to detect what situation or state it is in. 
In RL, the set of all states is known 
as the state space, which may include 
location within an environment or the 
presence of a discriminative stimulus.

Expectancy
A representation of a particular future 
event or outcome, such as that of food 
following a predictive (Pavlovian) 
stimulus or an outcome generated 
by a forward model.
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1An alternate scenario is that the motivational shift causes the 
agent to be in a new state. However, in this case, it will not 
have any cached values at all, so again no preference would 
be predicted.
2For clarity, we have ignored the important but complex 
issue of under precisely what conditions animals respond 
immediately, as opposed to only after further experience, to 
motivational shifts and reinforcer revaluation procedures 
(see, e.g., Dickinson and Balleine 1994 for details). For now, 
we merely wish to point out that, under some conditions, 
they do.
3One might imagine a variety of subtle modifi cations that 
would enable an actor–critic model to choose appropriately 
following motivational shifts. For instance, an agent who 
actually experiences both hungry and thirsty states during 
training could learn separate cached values for each, such 
that it would be sensitive to motivational shifts by calling up 
the relevant set of values. While the learning of multiple value 
functions would work for this specifi c experimental situation, 
it seems unlikely to generalize to different implementations 
of the procedure (such as pairing a specifi c outcome with 
illness; Garcia et al. 1970).



Frontiers in Neuroscience May 2010 | Volume 4 | Issue 1 | 31

 devaluation relies on a limbic network that 
includes the basolateral amygdala, orbitofrontal 
cortex, and possibly ventral striatum (Corbit et al. 
2001; Pickens et al. 2005; Johnson et al. 2009b, 
but see de Borchgrave et al. 2002). We focus here 
on recent results aimed at elucidating the neural 
basis of model-based decision making.

Recall that dynamic evaluation lookahead 
requires both the generation and evaluation of 
potential choice outcomes, implying the exist-
ence of neural representations spatio- temporally 
dissociated from current stimuli (Johnson et al., 
2009a). Johnson and Redish (2007) recently iden-
tifi ed a possible neural correlate of the inter-
nal generation of potential choice outcomes. 
Recording from ensembles of hippocampal 
neurons, it was found that while the ensemble 
usually represented locations close to the animal’s 
actual location (as would be expected from “place 
cells”), during pauses at the fi nal choice point 
of the Multiple-T task (Figure 1A), the decoded 
location could be observed to sweep down one 
arm of the maze, then the other, before the rat 
made a decision (Figure 1B,C). Further analy-
ses revealed that on average, the decoded repre-
sentation was more forward of the animal than 
backward (implying that it is not a general degen-
eration of the representation into randomness), 
tended to represent one choice or the other rather 
than simultaneously, and tended to be more for-
ward early during sessions (when rats were still 
uncertain about the correct choice) compared 
to late (when performance was stable). While 
the precise relationship of such hippocampal 
“sweeps” to individual actions or decisions is 
presently unknown, the manner in which they 
occur (during pauses at the choice point, during 
early but not late learning) suggests an involve-
ment in decision making. Consistent with a role 
in dynamic evaluation lookahead, the hippoc-
ampus is required for behaviors requiring route 
planning in rats (Redish, 1999), and is implicated 
in imagination, self-projection, and constructive 
memory in humans (Buckner and Carroll, 2007; 
Hassabis et al., 2007). If hippocampal sweeps are 
the neural correlate of the generation of possibili-
ties in dynamic evaluation lookahead, where is 
the evaluation?

Following the dynamic evaluation lookahead 
model, any behavioral impact of sweeps (gen-
eration of possibilities) would depend on an 
assignment of a value signal (evaluation). The hip-
pocampal formation sends a functional projection 
to the ventral striatum (Groenewegen et al., 1987; 
Ito et al., 2008) and hippocampal network activity 
can modulate ventral striatal fi ring (Lansink et al., 
2009). Thus, van der Meer and Redish (2009a) 

of action–outcomes, and evaluation of such out-
comes which takes current motivational state and 
goals into account. Put simply, the rat presses the 
lever because it predicts a food outcome, and it 
currently wants the food. This approach is some-
times referred to as “model-based” because it 
relies on a forward model of the environment 
to generate outcomes; in principle, this mecha-
nism needs not be restricted to simply predicting 
the outcome of a lever press, but could include 
mental simulation or planning over extended 
and varied state spaces, such as spatial maps or 
Tower of London puzzles (Newell and Simon, 
1972; Shallice, 1982; Gilbert and Wilson, 2007). 
While a model of the environment is a necessary 
component of this approach, it is only half of the 
solution4 and a dynamic outcome evaluation step 
is also required. Thus, we will refer to it here as 
dynamic evaluation lookahead to emphasize the 
importance of the evaluation step; basic TD-RL, 
which relies on cached values in the absence of a 
forward model and dynamic evaluation, we term 
“model-free” (Daw et al., 2005).

POTENTIAL NEURAL CORRELATES 
OF DYNAMIC EVALUATION LOOKAHEAD
The fact that humans and animals respond 
appropriately to motivational shifts and other 
tasks thought to require outcome representa-
tions implies the presence of a controller such 
as dynamic evaluation lookahead. However, 
it appears a model-free controller is also used 
in some conditions. Which one is in control 
of behavior can depend on factors such as the 
amount of training and the reinforcement sched-
ule. For instance, with extended training behavior 
can become “habitual”, or resistant to reinforcer 
devaluation, which tends to be effective during 
early learning (Adams and Dickinson 1981; Daw 
et al. 2005, but see Colwill and Rescorla 1985). 
In devaluation in lever pressing tasks, as well as 
in other procedures, behavior that in principle 
requires only action values appears to depend on 
the dorsolateral striatum (Packard and McGaugh, 
1996; Yin et al., 2004). In contrast, as might be 
expected from the variety of world knowledge 
required for model-based methods, model-based 
control appears to be more domain-specifi c. For 
instance, the ability to plan a route to a par-
ticular place requires the hippocampus (Morris 
et al., 1982; Redish, 1999), while  sensitivity to 

Expectancies in ventral striatum

Forward model
In the RL domain, a model of the world 
that allows an agent to make predictions 
about the outcomes of its actions 
(forward in time or “lookahead”). 
For instance, knowing that pressing 
a certain lever leads to a “water” 
outcome or being able to plan a detour 
if the usual route is blocked, require 
forward models.

Dynamic evaluation lookahead
An evaluation of a future outcome 
that takes the agent’s current 
motivational state into account. 
A two-step process that requires 
prediction, then evaluation, of the 
outcome, mapping the prediction onto 
a value usable for decision making.

Model-free versus model-based RL
Model-free RL maintains a set of values 
for available actions indicating how 
successful each action was in the past. 
It has no concept of the actual outcome 
(such as food or water) of that action. 
In contrast, model-based RL takes 
advantage of such world knowledge, 
such that a choice which leads to water 
might be preferred when thirsty.

Decoding
Mapping neural activity to what it 
represents, such as in reconstructing 
the identity of a stimulus from spike 
train data or estimating the location 
of an animal based on the activity 
of place cells.

4Indeed, a half that has also been used separately: see for 
instance Dyna-Q (Sutton, 1990) which also uses a transition 
model to generate action outcomes, but these are simply 
evaluated based on cached values without taking the agent’s 
motivational state or goals into account.
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lets delivered following arrival at the correct maze 
arm) and then to ask if these neurons were also 
active at other points on the track. If so, this would 
indicate potential participation in covert outcome 
representations. Indeed, the fi rst observation of 
van der Meer and Redish (2009a) is that ventral 
striatal neurons, which responded to reward deliv-
ery, often fi red a small number of spikes at other 
locations on the track (Figure 2A). Based on the 
Johnson and Redish (2007) fi nding of sweeps at 
the choice point, the a priori  prediction was that if 

hypothesized that ventral striatum might play 
an evaluative role that connects sweeps (possible 
actions) to behavioral choice (actions). As a fi rst 
step toward testing this idea, van der Meer and 
Redish (2009a) recorded from ventral striatal 
neurons on the same Multiple-T task on which 
hippocampal sweeps had been observed (Johnson 
and Redish, 2007). The approach taken was to 
fi rst isolate cells apparently involved in encoding 
reward receipt or value (as defi ned by a signifi -
cant response to actual reward receipt: food pel-

van der Meer and Redish

Figure 1 | Representation of forward possibilities at 

the choice point of the Multiple-T maze. (A) The 
Multiple-T maze. Rats are trained to run laps on an 
elevated track for food reward. Only one side (right in this 
example) is rewarded in any given session, but which 
side is varied between sessions, such that rats start out 
uncertain about the correct choice. Over the fi rst 10 laps, 
choice performance increases rapidly, coincident with a 
tendency to pause at the fi nal choice point (van der Meer 
and Redish, 2009a). Over the course of a session, rats 
continue to refi ne their path, indicating learning beyond 
choice (Schmitzer-Torbert and Redish, 2002). 
(B) Decoding methods schematic. Neurons in the rat 
hippocampus tend to be active in specifi c places on the 
track: fi ve such “place fi elds” (colored circles) around the 
choice point [black box in (A)] are shown. By observing 

which cells are active at any given time, we can infer 
what location is being represented. If the rat is simply 
representing its current location, the red cell will be 
active. In contrast, when the rat pauses at the choice 
point, activity from the purple, green, and yellow cells 
might be observed in sequence. This indicates the rat is 
representing a location distant from its current location 
(the right maze arm in this example) – a key component 
of planning. (C) Sequence of place representations 
decoded from actual neurons as the rat (location 
indicated by the white o) pauses at the fi nal choice point. 
Red indicates high probability, blue indicates low 
probability. Note how even though the rat (o) stays 
stationary, the decoded probability sweeps down the left 
arm of the maze, then the right (arrows). Data from 
Johnson and Redish (2007).
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Thus, the covert representation of reward effect 
cannot be easily explained by reward predictive 
cue–responses, because the effect is specifi c to 
choice points, while other places (closer to the 
reward sites) are more predictive of reward, and 
because it is present early, but not late, in a con-
stant environment. Instead, this effect suggests 
ventral striatum may be involved in the evalua-
tion of internally generated possibilities during 
decision making. We explore this idea in the fol-
lowing section.

VENTRAL STRIATUM AS THE EVALUATOR 
IN DYNAMIC EVALUATION LOOKAHEAD
Actor–critic models have been especially rel-
evant to neuroscience because of the experi-
mentally observed mapping of its internal 
variables and processes onto dissociable brain 
areas. In  particular, a common suggestion is that 
the dorsolateral striatum implements something 
like the actor, while the ventral tegmental area 
(VTA) and the ventral striatum work together to 
implement something like the critic (Houk et al., 
1995; O’Doherty et al., 2004). While fMRI studies 

these non-local reward spikes are related to sweeps, 
they should occur preferentially at the choice 
point. Although the effect was subtle, this is what 
was found: compared to non-reward responsive 
cells, reward cells had a higher fi ring rate specifi -
cally at the choice point (Figure 2B). This implies 
that at the choice point, animals have access to 
internally generated reward expectancies, which 
could allow them to modify their actions in the 
absence of immediate reward.

Next, van der Meer and Redish (2009a) exam-
ined the time course of the reward activity at the 
choice point. Both behavioral evidence and the 
time course of sweeps suggest a change in  strategy 
on this Multiple-T task (Figure 1A), where, ini-
tially, behavior is under deliberative, dynamic 
evaluation lookahead control, but later it is less 
so. Consistent with this idea, late during sessions, 
when rats no longer paused at the fi nal choice 
point, there was no longer any difference between 
reward and non-reward cell fi ring at this choice 
point. It was also found that when the rat deviated 
from its normal path in an error, representation 
of reward was increased before turning around. 

Expectancies in ventral striatum

Figure 2 | Ventral striatal neurons show covert expectation of reward at a 

maze choice point. (A) Example of a reward-responsive neuron in ventral 
striatum that also fi res spikes at other points on the maze, notably at the choice 
point (black arrow). The top panel shows the rat’s path on the track (gray dots), 
with the black dots indicating the location of the rat when a spike was fi red. This 
neuron responded to reward delivery at the two feeder sites on the right side of 
the track, as indicated by the transient increase in fi ring rate at the time of 
reward delivery (peri-event time histograms, bottom panels). Data taken from a 
variation on the Multiple-T task published by van der Meer and Redish (2009a). 

(B) Averaged over all cells, reward-responsive (blue), but not 
non-reward-responsive neurons (red) show a slight but signifi cant increase in 
fi ring at the fi nal choice point (T4) during early laps (1–10). Replot of the data in 
Figure 5, van der Meer and Redish (2009a), obtained by normalizing each cell’s 
fi ring rate against the distribution of fi ring rates over the sequence of turns 
(from S to past T4) in laps 1–10; the original fi gure published by van der Meer 
and Redish (2009a) normalized against the fi ring rate distribution over the same 
segment of the track, but from all laps. The covert representation of reward 
effect at T4 was robust against this choice of normalization method.

Covert representation
Neural activity that is not directly 
attributable to external stimulation 
or resulting behavior, such as the 
consideration of possibilities during 
deliberation or the mental rotation 
of images.
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critic. Also, neurons which ramp up activity at the 
time or location of reward receipt are commonly 
found (Schultz et al. 1992; Lavoie and Mizumori 
1994; Miyazaki et al. 1998; Khamassi et al. 2008, 
see Figure 3 in van der Meer and Redish 2009a), 
matching what would be expected of a critic state 
value function.

In the strict actor–critic formulation, the critic 
only serves to train the actor; it is not required 

have reliably found value signals in the human 
ventral striatum (e.g., Preuschoff et al. 2006), the 
ventral striatum–critic connection has been less 
frequently made in recording studies (but see 
Cromwell and Schultz 2003; Takahashi et al. 2008). 
However, there are reports of ventral striatal fi ring 
patterns which are potentially consistent with a 
critic role. For instance, some ventral striatal neu-
rons respond to actual reward receipt, as well as 
to cues that predict them (Williams et al., 1993; 
Setlow et al., 2003; Roitman et al., 2005); this dual 
encoding of actual and predicted rewards is an 
important computational requirement of the 

van der Meer and Redish

Figure 3 | Expectancies generated by specifi c 

Pavlovian-instrumental transfer (PIT) and an internal 

forward model. (A) Schematic representation 
of a canonical specifi c PIT experiment (after Kruse 
et al. 1983). The animal is exposed to Pavlovian pairing 
of a light (conditioned stimulus or CS+) preceding food 
delivery (the unconditioned stimulus or US). Then, 
in a different environment, the animal learns to press 
lever 1 to obtain water and lever 2 to obtain food (the 
same food as in the pairing phase). Ideally these are 
calibrated such that the animal presses both equally.
A specifi c PIT effect is obtained if, during the critical 
testing phase, the effect of presenting the light CS+ 

is to bias the animal’s choice towards lever 2 (which 
previously resulted in food, as predicted by the light). 
Because this effect is specifi c to the food, it requires 
the animal to have an expectancy of the food when 
pressing lever 2. (B) Illustration of the distinction 
between outcome expectancies generated by an 
internal forward model (top) and presentation of the light 
CS+ (bottom). In the forward model case, the animal 
predicts the outcomes of the different available actions 
[which are then thought to be available for dynamic 
evaluation (V)]. In the Pavlovian case, the food outcome 
is activated by the learned association with the light cue, 
in the absence of a forward model.

5 Non-specifi c PIT is also observed and refers to a general 
change in response across available actions (Estes, 1948).
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reward-predictive cues” (Cardinal et al., 2002; 
Schoenbaum and Setlow, 2003) and congruent 
with an action-biasing role “from motivation to 
action” (Mogenson et al., 1980), but maintains 
a similar computational role across model-free 
and dynamic evaluation lookahead control and 
across experimental paradigms, by including not 
just the evaluation of actual outcomes but also 
that of imagined or potential outcomes. Such an 
extended role can reconcile the suggestion that 
ventral striatum serves as the critic in an imple-
mentation of a model-free RL algorithm with evi-
dence for its more direct involvement in decision 
making as demonstrated by effects, such as PIT.

A specifi c prediction of this extended role for 
ventral striatum is that there should be value-re-
lated neural activation during expectancy-based 
decisions, such as dynamic evaluation looka-
head and specifi c PIT. The data of van der Meer 
and Redish (2009a), as well as those of others 
(German and Fields, 2007) are consistent with 
this proposal. German and Fields (2007) found 
that in a morphine-conditioned place preference 
task in a three-chamber environment, ventral stri-
atal neurons that were selectively active in one 
of the chambers tended to be transiently active 
just before the rats initiated a journey toward 
that particular chamber. However, it is not known 
(in either study) whether these representations 
encode only a scalar value representation (good, 
bad) or refl ect a specifi c outcome (such as food 
or water); value manipulations could address this 
issue. Although the time course of reward cell 
 fi ring at the choice point reported by van der Meer 
and Redish (2009a) suggests a possible relation-
ship with the behavioral strategy used (dynamic 
evaluation lookahead versus model-free cached 
values), it would be useful to verify this with a 
behavioral intervention, such as devaluation. 
Finally, the temporal relationship between this 
putative ventral striatal evaluation signal and out-
come signals elsewhere is not known. For instance, 
the spatio-temporal distribution of the non-local 
reward cell activity in ventral striatum matched 
that of hippocampal “sweeps”; whether these 
effects coincide on the millisecond time scale of 
cognition is still an open question. Interestingly, 
there is evidence that hippocampal activity can 
selectively impact reward-related neurons in 
ventral striatum (Lansink et al., 2008). A pos-
sible mechanism for organizing relevant inputs 
to ventral striatum could be provided by gamma 

for a single static decision. This is consistent with 
a rat lesion study that found performance on a 
well-trained cued choice task was less affected 
by ventral striatal inactivation during choice, as 
compared to inactivation during training (Atallah 
et al., 2007). However, extensive evidence also 
suggests that ventral striatum is more directly 
involved in decision making. In particular, as 
reviewed in Cardinal et al. (2002), ventral stria-
tum is thought to support the behavioral impact 
of motivationally relevant cues in effects such as 
autoshaping, conditioned reinforcement, and 
Pavlovian-instrumental transfer (PIT; Kruse et al. 
1983; Colwill and Rescorla 1988; Corbit and Janak 
2007; Talmi et al. 2008). For instance, in specifi c 
PIT (Figure 3A), a Pavlovian  association is trig-
gered by the presentation of the conditioned stim-
ulus (CS, e.g., a tone) which has previously only 
been experienced in a different context than that 
where the choice is made. This association results 
in an expectancy containing certain properties 
of the unconditioned stimulus (US, e.g., food 
reward) which are suffi cient to bias the subject’s 
choice toward actions that result in that US. For 
instance, given a choice between food and water, 
presentation of a Pavlovian cue that (in a differ-
ent context) was paired with food will tend to 
bias the subject toward choosing food rather than 
water. Because this effect is reinforcer-specifi c5, 
there must be an expectancy involved that con-
tains outcome-specifi c properties, as in dynamic 
 evaluation  lookahead. However, in  specifi c PIT, 
this expectancy is not generated by an internal 
forward model as the outcome of a particu-
lar action, but rather by Pavlovian association 
(Figure 3B).

As ventral striatum appears to be required for 
specifi c PIT (Corbit et al., 2001; Cardinal et al., 
2002), this implies not only that ventral stria-
tum can infl uence individual decisions, but also 
that it can do so through an outcome-specifi c 
expectancy biasing the subject toward a particu-
lar action. Note the similarity between this proc-
ess and dynamic evaluation lookahead, where an 
internally generated representation of a particular 
outcome is involved in choice. Given that ventral 
striatal afferents, such as the hippocampus, can 
represent potential outcomes, we propose that 
ventral striatum evaluates such internally gener-
ated expectancies. In the actor–critic algorithm, 
the critic reports the value of cues or states that 
“actually occur”; the critic would also be well 
equipped to report values for “internally gener-
ated” cues or states, such as those resulting from 
model-based lookahead or Pavlovian associa-
tions. This is reminiscent of the idea that ventral 
striatum “mediates the motivational impact of 

Expectancies in ventral striatum

6Recall that in specifi c PIT, presentation of, e.g., a light CS that 
predicts a food CS, biases the animal toward taking the action 
that leads to food. Holland (2004) showed that this effect was 
not diminished by devaluing the food.
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that the representations of reward at the choice 
point reported by van der Meer and Redish 
(2009a) are unlikely to result from Pavlovian 
associations, but instead are likely to refl ect inter-
nally generated expectancies. However, little is 
known about the mechanism by which expect-
ancies become linked to particular actions; two 
recent reports fi nding action-specifi c value rep-
resentations in ventral striatum (Ito and Doya, 
2009; Roesch et al., 2009) can provide a basis for 
investigating this issue.

In summary, the results obtained by van der 
Meer and Redish (2009a) show that ventral striatal 
representations of reward can be activated not just 
by the delivery of actual reward, but also during 
decision making. The spatio-temporal specifi city 
of this effect suggests that covert representation 
of reward in ventral striatum may contribute to 
internally generated, dynamic evaluation looka-
head. A role for ventral striatum as evaluating, or 
translating to action, the motivational relevance 
of internally generated expectancies is a natural 
extension of its commonly proposed role as critic. 
Future work may address the content of its neural 
representations during procedures that seem to 
generate expectancies with different properties, 
such as reinforcer devaluation and PIT, as well as 
its relationship to individual choices and other 
outcome-specifi c signals in the brain.
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oscillations mediated by fast-spiking interneurons 
(Berke, 2009; van der Meer and Redish, 2009b); 
consistent with this idea, van der Meer and Redish 
(2009b) found that ∼80 Hz gamma oscillations, 
which are prominent in ventral striatal afferents 
including the hippocampus and frontal cortices, 
were increased specifi cally at the fi nal choice point 
during early learning.

There is, however, an intriguing challenge to 
the role of ventral striatum as the evaluator in 
dynamic evaluation lookahead: the way in which 
expectancies can infl uence choice behavior may 
depend on the way in which they are generated. 
In particular, behavior under the infl uence of 
specifi c PIT effects is not sensitive to devaluation 
of the US6, even though the procedure itself pro-
duces choice behavior requiring a representation 
of that US (Holland, 2004). This result suggests 
that while specifi c PIT and dynamic evaluation 
lookahead both depend on the generation of a 
specifi c outcome expectancy, the existence of such 
an expectancy alone is not suffi cient for dynamic 
evaluation in decision making. It raises the ques-
tion of how the different impacts of internally 
generated versus cued outcome expectancies are 
implemented on the neural level. In experimen-
tal settings used to identify outcome representa-
tions with recording techniques, different ways 
of generating expectancies can be diffi cult to 
distinguish because of the presence of reward-
predictive cues (e.g., Colwill and Rescorla 1988; 
Schoenbaum et al. 1998). To the extent that the 
static spatial setting of the Multiple-T maze con-
tains reward-predictive cues, they are not specifi c 
or maximally predictive at the choice point, such 
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