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Abstract
Cholesterol status and dietary fat alter several metabolic pathways reflected in lipoprotein profiles.
To assess plasma lipoprotein response and mechanisms by which cholesterol and dietary fat type
regulate expression of genes involved in lipoprotein metabolism we developed an experimental
model system using F1B hamsters fed diets (12 weeks) enriched in 10% (w/w) coconut, olive or
safflower oil with either high cholesterol (0.1%; cholesterol-supplemented) or low cholesterol
coupled with cholesterol lowering drugs 10-days prior to killing (0.01% cholesterol, 0.15%
lovastatin, 2% cholestyramine; cholesterol-depleted). Irrespective of dietary fat, cholesterol-
depletion, relative to supplementation, resulted in lower plasma non-high density lipoprotein (HDL)
and HDL cholesterol, and triglyceride concentrations (all P<0.05). In the liver, these differences were
associated with higher sterol regulatory element binding protein (SREBP)-2, low density lipoprotein
(LDL) receptor, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and 7-α
hydroxylase mRNA levels; higher scavenger receptor B1 and apolipoprotein (apo) A-I mRNA and
protein levels; and lower apo E protein levels and in intestine modestly lower sterol transporters ATP
binding cassette (ABC) A1, ABCG5 and ABCG8 mRNA levels. Irrespective of cholesterol status,
coconut oil, relative to olive and safflower oils, resulted in higher non-HDL cholesterol and
triglyceride concentrations (both P<0.05) and modestly higher SREBP-2 mRNA levels. These data
suggest that in F1B hamsters, differences in plasma lipoprotein profiles in response to cholesterol
depletion are associated with changes in the expression of genes involved in cholesterol metabolism,
whereas the effect of dietary fat type on gene expression was modest which limits the usefulness of
the experimental animal model.
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1. Introduction
Cholesterol homeostasis plays an important role in the regulation of whole body cholesterol
content by balancing absorption (intestinal and biliary) and synthesis (hepatic and extra-
hepatic), thereby preventing the net accumulation of cholesterol in circulation and tissues [1,
2]. Dietary fatty acid chain length and degree of saturation have been shown to alter several
metabolic pathways involving cholesterol throughout the body, the combined effect of which
is reflected in plasma lipid and lipoprotein profiles [3–5]. The availability of an intact and
unmodified animal model would allow for the simultaneous assessment of dietary fat type
induced changes in multiple tissue systems within the context of altered cholesterol
homeostasis and facilitate the development of a more complete understanding of the complex
set of factors known to regulate lipid and lipoprotein metabolism and ultimately atherosclerotic
lesion development.

To achieve this, we chose the hamster to develop an experimental animal model because it has
a low rate of endogenous cholesterol synthesis, and is one of the few rodents to have cholesteryl
ester transfer protein activity and possess tissue specific editing of apo B mRNA [6–9].
Hamsters, like humans, take up approximately 80% of LDL cholesterol via the LDL receptor
pathway [7]. The F1B strain was chosen because it had been reported to respond to saturated
fat and cholesterol by increasing the non-HDL fraction to a greater extent than the HDL fraction
[6,7,10–13]. Using the FIB hamster, whole body cholesterol status was altered by feeding either
a low cholesterol diet followed by acute cholesterol depletion induced by plasma cholesterol
lowering drugs (3-hydroxy-3-methyl-glutaryl [HMG]-CoA reductase inhibitor and bile acid
sequestrant), or a high cholesterol diet. This experimental approach has been used successfully
in multiple animal species to address other experimental questions [12,14,15].

The liver plays a major role in lipoprotein metabolism. Hepatic cholesterol levels are controlled
by a balance between cholesterol synthesis, uptake and secretion, primarily through the
activities of HMG-CoA reductase, low-density lipoprotein (LDL) receptor and 7α-
hydroxylase, respectively, and are important determinants of plasma lipoprotein profiles [6,
16,17]. Sterol regulatory element binding protein (SREBP)- 2, a member of the SREBP family
of transcription factors, regulates cholesterol synthesis and uptake through alterations in the
expression of HMG-CoA reductase and LDL receptor [1,18]. A sterol sensor in the
endoplasmic reticulum modulates SREBP-2 transcriptional activity in response to changes in
intracellular free cholesterol levels [1]. Fatty acid chain length and degree of saturation
indirectly regulate SREBP-2 transcriptional activity by altering the free cholesterol regulatory
pool [19]. The rate of acyl-CoA cholesterol acyl transferase (ACAT) activity alters intracellular
free cholesterol levels and formation of cholesteryl ester for hepatic intracellular de novo
lipoprotein synthesis [20]. The cell surface receptors ATP-binding cassette transporter (ABC)
A1 and scavenger receptor class B type 1 (SR-B1) activities are determinants of hepatic
substrate availability and circulating lipoproteins [21–24]. Additional factors regulating
hepatic lipoprotein synthesis include the availability of triglyceride [6,25,26], apolipoprotein
(apo) B-100 and apo E [27,28], and microsomal triglyceride transfer protein (MTP) activity
[29–31].

Intestinal cholesterol absorption also modulates lipoprotein metabolism, primarily through a
family of ABC transporters, ABCA1, ABGG5 and ABCG8 [32]. These transporters control
the trafficking of intestinal sterol balance by facilitating the efflux of sterols from the apical
(ABCG5/8) [33] or basolateral (ABCA1) [34] membrane of the enterocyte. Niemann-Pick C1
Like1 (NPC1L1) facilitates intestinal sterol uptake on the apical side of the enterocyte [35].

Dietary fatty acid type and cholesterol have been shown to modulate the level and activity of
transcription factors, which regulates the expression of genes involved in cholesterol and
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lipoprotein metabolism [3]. PUFA and cholesterol metabolites are the ligands for transcription
factors PPAR, LXR and FXR, which play a role in regulating plasma lipoprotein profiles [3,
36–38]. Dietary fatty acids and cholesterol regulate SREBP activity through altering levels and
cellular location of the transcription factor [1,19,39,40].

To assess the effect of fatty acid chain length and degree of saturation, both cholesterol-
supplemented and cholesterol-depleted F1B hamsters were fed diets enriched in fats high in
saturated, monounsaturated or polyunsaturated fatty acids. Using this approach, our aim was
to simultaneously assess the mechanisms by which whole body cholesterol status and dietary
fat type regulate the expression of genes involved in hepatic and intestinal cholesterol and
lipoprotein metabolism.

2. Materials and methods
2.1. Animals and diets

Ninety-six 8 week-old male F1B hamsters (BioBreeders, Watertown, MA) were divided into
six diet groups on the basis of body weight and housed in stainless steel suspended cages (4
hamsters /cage) with a reverse 12:12 light: dark cycle. Hamsters were given free access to
LM-485 mouse/rat diet (Harlan-Teklad, Madison, WI) and water during a two-week
acclimation period. Thereafter, the hamsters were switched to ad libitum semi-purified diets
containing 10% (w/w) coconut oil (saturated fatty acids), olive oil (monounsaturated fatty
acids) or safflower oil (n-6 polyunsaturated fatty acids), in combination with 0.1% (w/w)
cholesterol or 0.01% (w/w) cholesterol for 12 weeks (Tables 1 and Table 2, diet composition
and diet fatty acid profile, respectively). The analytical data were consistent with the intended
diet composition. To determine the effect of acute whole body cholesterol depletion on gene
expression and protein synthesis, during the last ten days of the dietary period, 0.15% lovastatin
(Merck & Co., Inc. Rahway, NJ) and 2% cholestyramine (Bristol-Myers Squibb Co., Princeton,
NJ) were added to the low cholesterol diets. Hence, the 0.01% cholesterol plus lipid lowering
drug diets and 0.1% cholesterol were designed to deplete (−C) and supplement (+C)
cholesterol, respectively, in the animals with the intent to alter cholesterol homeostasis,
(coconut −C, olive −C, safflower −C, coconut +C, olive +C and safflower +C).

After 12 weeks hamsters were fasted for 16 hours and killed by CO2 inhalation. Livers were
removed, rinsed with PBS and divided into segments. A portion was immediately used for
nuclear and membrane protein extraction and the remaining segments were frozen in liquid
nitrogen and stored at −80°C until analysis. The small intestine was removed, flushed with
PBS and the jejunum placed in ‘RNA later’ (Qiagen, Valencia, CA) and stored at −80°C. The
animal protocol was approved by the Institutional Animal Care and Use Committee of the Jean
Mayer Human Nutrition Research on Aging, Tufts University.

2.2. Plasma lipid and lipoprotein analysis
Retro-orbital blood was collected into EDTA-coated tubes from fasted hamsters (16 hours)
under isoflurane anesthesia at 0, 6 and 12-week time points. Plasma was separated from red
blood cells by centrifugation at 1500 × g for 20 minutes at 4°C. Plasma total cholesterol, high
density lipoprotein (HDL) cholesterol and triglyceride concentrations were determined on a
Cobas Mira automated analyzer using enzymatic reagents (Roche Diagnostics, Indianapolis,
IN). Non-HDL cholesterol was calculated as the difference between total cholesterol and HDL
cholesterol. Additionally, 4 plasma pools per diet group were created by combing plasma from
4 animals to be used for fast protein liquid chromatography (FPLC) analysis using two
Superose 6 columns (Amersham Biosciences, Piscataway, NJ) as previously described [41,
42]. The total cholesterol concentration of the FPLC fractions was measured using enzymatic
reagents (Wako, Richmond, VA).
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2.3. Liver lipid composition
Liver lipids were extracted [43] and total cholesterol, free cholesterol and triglyceride were
determined using enzymatic reagents (Wako and Roche Diagnostics) [44]. Esterified
cholesterol was calculated as the difference between total and free cholesterol. Delipidated
liver tissue was digested in 1N NaOH for the determination of protein using the bicinchoninic
acid (BCA) assay (Pierce Inc., Rockford, IL).

2.4. Fatty acid profiles
Red blood cell membranes were prepared by washing the cells three times with 0.9% NaCl
(pH 7.4). Fatty acid profiles of red blood cell membranes and the experimental diets were
determined by gas chromatography as previously described [45]. Peaks of interest were
identified by comparison with authentic standards (Nu-Chek Prep, Inc. Elysian, MN) and
expressed as mol% of total fatty acids.

2.5. Cholesterol content of experimental diets
Lipid was extracted from freeze-dried aliquots of diet overnight and total cholesterol was
determined by gas chromatography (GC) as previously described [46].

2.6. Quantitative real time PCR
Total RNA was extracted from a portion of liver and small intestine (jejunum) using the Qiagen
RNeasy Mini kit. Added to the protocol was an on column DNase digestion step to eliminate
contamination with genomic DNA. RNA was reverse transcribed using SuperScript II reverse
transcriptase with random hexamers according to the manufacturer’s instructions (Invitrogen,
Carlsbad, CA). Primers for ACAT-2, apo A-I, apo B-100, beta-actin, 7α-hydroxylase, HMG-
CoA reductase, LDL receptor, MTP, PPAR alpha and SREBP-2 were designed using Primer
Express software (Applied BioSystems, Foster City, CA), and primer specificity and
amplification efficiency were verified before use. Real time PCR was conducted in an Applied
Biosystems 7300 Sequence detection system using SYBR green reagents (Applied
BioSystems) with the appropriate primers (Table 3). Reaction conditions were 95°C for 10
minutes, 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. Values were normalized
using beta-actin as an endogenous control.

2.7. Immunoblotting analysis
Freshly excised liver tissue from 2 hamsters was pooled, and nuclear and membrane proteins
were extracted as described [15]. All buffers contained 24 µg/mL pefabloc, 5 µg/mL pepstatin
A, 10 µg/mL leupeptin, 2 µg/mL aprotinin and 50 µg/mL N-acetylleucylnorleucinal (reagents
from Roche Diagnostics). Liver cell lysates were prepared by homogenizing liver tissue in 5
volumes of buffer [25 mM HEPES (pH 7.5), 1.5 mM MgCl2, 300 mM NaCl, 5 mM DTT, 1
mM EDTA, 10% (v/v) glycerol, 0.5% (v/v) Triton X-100, 5 µg/mL Na3VO4, 5 µg/mL NaF
(reagents from Sigma, St. Louis, MO) and protease inhibitors (Roche Diagnostics)] followed
by 1 hour of agitation at 4°C. Homogenates were then centrifuged and supernatants collected.
Protein concentration in the nuclear and membrane fractions, and cell lysate were determined
using the BCA assay.

Proteins from nuclear and membrane fractions (50 µg) and cell lysates (40µg) were separated
by SDS-PAGE and transferred to PVDF membranes using a wet transfer system. Proteins were
detected as previously described [48]. Relative protein levels were normalized to the density
of beta actin.
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2.8. Statistical analysis
Prior to statistical analysis, data were checked for normality and appropriate transformations
performed when necessary. Differences between cholesterol-supplemented (+C) and
cholesterol-depleted (−C) hamsters within a dietary fat group were assessed using an unpaired
Students t-test and among dietary fat groups using ANOVA. Tukey’s honestly significant
difference test was used for post hoc analysis. Differences were considered significant at P ≤
0.05. All statistical analyses were performed using SAS (Version 9.1, SAS Institute, Cary,
NC).

3. Results
3.1. Plasma lipid and lipoprotein profiles

At baseline, there were no significant differences in the plasma lipid and lipoprotein
concentrations among the six diet groups (Supplementary Table 1). By design, after 12 weeks
of diet treatment, the cholesterol-depleted hamsters had significantly lower plasma total, non-
HDL and HDL cholesterol, and triglyceride concentrations than cholesterol-supplemented
hamsters, regardless of dietary fat type (Figure 1). Plasma FPLC patterns indicated that in the
cholesterol-depleted hamsters the majority of cholesterol was carried on the HDL fraction,
whereas, in the cholesterol-supplemented hamsters the majority of cholesterol was distributed
between the VLDL and HDL fractions, again regardless of dietary fat type (Figure 2).
Independent of cholesterol status, hamsters fed the coconut oil diets had significantly higher
total and non-HDL cholesterol concentrations compared to hamsters fed olive and safflower
oil diets.

3.2. Red blood cell fatty acid profile and hepatic lipid composition
Red blood cell membrane fatty acid profiles reflected the dietary fatty type (Supplementary
Table 2). Differences among individual fatty acids on the basis of cholesterol status were
modest and unlikely to be of biological significance. Hepatic liver weight, total cholesterol and
esterified cholesterol levels were significantly lower in cholesterol-depleted relative to
cholesterol-supplemented hamsters, among all dietary fat groups (Table 4). Interestingly,
hepatic triglyceride levels were 2 to 2.8-fold higher in cholesterol-depleted relative to
cholesterol-supplemented hamsters. Of note, in the cholesterol-supplemented, but not
cholesterol-deleted hamsters hepatic esterified cholesterol levels were highest in the olive oil,
lowest in the coconut oil and intermediate in the safflower oil fed animals, with an almost 2-
fold range of differences among dietary fat type groups.

3.3. Hepatic and intestinal mRNA levels
Regardless of dietary fat type, relative to cholesterol-supplemented hamsters, acute whole body
cholesterol-depletion resulted in an up-regulation of hepatic mRNA levels of genes involved
in cholesterol biosynthesis (HMG-CoA reductase, 34 to 65-fold), uptake (LDL receptor, 4.1
to 4.4-fold; SR-B1, 1.6 to 1.8-fold), metabolism (7α-hydroxylase, 7.3 to11.6-fold), and plasma
transport (apo A-I, 1.7-fold) (Figure 3A, B). Hepatic SREBP-2 mRNA levels were significantly
higher (6 to 7.3-fold) in cholesterol-depleted relative to cholesterol-supplemented hamsters,
consistent with its role in transcriptional regulation of the HMG-CoA reductase and LDL
receptor genes. Cholesterol-depleted hamsters had modestly lower intestinal mRNA levels of
the sterol transporters ABCA1 (1.5 to 2.6-fold), ABCG5 (1.4 to 2-fold) and ABCG8 (1.3 to
1.8-fold) relative to cholesterol-supplemented hamsters for all dietary fat types (Figure 3C).

Consistent with this modest response of plasma lipid and lipoprotein concentrations to dietary
fat type, there were only modest effects on message levels for the genes of interest. Cholesterol-
supplemented hamsters fed coconut oil had significantly higher hepatic mRNA levels of
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hepatic SREBP-2 than hamsters fed olive or safflower oil (1.5 and 1.2-fold, respectively)
(Figure 3A). In contrast, cholesterol-depleted hamsters fed coconut oil had significantly higher
hepatic mRNA levels of HMG-CoA reductase (2.2-fold) and lower levels of SR-B1 (1.4-fold)
and ACAT-2 (1.3-fold) than hamsters fed safflower oil (Figure 3A, B). Cholesterol-depleted
hamsters fed coconut oil had modestly, albeit, significantly higher levels of SREBP-2 (1.4-
fold) than both cholesterol-depleted hamsters fed olive and safflower oil. Additionally,
cholesterol-depleted hamsters fed safflower oil had modest but significantly higher levels of
PPAR alpha (1.7-fold) than cholesterol-depleted hamsters fed safflower oil. Intestinal NPC1L1
mRNA levels were similar on the basis of either cholesterol status or dietary fat type. Dietary
fat type had no significant effect on intestinal mRNA levels of ABCA1, ABCG5 or ABCG8
(Figure 3C).

3.4. Hepatic protein levels
Similar to the pattern observed for mRNA expression, differences in protein expression were
primarily observed in response to cholesterol status rather than dietary fat type. Relative to
cholesterol-supplemented hamsters, cholesterol-depleted hamsters had significantly higher
hepatic levels of SR-B1 (2 to 5-fold) and lower levels of apo E (1.7 to 2-fold) (Figure 4A, B
and Supplementary Figure 1). Cholesterol status had no significant effect on hepatic SREBP-2,
PPAR alpha, MTP, ACAT-2, apo B-100 or LDL receptor protein levels. Despite modest
differences in both plasma lipid and lipoprotein concentrations, and hepatic lipid levels, in the
animal model used for this work there was no significant effect of dietary fat type on hepatic
SREBP-2, PPAR alpha, LDL receptor, SR-B1, apo A-I, apo B-100, apo E, MTP or ACAT-2
protein levels (Figure 4A, B).

Discussion
This work was designed to develop a novel experimental animal model for use to determine
in multiple tissue systems, simultaneously, the mechanism(s) regulating circulating lipid and
lipoprotein concentrations in response to changes in dietary fat type within the context of altered
cholesterol status. The results indicate that FIB hamsters fed semi-purified diets enriched with
fats high in saturated, monounsaturated and polyunsaturated fatty acids were only modestly
responsive to dietary fat type, despite dramatic differences in cholesterol status induced by a
high cholesterol diet or low cholesterol diet plus acute treatment with cholesterol lowering
drugs. Nonetheless, a number of findings shed light on the original intent of the work.

Part of the approach used to deplete whole body cholesterol, acute treatment with
cholestyramine, increased hepatic cholesterol demand for use in de novo bile acid synthesis.
This was coupled with a drug that inhibited endogenous cholesterol synthesis. Elevated SR-
B1 mRNA and protein levels facilitate the hepatic uptake of cholesterol from HDL, the
preferred cholesterol source for bile acid biosynthesis, [49,50]. Consistent with this sequence,
we observed higher 7α-hydroxylase mRNA levels and lower circulating HDL cholesterol
concentrations in the cholesterol-depleted hamsters. Both SR-B1 and 7α-hydroxylase are
regulated by bile acids via pathways involving FXR, providing additional support for the
coordinate regulation of SR-B1 activity and bile acid metabolism [51,52]. In contrast, hepatic
MTP and ABCA1, also important regulators of hepatic intracellular cholesterol and lipoprotein
metabolism, remained unaffected by cholesterol status of the hamsters.

Acute cholesterol depletion, compared to cholesterol supplementation, was also associated
with higher hepatic apo A-I mRNA levels, yet lower plasma HDL cholesterol concentrations.
Consistent with higher SR-B1 expression in the cholesterol-depleted hamsters, these data
suggest an up-regulation of reverse cholesterol transport. Two-fold higher levels of hepatic
apo A-I mRNA induced by simvastatin or cholestryamine has been reported in rats without a
concomitant increase in plasma apo A-I concentrations [53]. Feeding bile acids to human apo
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A-I transgenic mice has also been shown to inhibit apo A-I expression via a pathway involving
FXR [54]. Previous studies in F1B hamsters have shown an increase in HMG-CoA reductase
activity in response to bile acid sequestrants and this was associated with a decrease in hepatic
cholesterol concentrations and increase in fecal bile acid excretion [55,56]. Additionally,
treatment with lovastatin has been shown to result in an up-regulation of HMG-CoA reductase
mRNA levels in the F1B hamster [57].

Intestinal cholesterol absorption is one factor that modulates plasma cholesterol concentrations
and this mechanism has been exploited as a therapeutic target [33]. Intestinal ABCA1, ABCG5
and ABCG8 mRNA levels were significantly higher in cholesterol-supplemented compared to
cholesterol-depleted hamsters, whereas NPC1L1 was unaffected. These data are consistent
with that observed in other hamster studies [47]. ABCA1, ABCG5 and ABCG8 are regulated
by the nuclear receptor LXR for which oxysterols are ligands [47,58–60]. Our work suggests
that in vivo changes in hepatic cholesterol synthesis, uptake and secretion induced by
cholesterol status were more important modifiers of lipoprotein metabolism than changes in
expression of intestinal cholesterol transporters.

Hepatic cholesterol levels are tightly regulated by the transcription factor SREBP-2. Consistent
with this role, cholesterol-depletion resulted in higher SREBP-2 mRNA levels relative to
cholesterol-supplementation. This in turn was associated with higher mRNA levels of two
genes regulated by SREBP-2, HMG Co-A reductase and the LDL receptor [1]. A similar
response has been reported in hamsters fed lovastatin and cholestryamine, and is consistent
with the cholesterol-depleted model used in our study [15,39]. Nonetheless, there was no
significant effect of whole body cholesterol status on nuclear SREBP-2 protein levels. This
discrepancy may be attributable to the prandial state of the hamsters [61,62]. The ratio of
nuclear to membrane SREBP-2 is indicative of proteolytic regulation [39]. However, because
we were unable to detect membrane SREBP-2, we were unable to address this issue further.

Secondary to statin treatment higher hepatic HMG-CoA reductase mRNA levels were observed
in the cholesterol-depleted, relative to cholesterol-supplemented hamsters, as has been reported
[63,64]. This is consistent with the transcriptional regulation of HMG-CoA reductase observed
in hamsters in response to alterations in cholesterol homeostasis [65]. The modestly higher
HMG-CoA reductase mRNA levels in cholesterol-depleted hamsters fed coconut oil, relative
to olive or safflower oil is likely the result of increased SREBP-2 transcription. These results
suggest that in this animal model regulation of cholesterol synthesis is primarily at the level
of transcription and enzyme activity [66]. Nonetheless, we cannot rule out the possibility that
other pleiotropic effects on statin treatment influenced the outcomes observed.

The LDL receptor is the main route of LDL cholesterol uptake in both hamsters and humans,
thus, is a major determinant of plasma non-HDL cholesterol concentrations [6]. A 4-fold up-
regulation of LDL receptor mRNA levels, but not protein levels, was observed in cholesterol-
depleted, relative to the cholesterol-supplemented hamsters. These differences were
accompanied by lower plasma non-HDL cholesterol concentrations. A similar observation of
increased LDL receptor mRNA levels and no difference in protein levels in response to
cholesterol-depletion has been reported in rats [63,65]. These data suggest an increased rate of
receptor recycling [65].

The hamsters responded to different dietary fat types with modest alterations in circulating
lipid and lipoprotein concentrations, and gene expression. Regardless of cholesterol status,
coconut oil fed hamsters had higher SREBP-2 mRNA levels than olive or safflower oil fed
hamsters. Intracellular sterol levels regulate SREBP-2 expression and activity. Lower hepatic
free cholesterol levels in hamsters fed coconut oil, relative to olive or safflower oil, may have
been a reflection of these higher SREBP-2 mRNA levels [1]. This observation is consistent
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with the proposed mechanism by which saturated fatty acids increases SREBP-2 expression
[19]. PPAR gamma coactivator-1β, an activator of the SREBP family of transcription factors,
is stimulated by saturated fatty acids and may have contributed to higher SREBP-2 mRNA
levels observed in the coconut oil fed hamsters [67].

Interestingly, cholesterol-supplemented hamsters fed the olive oil enriched diet had the highest
concentrations of hepatic esterified cholesterol levels. ACAT-2 mRNA and protein levels were
not altered by dietary fat type or cholesterol status. The preference of ACAT-2 for oleoyl CoA
may account for this observation [16,68–70]. These data are particularly striking in light of
higher levels of hepatic esterified cholesterol, mainly cholesteryl oleate, that have been
observed in African green monkeys and apoB-100 transgenic, LDLr−/− mice fed
monounsaturated fatty acid enriched, relative to saturated fatty acids or n-6 polyunsaturated
fatty acid enriched diets [70,71] and confirm the unanticipated effect of a dietary fat high in
monounsaturated fatty acids.

Hepatic triglyceride levels were markedly higher and plasma triglyceride concentrations were
lower in the cholesterol-depleted hamsters compared to cholesterol-supplemented hamsters.
This unique finding in this animal model may be secondary due to insufficient hepatic
cholesterol, apo E or apo B-100 levels to support VLDL formation and secretion [26,28,72–
75].

Coconut oil was used as the experimental saturated fat, rather than butter, a more common fat
the diet of humans, because it has been used extensively in prior hamster studies [76,77]. In
the hamster, coconut oil has been reported to predominantly increase non-HDL cholesterol
concentration, as was observed in the current study, and also has been demonstrated to induce
a cytokine response [78–81]. Nonetheless, we observed only a modest response to changing
the major dietary fat type with respect to plasma lipid and lipoprotein concentrations, less than
anticipated [66,82–85].

In conclusion, the experimental hamster model system developed as part of this study to assess
simultaneously in multiple tissue systems the mechanism(s) for differences in response to
dietary fat type on circulating lipid and lipoprotein concentrations was not ideal because the
hamsters responded only modestly to dietary fat type regardless of dramatic differences in
cholesterol status. Nonetheless, this work demonstrated that lower plasma non-HDL
cholesterol concentrations in cholesterol-depleted, relative to cholesterol-supplemented
hamsters was in part accounted for by increased expression of genes associated with hepatic
cholesterol uptake (LDL receptor), metabolism (7α-hydroxylase) and reverse cholesterol
transport (SR-B1 and apo A-I). Lower hepatic apo E protein and cholesterol levels in
cholesterol-depleted hamsters was associated with higher hepatic triglyceride levels, and lower
plasma non-HDL cholesterol and triglyceride concentrations suggesting lower rates of de novo
VLDL synthesis. Nonetheless, on the basis of the response to dietary fat type the experimental
animal model developed, in general, has limited value to study diet induced atherosclerosis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Effect of cholesterol status and dietary fat type on fasting plasma lipid and lipoprotein
cholesterol concentrations. Hamsters were fed diets enriched with coconut, olive or safflower
oil and 0.1% cholesterol (cholesterol-supplemented, +C) or 0.01% cholesterol for 12-weeks
plus 0.15% lovastatin and 2% cholestyramine one week prior to killing (cholesterol-depleted,
−C). Data represent means ± SEM, n = 15–16 animals per group. Appropriate transformations
of the data (log HDL cholesterol; square root total cholesterol, non-HDL cholesterol; inverse
triglyceride) were made before statistical analysis. Bars with different letters (lowercase for
cholesterol-depleted, uppercase for cholesterol-supplemented) are significantly different,
P≤0.05. Asterisks indicate significant differences between cholesterol-depleted and
cholesterol-supplemented hamsters within a dietary fat treatment, P≤0.05.

Lecker et al. Page 14

Metabolism. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Effect of cholesterol status and dietary fat type on plasma FPLC cholesterol profiles. Hamsters
were fed diets enriched with coconut, olive or safflower oil and 0.1% cholesterol (cholesterol-
supplemented, +C) (A) or 0.01% cholesterol for 12-weeks plus 0.15% lovastatin and 2%
cholestyramine one week prior to killing (cholesterol-depleted, −C) (B). Cholesterol
concentrations were measured in odd numbered fractions using standard enzymatic reagents.
Data represent the mean of 4 plasma pools of 3 hamsters per pool.
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Figure 3.
Hepatic and small intestinal gene expression in response to alterations in cholesterol
homeostasis and dietary fat type. Real time PCR was used to measure gene expression in the
liver (A and B) and small intestine (C). Values are expressed as mean ± SEM, n=14–16 animals
per group. Appropriate transformations of the data (log SREBP-2, CYP7A1, MTP, apo B-100,
ABCA1, HMG-CoA R [HMG-CoA reductase]; square root SR-B1, SREBP-1c, apo A-I) were
made before statistical analysis. Bars with different letters (lowercase for cholesterol-depleted,
−C; uppercase for cholesterol-supplemented, +C) are significantly different, P≤0.05. Asterisks
indicate significant differences between +C and −C hamsters within a dietary fat treatment,
P≤0.05.
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Figure 4.
Hepatic protein expression in response to alterations in cholesterol homeostasis and dietary fat
type. LDL receptor was detected in the membrane fraction, SREBP-2 was detected in the
nuclear fraction, and SRB1, ACAT-2, MTP, apo B-100, apo A-I, and apo E were detected in
the cell lysate. Values are expressed as mean ± SEM, n = 14–16 animals per group. Appropriate
transformations of the data (log apo A-I, apo E, LDL receptor, SREBP-1, SR-B1; square root
apo B-100) were made before statistical analysis. Bars with different letters (lowercase for
cholesterol-depleted, −C; uppercase for cholesterol-supplemented, +C) are significantly
different, P≤0.05. Asterisks indicate significant differences between −C and +C hamsters
within a dietary fat group, P≤0.05.
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Table 1

Composition of experimental diets

0.01% (w/w) 0.1% (w/w)

−C diet† +C diet

Ingredient

g/kg diet

Casein 204 203

L-Methionine 4 4

Maltodextrin 102 102

Cornstarch 281 281

Sucrose 129 129

Cellulose 122 122

Coconut, olive, or safflower oil 100 100

Soybean oil 20 20

AIN93G mineral mix 28 28

AIN93 vitamin mix 8.0 8.0

Choline bitartrate 2.0 2.0

Cholesterol 0.1 1

Tert-butylhydroquinone 0.02 0.02

Semi-purified diets were prepared by Research Diets, New Brunswick, NJ.

†
Lovastatin (0.15% w/w) and cholestyramine (2.0% w/w) were added to the 0.01% (w/w) cholesterol diet the last ten days of treatment.
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Table 2

Fatty acid and cholesterol composition of the diets

Coconut oil Olive oil Safflower oil

Percent of total fatty acids

Total SFA

−C 78.3 19.4 14.4

+C 78.5 19.4 14.4

12:0

−C 36.8 0.04 0.04

+C 37.2 0.04 0.04

14:0

−C 15.9 0.1 0.2

+C 16.5 0.1 0.2

16:0

−C 11.2 13.1 8.5

+C 11.6 13.1 8.6

18:0

−C 6.7 6.1 5.5

+C 7.1 6.1 5.4

Total MUFA

−C 10.1 62.4 16.8

+C 10.1 62.4 16.8

18:1

−C 10.1 61.8 16.7

+C 10.1 61.8 16.8

Total PUFA

−C 11.6 18.3 68.8

+C 11.4 18.3 68.7

18:2n-6

−C 9.9 16.1 66.9

+C 9.7 16.1 66.8

18:3n-3

−C 1.1 1.5 1.1

+C 0.9 1.5 1.1

20:5n-3

−C 0.6 0.7 0.7

+C 0.8 0.7 0.8

Cholesterol % w/w

−C 0.01 0.01 0.01

+C 0.08 0.08 0.08

Values are averages of duplicate measurements of diet samples.

SFA=saturated fatty acids, MUFA=monounsaturated fatty acids, PUFA=polyunsaturated fatty acids.
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Table 3

Primers for quantitative real time PCR

Gene Forward Primer Reverse Primer Accession
No./

Reference

ABCA1† ATAGCAGGCTCCAACCCTGAC GGTACTGAAGCATGTTTCGATGTT [47]

ABCG5† TGATTGGCAGCTATAATTTTGGG GTTGGGCTGCGATGGAAA [47]

ABCG8† TGCTGGCCATCATAGGGAG TCCTGATTTCATCTTGCCACC [47]

NPC1L1† CCTGACCTTTATAGAACTCACCACAGA GGGCCAAAATGCTCGTCAT [47]

SREBP-2‡ GCAAGGTGTTCCTGCATGAA TGGTGTTCTGACTGGTACGCC GU12330

LDL receptor‡ GCAGTGTTTCTGTGGCTGACAC GCCATGCACAGGGTCCA M94387

HMG-Co A L00173

GAGCTACATTTGTGCTTGGCG TTCATTAGGCCGAGGCTCAC

reductase‡

SR-B1‡ AAGCCTGCAGGTCTATGAAGC AGAAACCTTCATTGGGTGGGTA [48]

ACAT-T§ GGTGGAATTATGTGGCCAAGA CATGTTGGCAAAGACAGGGAC NM_153728

7α- L04690

CACTCTGCACCTTGAGGATGG GGGTCTGGGTAGATTGCAGG

hydroxylase‡

MTP‡ ACATGCTGACCTTTGTGCGA ACGGTCATAATTGTGGGCAAC U14995

Apo A-I‡ GGCGGGAGATGAACAAGGA GGCGGTAAAGAGCCACTTCC AF046919

Apo B-100‡ TGATTATCTGAATGCATCTGACTGG TCCTTGGCATTGGCTACTTGT AF176576

Beta actin‡ TGCTGTCCCTGTATGCCTCTG AGGGAGAGCGTAGCCCTCAT AJ312092

PPAR alpha‡ GGCCAATGGCATCCAAAATA CCTTGGCGAATTCTGTGAGC AJ555631

†
Mouse sequence

‡
Hamster sequence

§
Rat sequence
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Table 4

Effects of cholesterol status and dietary fat type on liver lipid composition

Coconut oil Olive oil Safflower oil

grams

Liver weight

−C 5.1 ± 0.2* 5.1 ± 0.1* 4.9 ± 0.1*

+C 7.3 ± 0.2 6.7 ± 0.3 7.1 ± 0.2

µg/mg protein

Total cholesterol

−C 23.8 ± 1.1* 27.4 ± 1.6* 24.3 ± 0.7*

+C 173.5 ± 10.0C 326.3 ± 15.4A 265.0 ± 24.4B

Esterified cholesterol

−C 1.8 ± 0.2* 3.7 ± 1.4* 2.6 ± 0.3*

+C 142.4 ± 8.9C 267.0 ± 15.8A 221.2 ± 24.2B

Free cholesterol†

−C 21.8 ± 1.3* 22.8 ± 1.9* 21.8 ± 0.6*

+C 33.3 ± 2.1B 62.3 ± 6.5A 43.8 ± 2.8B

Triglyceride

−C 126.3 ± 14.3* 140.9 ± 8.6* 107.5 ± 7.3*

+C 45.0 ± 3.5B 68.8 ± 6.4A 46.1 ± 3.1B

Values are expressed as means ± SEM, n=15–16 animals per group.

Means in a row without common letters (lowercase for −C [cholesterol-depleted], uppercase for +C [cholesterol-supplemented) are significantly
different, P≤0.05. Asterisks indicate significant differences between −C and +C hamsters within a dietary fat group, P≤0.05.

†
Data were log-transformed prior to statistical analysis.
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