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Neuronal oscillations appear throughout the nervous system, in structures as diverse as the 
cerebral cortex, hippocampus, subcortical nuclei and sense organs. Whether neural rhythms 
contribute to normal function, are merely epiphenomena, or even interfere with physiological 
processing are topics of vigorous debate. Sensory pathways are ideal for investigation of 
oscillatory activity because their inputs can be defined. Thus, we will focus on sensory systems 
as we ask how neural oscillations arise and how they might encode information about the 
stimulus. We will highlight recent work in the early visual pathway that shows how oscillations 
can multiplex different types of signals to increase the amount of information that spike trains 
encode and transmit. Last, we will describe oscillation-based models of visual processing and 
explore how they might guide further research.
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Neural oscillations in early  
sensory systems
Oscillatory neural activity has been observed 
in the early stages of virtually every sensory 
system of animals, including insects, frogs 
and primates. For example, periodic activ-
ity has been recorded from olfactory organs 
(Bressler and Freeman, 1980; Laurent, 2002) 
as well as somatosensory (Ahissar and Vaadia, 
1990; Ahissar et al., 2000), visual (Laufer and 
Verzeano, 1967; Neuenschwander and Singer, 
1996; Arai et al., 2004) and auditory pathways 
(Langner, 1992; Eguiluz et al., 2000; Roberts and 
Rutherford, 2008).

Detecting neural oscillations
The strength of neural oscillations can be 
assessed in the time and frequency domains. In 
the time domain, oscillations in spike trains are 
often characterized by means of periodic peaks 
in the autocorrelogram (Figures 1A,B); in the 
frequency domain, they are defined on the basis 
of peaks in the power spectrum (Figures 1C,D). 

However, the autocorrelograms are subject to 
confounds caused by the refractory period and 
spectral peaks often fail to reveal weak rhythms. A 
new method, the oscillation score (Muresan et al., 
2008) reduces these problems. It combines analy-
ses in the time and frequency domains to indicate 
the strength of oscillations as one dimensionless 
number. Also, oscillations shared by local groups 
of cells can be detected in population responses, 
such as the local field potential (LFP) or in pat-
terns of synaptic input.

Sources of oscillations
The mechanisms that generate oscillations are 
specific to sensory modality and brain region. 
Oscillations can be inherited from the temporal 
structure of the stimulus, as in the auditory system 
(Figure 2A); originate from periodic movements 
of mechanical sensors, as in the rodent’s whisker 
system (Figure 2B); be generated or amplified by 
electrical resonances of individual cells, as in audi-
tory hair cells (Figure 2C); or arise from intrinsic 
activity in recurrent neural networks, as in the 

Edited by:
S. Murray Sherman,  
University of Chicago, USA

Reviewed by:
Michael J. Friedlander, Baylor College  
of Medicine, USA
Jose-Manuel Alonso, Sociedad Espanola 
de Neurociencia, Spain; University  
of Connecticut, USA; State University  
of New York, USA
Naoum P. Issa, University of Chicago, 
USA

*Correspondence:

Kilian Koepsell is Principal Investigator 
at the Redwood Center for Theoretical 
Neuroscience and at the Helen Wills 
Neuroscience Institute at University  
of California, Berkeley. He is working 
on functional models of information 
processing in biological and artificial 
neural networks and on statistical models 
of natural sensory stimuli and neural 
activity. Kilian obtained his Ph.D.  
in Physics at Hamburg University, 
Germany. He received postdoctoral 
training at the Max-Planck Institute  
for Gravitational Physics, Potsdam,  
at King’s College, London, at the 
Redwood Neuroscience Institute, Menlo 
Park, and at University of California, 
Berkeley.
kilian@berkeley.edu



54  |  April 2010  |  Volume 4  |  Issue 1	 www.frontiersin.org

the basis for the dual quality of pitch perception 
(Licklider, 1951; Langner, 1992; Patterson,2000).

Somatosensory system
Cyclical movements of the whiskers are reflected 
in neural oscillations in the rodent somatosensory 
system (Figure 2B). The neural oscillations form 
a reference signal such that the spatial location of 
an obstacle is encoded in the phase at the time the 
whisker registers a contact (Ahissar et al., 2000; 
Szwed et al., 2003). In addition, high frequency 
oscillations have been proposed to encode the 
textures of surfaces (Brecht, 2006). Thus, work 
from the somatosensory system suggests that 
spatial structure in the stimulus is transformed 
to temporal structure in the spike train.

Olfactory system
Finally, in the olfactory system, neural oscillations 
are internally generated by recurrent feedback 
among neurons in sensory organs (Figure 2D) 
(Bressler and Freeman, 1980). Thus, this case is 
different from the two previous examples, in which 
the neural oscillations represent external variables. 
Exploring the role of intrinsic versus extrinsic 
dynamics poses unique difficulties, but nonetheless 
has proven key to understanding how some forms 
of sensory information are analyzed (Freeman and 
Viana Di Prisco, 1986; Laurent, 2002). The olfac-
tory bulb of zebra fish provides a good illustra-
tion. Information about complementary features 
of odors, identity and category, is encoded in the 
oscillating spike trains of single populations of 
neurons (Friedrich et al., 2004).

olfactory system (Figure 2D). At times, these 
mechanisms operate cooperatively to generate 
oscillations.

Functional roles of oscillations
Many studies have explored functional roles 
of neural oscillations. Work in sensory systems 
suggests that oscillations might improve the 
chance that neural activity propagates from 
one stage to the next. For example, oscillations 
might synchronize convergent inputs to a single 
postsynaptic cell (Usrey et al., 1998; Bruno and 
Sakmann, 2006) or drive downstream neurons 
at their preferred input frequency (Nowak et al., 
1997; Hutcheon and Yarom, 2000; Fellous et al., 
2001). Further, work in the auditory, somatosen-
sory, olfactory and visual systems suggest that 
oscillations carry specific types of information 
about the stimulus.

Auditory system
Neural oscillations in the auditory system can be 
directly induced by the stimulus (Figure 2A) and 
are often amplified by mechanical and electrical 
resonances (Figures 2B,C). The periodicity of the 
spikes is phase-locked to the acoustic signal, and 
can be used to increase sensitivity to different fea-
tures in the stimulus and sharpen tuning to spe-
cific frequencies (Eguiluz et al., 2000; Roberts and 
Rutherford, 2008). Information about the phase 
of the acoustic signal is also essential for spatial 
localization (Gerstner et al., 1996). Further, psy-
chophysical studies suggest that the representation 
of acoustic phase in periodic spike trains forms 
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Figure 1 | Detecting neural oscillations. (A,B) Oscillations in autocorrelations in two example recordings (spike trains recorded from LGN in cat) with oscillation 
score 10 and 29, respectively. (C,D) Oscillations in spectral power (same spike trains as used for panel A).
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By applying Shannon’s information theory, it 
is possible to quantify how much information the 
averaged spike rate (PSTH) conveys about the stim-
ulus (MacKay and McCulloch, 1952; Grüsser et al., 
1962; Rieke et al., 1999; Brenner et al., 2000). The 
result of this analysis, the information rate I (spike 
at t|stimulus), is usually given in bits per spike (or 
bits per second). In simple terms, the information 
rate corresponds to the mean number of yes/no 
questions one would have to ask in order to gather 
the amount of information conveyed by each action 
potential, or each second of the spike train.

Information in neural oscillations
Now consider the case of an oscillating neuron 
in a sensory pathway. The spike rate encodes 
the temporal structure of a stimulus and is also 
modulated by an oscillation that is not phase-
locked to the onset of the stimulus (Figure 3B). 
Therefore, the spikes are phase-locked rather 
than stimulus-locked. The PSTH, which reports 
averaged stimulus-evoked changes in spike tim-
ing, will not show evidence of the oscillation. 
This is because the phase of the oscillation varies 
randomly with respect to the stimulus onset; the 
periodic component evident during single trials 
of the stimulus is lost in the average. Thus, the 
information that the spikes carry about the oscil-
latory signal cannot be estimated by the standard 
methods.

We developed a new technique to estimate 
the amount of information that oscillating 
spike trains transmit (Koepsell and Sommer, 
2008). It uses an oscillatory reference signal 

Information in spike trains
The discovery that the amount of force applied 
to the skin modulates the firing rate of periph-
eral nerves provided great insight into neural 
coding (Adrian and Zotterman, 1926). It led to 
the realization that features of sensory stimuli, 
like pressure, sound level or visual contrast are 
encoded by instantaneous spike rate. Rate coding 
of sensory information is, perhaps, the most suc-
cessful paradigm for understanding how neurons 
convey information.

Techniques to estimate the amount of infor-
mation transmitted by changes in spike rate 
(MacKay and McCulloch, 1952; Grüsser et al., 
1962; Rieke et al., 1999; Brenner et al., 2000) are 
well established. But what if neural firing pat-
terns are shaped not only by stimulus-evoked 
changes in rate, but also by intrinsic or extrin-
sic oscillations? How might one separate and 
measure the contribution of each component 
to the transmission of neural information? 
The next section discusses how to address this 
question.

Information in spike rate
The influence of a stimulus on the spike rate of 
a sensory neuron is usually estimated by record-
ing neural responses to multiple repeats of the 
same stimulus. Firing rate during repeats of 
the stimulus is then averaged to obtain a peri-
stimulus time histogram (PSTH). Thus, struc-
ture in the PSTH reflects temporal changes in 
the features of the stimulus to which the cell 
responded (Figure 3A).

Oscillations in early sensory systems

Figure 2 | Origin of neural oscillations. (A) Oscillatory stimulus. (B) Oscillatory sensor movements (driven or 
resonance). (C) Oscillation from electrical resonance of individual cells. (D) Oscillatory intrinsic network activity due to 
recurrent network activity.

Neural oscillations
Neural oscillations are rhythmic 
patterns of activity. They are present  
in the intracellular voltage, individual 
spike trains and/or in local field 
potentials generated by populations  
of synchronized cells. Oscillations  
are usually detected by means  
of auto-correlations or spectrograms  
of the neural signal, e.g., Figure 1.

Neural coding
Neural coding refers to the process  
by which one or more neurons encode 
information about sensory stimuli  
or other quantities. Typically, studies  
of the neural code focus on discerning 
which aspects of the stimulus are 
represented, the means by which  
the information is encoded in spike 
patterns, and how much information  
is conveyed, e.g., in bits per second,  
or bits per spike.

Rate coding
Sensory information is often encoded 
by changes in spike rate (the mean 
number of spikes in a given time 
interval).

Peri-stimulus time histogram
The peri-stimulus time histogram 
(PSTH) is a plot of spike rate during  
the stimulus. The PSTH is usually  
made by averaging responses to 
repeated presentations of the same 
stimulus.
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the stimulus). Our technique, the multicondi-
tional direct method, measures both the stimu-
lus and oscillation based information (Koepsell 
and Sommer, 2008). It uses a two-dimensional 
response histogram whose bins contain the 
average response for a given latency between 
the onset of the stimulus and a particular phase 
of the oscillation. The method yields estimates 
of I (spike at t|stimulus,φ(t)), the information 
contained in a single spike about the stimulus 
and the oscillation.

Because the multiconditional direct method 
relies on a higher dimensional response histo-
gram than conventional PSTH-based methods, 
it requires substantial amounts of data. Such 
large datasets are difficult to acquire in the 
laboratory. Thus, we developed an alternative 
method to analyze small datasets, the phase 
de-jittering method (Koepsell et al., 2009). This 
method, in essence, uses the reference signal to 
align, or de-jitter, the oscillation phase across 
different repeats of the stimulus. This is done 
by shifting spikes in time, but with displace-
ments so small that the structure of the spike 
train at low frequencies is unaltered. After de-
jittering, the oscillation is retained in the PSTH 
and therefore it is possible to use conventional 

that can be extracted from various sources, for 
example, the simultaneously recorded LFP or 
presynaptic inputs. The reference signal is used 
to assign each spike in the train at time t a phase 
φ(t) (Figure 3C). If there is a fixed relationship 
between the phase of the oscillation and the gen-
eration of spikes, the histogram of spike phases 
has a certain structure. Specifically, the histogram 
has a single peak if spikes are locked to a particular 
phase of the oscillation (Figure 3D). Similarly, the 
shift-predictor of the histogram is flat (Figure 3E) 
if the phase of oscillation varies relative to the 
onset of the stimulus.

We illustrate this technique by analyzing an 
oscillating spike train (Figures 3B–E) that car-
ries information about two messages: the stimulus 
feature that the spike rate encodes and the phase of 
the oscillation (Figures 3C,D). Further, changes 
in firing rate evoked by the stimulus versus those 
induced by the oscillation occupy separate bands 
of the power spectrum of the spike train, so the 
two messages do not interfere with each other.

Conventional methods of estimating infor-
mation in spike rates do not account for infor-
mation encoded by oscillation phase, since 
they depend solely on the PSTH (which only 
reports changes in spike timing with respect to 
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Figure 3 | Modeling spike trains of sensory neurons. (A) Conventional rate 
coding: The spike train is modeled by a point process with an instantaneous rate 
that is modulated by the magnitude of the stimulus feature (Kuffler et al., 1957; 
Perkel et al., 1967). (B) Multiplicative model: The spike rate is modeled by a point 
process that is modulated by the product of the value of the sensory feature and 
an independent oscillatory signal. Thus, the spike train contains information about 
sensory stimulus and about oscillation phase (Berman, 1981; Koepsell and 

Sommer, 2008). (C) LGN spikes relative to oscillations detected in synaptic events 
originating from retinal ganglion cell spikes (Koepsell et al., 2009). (D) Phase 
distribution of LGN spikes. The peak indicates phase locking. The inset depicts 
how the degree of phase-locking is parametrized by the so-called concentration 
parameter κ of the circular Von Mises distribution. (E) The phase distribution of 
LGN spikes relative to oscillation phase from previous trials (shift predictor) is flat, 
reflecting the fact that the oscillations are not locked to the stimulus.

Stimulus versus phase locking
Changes in spike rate that reliably  
occur with a fixed latency following 
 the stimulus are “stimulus-locked.”  
If changes in firing are stimulus-locked, 
then the PSTH represents sensory 
information encoded by spike rate. 
When neurons are more likely to fire 
during one phase of an ongoing 
(reference) oscillation than during 
others, then their behavior is 
“phase-locked.” Phase-locking is visible 
in histograms of spike counts  
as a function of the oscillation phase 
(Figure 3).
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Multiplexing in the visual system
Ongoing oscillations, those generated by the 
internal dynamics of the system, have been found 
at all stages of visual processing, from the retina to 
the cortex (Munk and Neuenschwander, 2000). In 
the cortex, oscillations reflect visual information 
in several different ways. Information about the 
stimulus is conveyed by the synchrony between 
two oscillating spike trains (Eckhorn et al., 1988; 
Gray and Singer, 1989; Samonds et al., 2006), in 
the relative phase between spikes and oscillations 
in the LFP (Montemurro et al., 2008; Kayser et 
al., 2009) and in the oscillations themselves 
(Kayser and Konig, 2004; Berens et al., 2008; 
Mazzoni et al., 2008). In addition to endogenous 
rhythms, the cortex also seems to inherit oscil-
lations that emerge at earlier stages of the vis-
ual system (Neuenschwander and Singer, 1996; 
Castelo-Branco et al., 1998). The oscillations are 
observed in the absence (Doty et al., 1964; Heiss 
and Bornschein, 1966) and the presence of  anes-
thetics [barbiturates (Heiss and Bornschein, 1965; 
Laufer and Verzeano, 1967), N

2
O and halothane 

(Neuenschwander and Singer, 1996; Castelo-
Branco et al., 1998), propofol (Koepsell et al., 
2009)].

We recently asked how oscillations in the retina 
might be used by the thalamus to transmit infor-
mation downstream. In particular, we asked how 
the spike trains of a single thalamic relay cell can 
transmit two separate streams of information, one 
encoded by firing rate and the other in oscillations 
(Koepsell et al., 2009). We used the technique of 
whole-cell recording in vivo, which allowed us to 
detect retinothalamic synaptic potentials and the 
action potentials they evoked from single relay 
cells. In other words, we were able to reconstruct 
the spike trains of the inputs and outputs of single 
relay cells. Often, we found that both spike trains 
had an oscillatory component. To explore whether 
these oscillations were able to encode informa-
tion, we used the phase of the oscillation of the 
retinal inputs to de-jitter the timing of thalamic 
spikes across repeated trials of the stimulus (see 
Figures 1 and 3C–E). The result of the realign-
ment was dramatic, as illustrated in Figure 4A. 
Although the oscillation was not visible in the 
raw PSTH, it generated a pronounced modula-
tion in the amplitude of the PSTH made from the 
de-jittered signal (Figure 4B).

We then estimated the information in the de-
jittered spike train. The results showed that most 
relay cells that received periodic synaptic inputs 
transmitted a significant amount of information 
in the gamma frequency band. For some cells, the 
amount of information in the oscillation-based 
(high frequency) channel was severalfold higher 

PSTH-based methods to estimate the informa-
tion. Comparisons of the full multiconditional 
method and the de-jittering method applied to 
a surrogate dataset, show that both yield com-
parable results (Koepsell and Sommer, 2008).

Multiplexing with periodic  
spike trains
In the previous section we explained how infor-
mation multiplexing can occur in a single neu-
ron, that is, the spike train conveys information 
about two different messages. We found that the 
two signals occupy separate frequency bands – a 
scheme called frequency division multiplexing. 
Spike trains that encode dual messages in this 
form are common in sensory pathways. Usually, 
information encoded by spike rate occupies the 
lower part of the frequency spectrum. This posi-
tion reflects the temporal structure in the stimulus; 
the spectral power of natural signals decays with 
increasing temporal frequency (Ruderman and 
Bialek, 1994). By contrast, information encoded by 
the oscillations often resides in a separate high-fre-
quency band, such as the gamma frequency range. 
For example, the frequency band of the stimulus 
to which auditory neurons phase-lock is usually 
higher than the acoustic modulation spectrum 
(Langner, 1992).

Examples for multiplexing  
of sensory information
The transmission of oscillatory signals in spike 
trains can be used in various ways to convey 
sensory information. The frequency, phase or 
coherence of the oscillatory signal can convey 
sensory information in itself, as in the audi-
tory system (Langner, 1992). The hippocampus 
provides an example of spike phase coding, in 
which the relative phases between spikes and 
an oscillatory signal carry sensory information. 
Specifically, the location of the animal can be 
resolved by decoding the relative phase between 
spikes fired by a place cell and the activity that 
produces the theta rhythm (OKeefe and Recce, 
1993). Further, oscillatory signals can enable 
time division multiplexing within individ-
ual spike trains. Here, the idea is that differ-
ent phases of the oscillation define temporal 
windows in which particular features of the 
stimulus are selectively transmitted. Thus, the 
rates measured in these different time windows 
encode different types of sensory signals. Such a 
coding scheme has been found in the olfactory 
system (Friedrich et al., 2004) and has also been 
proposed in theoretical work for other sensory 
systems (Masquelier et al., 2009; Nadasdy, 2009; 
Panzeri et al., 2010).

Oscillations in early sensory systems

Information multiplexing
This term refers to the case of a single 
signal, such as spike train, that carries 
different messages, each encoded  
in separate information channels.  
If different channels are displaced  
in the frequency or time domains,  
they will not interfere with each other.

Frequency division multiplexing
This is a subtype of “information 
multiplexing” in which the separate 
channels occupy different frequency 
bands in the spectrum of the signal, 
such as a spike train. Information can 
be encoded in the amplitude, phase or 
frequency modulation of a oscillatory 
reference signal.

Spike phase coding
In this scheme, information is encoded 
by the timing of spikes relative to the 
phase of a reference oscillation.  
The phase of the oscillation, at which a 
given spike is fired, is the “spike-phase.”

Time division multiplexing
This is a subtype of “information 
multiplexing” in which the separate 
channels occupy alternating time 
windows, or temporal segments,  
of the signal. The time windows  
can be defined with respect to the 
reference oscillation.
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do so by a process akin to amplitude modulation, 
in which information about the retinal feature is 
reproduced in the frequency band of the oscilla-
tions. This redundant information could be read 
out and decoded in the cortex by various mecha-
nisms, such as coincidence detection of afferent 
inputs or by the relative phase of the thalamic and 
cortical oscillations. A specific role for the second 
channel could be de-noising. Further, the ampli-
tude modulation of the afferent spike train gener-
ates a signal that might enable cortical oscillations 
(e.g., by adjusting relative phases of the two oscil-
lations) to route sensory information or to direct 
attention to a particular feature. (For discussion 
of potential roles of cortical oscillations in analyz-
ing afferent input, see Buzsaki and Draguhn, 2004; 
Sejnowski and Paulsen, 2006; Fries et al., 2007).

than that conveyed by rate-coded (low frequency) 
channel; compare Figure 4C with Figure 4D.

Potential new roles for oscillations
Gamma oscillations in retina and thalamus pro-
vide a novel channel that is able to convey infor-
mation to the cortex. How might this channel 
contribute to visual function? In the following 
we outline various hypotheses about the potential 
roles for the new channel and how they might 
be tested.

One possibility we explore is the case in which 
the oscillatory trend of the retinal cell does not con-
tain information about the visual stimulus. Even 
in this situation, the oscillations might increase the 
amount of information about local retinal features 
transmitted by the thalamic rate code. They would 
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Figure 4 | Multiplexed information in the visual system. (A) Event times 
aligned to stimulus onset displayed as averaged spike rate (red curve)  
and rasters for spikes (red), and EPSPs (blue) for 20 trials of a movie clip; spike 
rasters were smoothed with a Gaussian window (σ = 2 ms) before averaging. 
(B) Responses corrected for variation in latency ±10 ms by using periodicity 
in the ongoing activity that preceded stimulus onset; conventions as in (A). 
(C) Top, power spectrum of thalamic spike trains decomposed into signal 
(solid line) and noise (dashed line). Bottom, spectral information rate. The area 

under the curve corresponds to a total information rate of 12.7 bit/s; the mean 
spike rate 29 spikes/s yields a value of 0.4 bit/spike. (D) Power spectrum 
(top) of de-jittered spike train decomposed into signal (solid line) and noise 
(dashed line); spectral information rate (bottom). De-jittering increased the 
total information from 0.4 bit/spike (C) to 1.2 bit/spike (Koepsell et al., 2009). 
The movie stimulus was presented with 30 frames/s on a monitor with 
a high refresh rate (150 Hz). The neural response did not lock to the frame 
update or monitor refresh.
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are able to transform spatial structure of visual 
input into temporal structure of neural activity. 
These models, which were originally developed 
to simulate cortical computations, are built with 
phase-coupled oscillatory neurons (e.g., Baldi and 
Meir, 1990; Sompolinsky et al., 1991; Sporns et al., 
1991; von der Malsburg and Buhmann, 1992; 
Schillen and Koenig, 1994; Wang and Terman, 
1997; Ursino et al., 2006). It would be useful to 
develop such models to explore retinal and tha-
lamic function.

Other families of models combine psycho-
physical results with approaches used in com-
puter vision to determine how various image 
operations are able to reproduce visual percep-
tion and behavior. For example, recent work com-
pared how well segmentation algorithms (Pal and 
Pal, 1993) matched the human ability to outline 
objects in images (Martin et al., 2004). State-of-
the-art algorithms for edge detection and image 
segmentation approached human performance 
by combining local with non-local features of the 
image; algorithms based solely on local contrast 
were not successful.

Motivated by this work, we implemented the 
normalized cut algorithm for the computation 
of non-local features (Shi and Malik, 2000) in a 
network of oscillating neurons (Figure 5). Our 
preliminary results indicate that, over time, 
information about homogeneous image seg-
ments is encoded by different oscillation phases 
(Figure 5B). Further, oscillatory spike trains are 
able to transmit this information as well as that 
about local contrast. In addition, synchronized 
spikes in the oscillating network provide infor-
mation about edges (Figure 5C). These results 
suggest that features like edge continuation, 
orientation, and border ownership – known to 
be represented by cortical firing rates – might 

A second possibility is that retinal oscillations 
are influenced by the stimulus, specifically, by 
displacements of the retinal image caused by eye 
movements. Thus, periodic activity in the retina 
might encode spatial information in the tempo-
ral domain, as in the whisker system (Ahissar and 
Arieli, 2001; Rucci, 2008). This idea is supported, 
at least in part, by the strong similarity between the 
dominant frequency bands in the LFP recorded 
from primary visual cortex and fixational eye 
movements [also note that oscillatory fixational 
eye movements are found in species ranging from 
turtle to humans (Greschner et al., 2002; Martinez-
Conde et al., 2004)]. Work that combines electro-
physiology, measurements of eye-movements, and 
psychophysics should help to test this idea.

A third potential role for retinal oscillations 
involves computational analysis of visual stimuli. 
To explore this possibility, one must address two 
questions at the same time. First, one must deter-
mine which features of the stimulus are encoded 
by the oscillations. To address this question, it 
is helpful to recall that retinal oscillations are 
formed by distributed networks, and thus might 
be sensitive to spatially extensive features and/or 
context. Second, one must identify which par-
ticular attributes of the oscillations are used to 
encode information. Reasonable guesses include 
frequency, phase, relative phase, modulation of 
coherence among cells, or combinations of these 
parameters. The possible answers to these two 
questions are numerous, and this uncertainty 
precludes the design of physiological experi-
ments. Thus, for the time being, the most prom-
ising approach to studying the computational 
roles of retinal oscillations in vision is to use 
computational models constrained by biologi-
cal and psychophysical results. In fact, there are 
many models of oscillatory neural networks that 
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Figure 5 | Visual processing using coupled oscillators. 
(A) Example image from the Berkeley segmentation database. 
(B) Phase representation in network of coupled phase oscillators φ(x) 
evolving according to the dynamic equation  

with oscillation frequency ω, coupling function f(φj − φi) and local coupling 
constants cij that depend on similarity of pixel intensities. (C) Information 
represented by neurons spiking at a specific oscillation phase, a few cycles 
after the stimulus onset.
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we surveyed current techniques that are used to 
quantify the amount of information that oscilla-
tory spike trains encode. Further, we summarized 
potential functions of oscillation-based channels 
in the periphery that are being actively explored 
by the community.

The work we have reviewed also bears on cor-
tex (Eckhorn et al., 1988; Gray and Singer, 1989; 
Young et al., 1992; de Oliveira et al., 1997; Thiele 
and Stoner, 2003), where oscillations are generated 
by two sources: sensory afferents and intracortical 
networks. That is, we not only discussed the types 
of sensory information that oscillations carry down-
stream, but also described theoretical frameworks 
that can be applied to diverse cortical regions.
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already be available in the temporal structure of 
retinal activity.

Unlike the case for mammalian vision, in 
which the function of oscillations remain subjects 
of debate, the behavioral role of gamma oscil-
lations has been clearly established in the frog. 
Specifically, looming stimuli designed to simulate 
shadows (cast by predators) evoke synchronous 
oscillatory discharges in neural “dimming detec-
tors”. By contrast, small dark spots that mimic prey 
fail to induce such activity (Ishikane et al., 1999). 
The consequence of the synchronous oscillations 
among retinal dimming detectors is important for 
an animal’s survival – it triggers escape behavior 
(Arai et al., 2004). Further strengthening the link 
between synchronous retinal activity and behav-
ior, pharmacological suppression of gamma oscil-
lations abolishes escape responses, but spares the 
slower modulation of spike rate evoked by small 
objects (Ishikane et al., 2005). Thus, in the frog, 
information about different types of visual signals 
seems to be multiplexed in different frequency 
bands of neural spike trains.

Summary
This review focused on research that explores 
the functional role of neural oscillations in the 
early stages of sensory pathways. We described 
neural oscillations that carry information about 
diverse sensory modalities, including olfaction, 
vision, audition and somatosensation. In par-
ticular, we discussed gamma oscillations in the 
early visual system, and showed how these form 
a novel channel that conveys information from 
the retina, via the thalamus, to the cortex. As well, 
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