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Imaging Genetics
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As research in developmental and clinical sciences has progressed in the last decades, there
have been many important technological and methodological advances in the increasingly
complimentary fields of molecular genetics and neuroimaging. These advances have facilitated
fruitful collaboration across once disparate disciplines, with early results shedding new light
on the mechanisms giving rise to individual differences in complex behaviors and related
psychiatric disorders. At the leading edge of such efforts is imaging genetics, an experimental
strategy for the effective integration of molecular genetics and neuroimaging technologies for
the study of biological mechanisms mediating individual differences in behavior and related
risk for psychiatric disorders. Imaging genetic studies have the potential to provide a more
complex and nuanced understanding of the pathways and mechanisms through which the
dynamic interplay of genes, brain, and environment shapes variability in behavior. The broader
potential of imaging genetics is to inform risk and resiliency; however, it is likely to be realized
only through its orchestrated application within longitudinal developmental studies. To date,
no imaging genetic studies of development or of childhood psychiatric disorders have yielded
published results, although such studies are underway. The results of these studies may have
important implications for the diagnosis and treatment of such psychiatric disorders.

WHY STUDY GENES?

Genes have an unparalleled potential impact on all levels of biology. In the context of disease
states, particularly behavioral disorders, genes are fundamental to our understanding of the
mechanisms involved in the development of disease. Whereas most human behaviors cannot
be explained by genes alone, and certainly much of the variance in aspects of brain information
processing will not be genetically determined directly, variations in a genetic sequence that
have an impact on gene function will contribute a substantial amount of variance to these more
complex phenomena. This conclusion is implicitin results garnered from twin studies that have
demonstrated heritabilities of 40% to 70% for various aspects of cognition, temperament, and
personality.® Psychiatric illnesses cluster within families, suggesting a highly heritable
component to disease susceptibility.58 Genes, therefore, have the potential to identify
underlying mechanisms of variability in behavior and disease risk, particularly in cases of child
and adolescent psychiatric disorders, which have been shown to be at least similar to, and in
some cases, more heritable than adult disorders.9-12 Within this context, imaging genetics is a
promising technique representing the specific ability to understand the neurobiological
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mechanisms through which genes may have an impact on variability in these emergent
phenomena.

The classic approach used in genetic association analyses involves the use of candidate genes.
A candidate gene is a gene whose variation is suspected of being directly associated with an
observable behavioral or clinical (i.e., disease-related) property of the individual (called a
phenotype). With this approach, a genetic variant (known as a polymorphism) that potentially
has an impact on the function of a behaviorally or clinically relevant biological process is
identified, and then, deviations in the frequency of one gene variant (called an allele) in
populations expressing the phenotype are determined. Ideally, the genetic variation should
have an impact on molecular or cellular function of the gene or protein (i.e., be a functional
variation), and the target phenotype should be stable, robust, and quantifiable. Within the
imaging genetics framework, the target phenotype is usually a physiological response of the
brain during specific behavioral processes (e.g., amygdala reactivity when viewing threatening
facial expressions).

WHY FUNCTIONAL IMAGING?

Previous investigations of candidate genes have attempted to associate functional
polymorphisms directly with a behavior; however, such findings have been weak and
inconsistent (e.g., the 5-HTTLPR short allele and negative emotionality).13 There are
considerable interindividual differences in the dimensions of observed behavior, as well as
subjectivity in behavioral measures, often requiring daunting sample sizes to detect gene
effects.1 More importantly, gene effects are not expressed directly at the level of behavior but
rather are mediated by effects on molecular and cellular cascades biasing information
processing in brain circuitries mediating behavioral responses to environmental challenge.
Functional neuroimaging, using functional magnetic resonance imaging, EEG, or positron
emission tomography, provides an efficient and effective tool with which to explore the impact
of brain-relevant genetic polymorphisms by quantifying the activity of specific brain regions
in association with particular cognitive and emotional tasks that the research participant is
asked to perform during the procedure. These techniques promise to identify neural pathways
through which these variants contribute to the emergence of variability in behavior and disease
risk (Fig. 1).

BASIC PRINCIPLES

Three basic principles have been articulated for imaging genetics.* These are selection of
candidate genes, control for nongenotype factors, and selection of appropriate tasks for the
subject to perform during functional imaging. Well-defined functional polymorphisms (single-
nucleotide polymorphisms or other structural variants) in coding or promoter regions
previously linked with specific physiological effects at the cellular level and whose impact has
been described in distinct brain regions are an ideal starting point (Table 1). Selecting variants
that have known neurobiological consequences (e.g., increases in serotonin [5-HT] signaling)
is important because of an emphasis in imaging genetics on specifying mechanisms through
which genes have an impact on brain and related behavior. Because potential genetic effects
are still relatively small compared with typically large effects of age, sex, and 1Q, as well as
environmental influences (e.g., illness, injury, substance abuse), controlling for these potential
confounds is necessary. Furthermore, because imaging genetic studies focus on a single or
relatively few polymorphisms against a background of millions, these studies must carefully
control for population stratification, which refers to differences in the genetic background of
subjects, reflecting their unique ancestry, against which the relation between a specific
genotype and phenotype is tested. Because of small genetic effects, choosing a well-
characterized behavioral task for subjects to perform during functional neuroimaging that is
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both sensitive and specific to the brain process under investigation is of crucial importance to
the success of identifying functional correlates of genetic variation. The ideal tasks for these
investigations are thus ones that have been established to engage specific brain systems robustly
in all subjects, as well as display variance both across control subjects and between patients
and comparison subjects. Moreover, in child and adolescent populations, tasks that are both
developmentally appropriate and acceptable for use with the specific psychiatric sample being
studied should be chosen. For example, in previous imaging studies, amygdala reactivity to
threat-related emotional facial expressions has been assayed using a well-characterized
challenge paradigm that robustly engages the amygdala and interconnected corticolimbic
structures. Importantly, this task has been shown to effectively engage the amygdala in control
subjects'®19 and to demonstrate altered amygdala function in diverse psychiatric disorders.
20-23 child and adolescent psychiatric populations should also be characterized using
behavioral or questionnaire measures that are able to identify relatively homogenous groups
for analysis (i.e., separating out a small homogenous group of children with proactive
aggression from within the broader and more heterogeneous group of children with conduct
disorder). Whereas such steps increase the likelihood of identifying significant genetic
regulation of interindividual variability in brain function and related behaviors, multiple
genetic polymorphisms (many of which will be of small effect) acting in concert or opposition
in the context of unique environmental challenges will ultimately account for the majority of
variance in any given neural or behavioral phenotype.

SEROTONIN AND EMOTIONAL BEHAVIOR

One of the most replicated findings in the field of imaging genetics is the impact of a common
polymorphism in the promoter region (5-HTTLPR) of the 5-HT transporter (5-HTT) gene on
amygdala reactivity in adults.2* Abnormal 5-HT neurotransmission has been implicated in the
pathophysiology of mood and anxiety disorders and has been a target of pharmacological
intervention (e.g., selective serotonin reuptake inhibitors). In comparison to the 5-HTTLPR
long (L) allele, the short (S) allele has been associated with alterations conferring relatively
increased 5-HT signaling.25 At the behavioral level, possession of either one or two copies of
the S allele has been associated with increased levels of temperamental anxiety,26-28
conditioned fear responses,?® and development of depression, particularly in the context of
environmental stress.30:31 Against this background, imaging genetics has been used to reveal
that threat-related reactivity of the amygdala, a brain region critical in mediating behavioral
and physiological arousal, is significantly increased in S allele carriers in comparisonto L allele
homozygotes.18 In addition, the 5-HTTLPR S allele has been further linked with reduced gray
matter volume in and functional coupling between the amygdala and medial prefrontal cortex.
32 Because the magnitude of threat-related amygdala reactivity (the response of the amygdala
to threat-related signals), as well as its functional coupling with medial prefrontal cortex, is
associated with temperamental anxiety, these imaging genetic findings suggest that the 5-
HTTLPR S allele may be associated with increased risk for depression upon exposure to
environmental stressors because of the polymorphism’s influence on the reactivity of this
corticolimbic circuitry. However, no studies have yet been published investigating the
association between the 5-HTTLPR and functional brain activity in children or adolescents.
The imaging genetic research with the 5-HTTLPR highlights the effectiveness of this strategy
in illuminating specific mechanisms that may mediate individual variability in behavior and
risk for disease. Additional imaging genetic findings are summarized in Table 1.

DEVELOPMENTAL CONSIDERATIONS

As the field of behavioral and psychiatric genetics transitions to examining interactions
between genes and environmental influences in shaping behavior and disease risk,33
consideration of developmental trajectories can no longer be ignored. The functional synergy
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between genes and brain likely changes throughout development because both experience and
biology influence the expression of genes. This process is studied in the rapidly evolving field
known as “epigenetics.” For example, these emerging studies on epigenetics3* suggest that
certain exogenous factors including environmental stress can literally turn on or off the
expression of genes. Gene expression also varies with endogenous shifts such as hormone
fluctuations during puberty. Therefore, existing imaging genetic findings in adult populations
may not apply to children and adolescents, and further study in these target populations is
required because no studies using imaging genetics in children or adolescent populations have
yet been published. Additionally, structural imaging studies have shown that cortical
development continues into adulthood.3® Therefore, examining the links between genetic
polymorphisms and alterations in brain function must also be appreciated across development.
Because few psychopathologies arise de novo in adulthood without previous warning signs in
childhood, longitudinal applications of imaging genetics have the potential to uncover key
neurobiological pathways involved in both disease risk and resiliency. For example, as
previously described, functional coupling between the amygdala and regulatory circuits in the
medial prefrontal cortex are affected by genetically driven variability in 5-HT function and are
also important in the pathophysiology of depression. These prefrontal areas, however, exhibit
relatively protracted development,3° and studying genetic effects on the maturation of this
coupling during adolescence may help our understanding of the development of depression
risk. In turn, such understanding may advance formulation of individually tailored intervention
and prevention strategies particularly in high-risk children.
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FIG. 1.

Imaging genetics allows for the identification of how common genetic polymorphisms (e.g.,
5-HTTLPR) influencing molecular processes (e.g., serotonin signaling) bias neural pathways
(e.g., amygdala reactivity) mediating individual differences in complex behavioral processes
(e.g., trait anxiety) related to disease risk in response to environmental adversity. (Reprinted
from Trends Cogn Sci. [10:182-191] Hariri AR, Holmes A. Genetics of emotional regulation:
the role of the serotonin transporter in neural function. Copyright 2006, with permission from
Elsevier.)
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Summary of Polymorphisms Impacting Behaviorally Relevant Brain Function

Gene

Protein Polymorphisms

Functional Effects

Corticolimbic circuitry for emotional arousal, threat reactivity and stress sensitivity

SLC6A4 (17¢11.1)

MAOA (Xp11.3)

TPH2 (12921.1)

COMT (22q11.2)

5-HT transporter/facilitates ~ 5-HTTLPR short and long
active 5-HT reuptake alleles

Preferentially catalyzes the  High (3.5- and 4-repeat)
oxidative deamination of and low (2-, 3-, 5-repeat)
5-HT activity alleles

Rate limiting enzyme in
neuronal 5-HT synthesis

G(-844)T

Metabolic degradation of Val1l58Met

synaptic dopamine

Mesolimbic circuitry for reward sensitivity and impulsivity

SLC6A3 (5p15.3)

DRD2 (11q.23)

DRD4 (11p15.5)

DA transporter/facilitates DAT1 9- and 10-repeat
active DA reuptake alleles

Inhibitory presynaptic and DRD2 —141C Ins/Del

postsynaptic receptor

Inhibitory postsynaptic DRD4 7- and non-7 repeat
receptor alleles

S allele—increased 5-HT signaling, reduced
promoter activity and gene expression, increased
amygdala reactivity, decreased functional
coupling between amygdala and PFC

2, 3, and 5-repeat alleles—reduced enzyme
activity, increased amygdala reactivity,
decreased functional coupling between
amygdala and medial PFC

—844T allele—increased amygdala reactivity

Met158 allele—decreased enzyme activity,
increased functional coupling between
amygdala and PFC

9-repeat allele—reduced DAT1 expression,
increased ventral striatum reactivity

—141C Del—reduced DRD2 function,
increased ventral striatum reactivity

7-repeat allele—reduced DRD4 function,
increased ventral striatum reactivity

Note: 5-HT = serotonin; 5-HTTLPR = serotonin-transporter-linked polymorphic region; COMT = catechol-O-methy| transferase; DA = dopamine;
DAT1 = dopamine transporter gene 1; Del = deletion; DRD2 = dopamine receptor D2; DRD4 = dopamine receptor D4; MAOA = monoamine oxidase
A, Ins = insertion; PFC = prefrontal cortex; SLC6A3 = solute carrier family 6 (neurotransmitter transporter, dopamine), member 3; SLC6A4 = solute
carrier family 6 (neurotransmitter transporter, serotonin), member 4; TPH2 = tryptophan hydroxylase 2. (Reprinted with permission of John Wiley
&Sons, Inc., from Fisher PM, Mufioz KE, Hariri AR. Identification of neurogenetics pathways of risk for psychopathology, 1-7. Am J Med Genet C
Semin Med Genet. Vol.148, No. 2, 2008, 147-153. Copyright 2008, John Wiley & Sons, Inc.)
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