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Abstract

Positive-strand and double-strand RNA viruses typically compartmentalize their replication machinery in infected cells. This
is thought to shield viral RNA from detection by innate immune sensors and favor RNA synthesis. The picture for the non-
segmented negative-strand (NNS) RNA viruses, however, is less clear. Working with vesicular stomatitis virus (VSV), a
prototype of the NNS RNA viruses, we examined the location of the viral replication machinery and RNA synthesis in cells. By
short-term labeling of viral RNA with 59-bromouridine 59-triphosphate (BrUTP), we demonstrate that primary mRNA
synthesis occurs throughout the host cell cytoplasm. Protein synthesis results in the formation of inclusions that contain the
viral RNA synthesis machinery and become the predominant sites of mRNA synthesis in the cell. Disruption of the
microtubule network by treatment of cells with nocodazole leads to the accumulation of viral mRNA in discrete structures
that decorate the surface of the inclusions. By pulse-chase analysis of the mRNA, we find that viral transcripts synthesized at
the inclusions are transported away from the inclusions in a microtubule-dependent manner. Metabolic labeling of viral
proteins revealed that inhibiting this transport step diminished the rate of translation. Collectively those data suggest that
microtubule-dependent transport of viral mRNAs from inclusions facilitates their translation. Our experiments also show
that during a VSV infection, protein synthesis is required to redirect viral RNA synthesis to intracytoplasmic inclusions. As
viral RNA synthesis is initially unrestricted, we speculate that its subsequent confinement to inclusions might reflect a
cellular response to infection.
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Introduction

RNA viruses that replicate within the cytoplasm often form

specialized structures that are the sites of RNA replication [1]. For

positive-strand RNA viruses, replication occurs on cellular

membranes, including those of the endoplasmic reticulum,

secretory pathway, mitochondria and other organelles [2–6].

Experiments with poliovirus and with flock house virus (FHV)

have provided compelling evidence that the viral RNA and the

non-structural proteins required for RNA replication are localized

to such sites. For FHV, electron microscopy and tomographic

reconstructions of spherule-like structures invaginated from

mitochondrial membranes confirm that they contain the viral

replication machinery [6]. Double-strand RNA viruses form

phase-dense inclusions or ‘‘viral factories’’ to which transcription

competent viral cores and the machinery required for RNA

synthesis are localized [7]. In contrast to the structures formed by

positive-strand RNA viruses, the double-strand RNA virus

factories are not membrane bound [8–10]. The formation of such

specialized replication compartments is thought to concentrate the

viral machinery necessary for RNA synthesis and thereby favor

catalysis. Compartmentalization of the replication machinery

might also shield the viral RNA from detection by cytosolic innate

immune sensors.

In contrast to the evidence for the role of specialized replication

compartments for positive- and double-stranded RNA viruses, the

exact site of RNA synthesis for non-segmented negative-strand

(NNS) RNA viruses is less well characterized. Vesicular stomatitis

virus (VSV), a prototype of the NNS RNA viruses, has provided

many mechanistic insights into RNA synthesis for NNS RNA

viruses [11]. To initiate infection, VSV delivers a transcription

competent ribonucleoprotein (RNP) core into the cell [12]. This

core comprises the negative-sense genomic RNA completely

encapsidated by the viral nucleocapsid protein (N) and associated

with the viral RNA dependent RNA polymerase [13]. The viral

components of the polymerase are a 241 kDa large protein (L) and

a 29 kDa accessory phosphoprotein (P) [14]. The L protein

possesses all the catalytic activities required for RNA synthesis

[15], including the various steps of mRNA cap addition [16–24]

and polyadenylation [25], and the P protein serves to bridge

interactions between L and the N-RNA template [26]. An L-P

complex transcribes the N-RNA template into a series of mRNAs

in a start-stop mode of sequential transcription [27,28]. The

polymerase also replicates the genomic RNA to yield progeny

antigenomes and genomes. Replication differs to transcription in

that it depends upon ongoing protein synthesis to provide the N

protein necessary to encapsidate the nascent RNA [29]. Cis-acting

signals required for RNA replication and for each step of mRNA
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synthesis, including cap addition and polyadenylation have been

defined (reviewed in [11]), and the enzymatic activities mapped at

the single amino acid level within L.

The site(s) within the cytoplasm at which VSV RNA synthesis

occurs and the cellular requirements for RNA synthesis remain

uncertain. For rabies virus, a related member of the Rhabdoviridae,

pathologic specimens of infected neuronal cells identified inclu-

sion-like structures termed Negri bodies that contain viral

nucleocapsids. This led to the suggestion that such inclusions

might be sites of RNA synthesis. Subsequent studies showed that

Negri body-like inclusions appear to be bona fide sites of RNA

synthesis as they contain the viral N, P and L proteins necessary

for RNA synthesis as well as the mRNA products of transcription

[30,31]. That the inclusions may be active sites of synthesis rather

than storage compartments was indicated by immune fluorescence

(IF) microscopy using an antibody to bromodeoxyuridine which

detected inclusions following transfection of cells with bromo UTP

(BrUTP) [30]. This suggests that the rabies polymerase incorpo-

rated BrUTP into RNA that was actively synthesized at the

inclusion-like structures. In contrast to those observations for

rabies virus, for VSV it was suggested that RNA synthesis occurs

throughout the cytoplasm [32]. This conclusion was also based on

incorporation of BrUTP into RNA [32]. For VSV, the presence of

BrUTP labeled RNA throughout the cytoplasm could, however,

reflect synthesis of RNA at specific sites followed by a subsequent

distribution throughout the cytoplasm. The relationship between

inclusions and viral RNA synthesis remains therefore, uncertain.

In addition, although experiments performed with rabies and VSV

indicate that the viral polymerase can incorporate BrUTP into

viral RNA, direct biochemical evidence for this is lacking.

In the present study, working with VSV, we further probed the

relationship between inclusion formation and RNA synthesis. To do

this, we used recombinant viruses in which P was fused to eGFP [33]

or mRFP. We show that the P protein together with the N and L

proteins are localized to inclusion-like structures in infected cells. By

direct biochemical analysis of the products of RNA synthesis, we

demonstrate that L incorporates BrUTP into viral mRNA in vitro as

well as in cells. Imaging the location of the viral RNA synthesis

machinery and the viral RNA in infected cells by fluorescent

microscopy revealed that the infecting RNP can synthesize mRNA

throughout the cytoplasm. Following protein synthesis, however, viral

RNA synthesis appears to be restricted to inclusions. The viral

mRNAs are subsequently transported away from those inclusions in a

microtubule-dependent manner to facilitate translation. Our exper-

iments show that VSV does not require a specialized site for RNA

synthesis, but the viral RNA synthesis machinery is redirected to

inclusions following protein synthesis.

Materials and Methods

Recombinant VSV expressing fluorescent P protein
Recombinant VSV expressing eGFP fused to P was previously

described [33]. We generated a similar recombinant virus in which

eGFP was replaced by monomeric RFP using the same strategy

except oligonucleotide primers 59-GAAAAAAACTAACAGATAT-

CATGGCCTCCTCCGAGGACG-39 and 59-CTTTTGTGA-

GATTATCGGCGCCGGTGGAGTGGC-39 were used to amplify

the mRFP gene from pRFP-N1 (Clontech, Mountain View, CA).

Recombinant virus was recovered as described previously [34].

Generation of an anti-L antibody
Amino acids 1594–2109 of VSV L were expressed in Spodoptera

frugiperda (Sf21) cells from a recombinant baculovirus generated by

cloning the relevant portions of the L gene under the control of the

polyhedrin promoter using pFASTBAC-DUAL (Invitrogen,

Carlsbad, CA). An N-terminal hexa-histidine tag was introduced

to facilitate L protein purification. The L protein fragment was

purified by affinity chromatography on Ni-nitrilotriacetic acid-

agarose (Qiagen, Valencia, CA) followed by MonoQ then MonoS

ion exchange chromatography (GE Healthcare, UK). A polyclonal

antiserum was obtained following immunization of a single rabbit

with purified protein (Covance, Princeton, NJ). The rabbit

antiserum detects full-length VSV L in infected cell lysates by

Western blot (data not shown).

Detection of RNA and proteins in cells by immune
fluorescence microscopy

Imaging experiments were performed in BSR-T7, CV-1 or Vero

cells. Cells were fixed with 2% paraformaldehyde for 15 min, washed

twice with phosphate buffered saline (PBS) (137 mM NaCl, 2.7 mM

KCl, 100 mM Na2HPO4, 2mM KH2PO4) and treated with ice-cold

100% methanol for 3 min. Cells were rinsed twice with PBS,

incubated in PBSAT (16 PBS, 0.1% Triton 6100, 1% BSA),

followed by PBSA (16PBS, 1% BSA) each for 10 minutes. For RNA

detection, we used a monoclonal antibody against bromodeoxyur-

idine conjugated to Alexa Fluor-488 (Invitrogen) at a 1:50 dilution in

PBSAT (16 PBS, 0.05% Triton 6100, 1% BSA). Cells were

incubated for 1 hour at RT or 16h at 4uC, prior to detection of

immune complexes using a 1:2000 dilution of a secondary anti-mouse

antibody conjugated to Alexa Fluor-488 (Invitrogen). VSV N and M

proteins were detected using monoclonal antibodies 10G4 and

23H12 [35], respectively, which were kindly provided by Dr. Douglas

Lyles (Wake Forest University), followed by a 1:750 dilution of a

secondary anti-mouse antibody conjugated to DyeLight 549 (Jackson

ImmunoResearch Laboratories, West Grove, PA) or Alexa Fluor-488

(Invitrogen). For detection of L, we used the rabbit polyclonal

antiserum at a 1:1000 dilution followed by an anti-rabbit secondary

antibody conjugated to DyeLight-649 (1:750) (Jackson ImmunoR-

esearch). Cellular a-tubulin was detected using a 1:200 dilution of the

monoclonal DM1A antibody (Sigma, St Louis, MO) and visualized

with Alexa Fluor-594 conjugated secondary antibody (Invitrogen) at a

Author Summary

Positive-strand and double-strand RNA viruses compart-
mentalize their replication machinery in infected cells. This
compartmentalization is thought to favor the catalysis of
RNA synthesis, and sequester viral RNA molecules from
detection by innate immune sensors. For the negative-
strand RNA viruses that replicate in the cytoplasm, the site
of RNA synthesis is less clear. Here, using a prototype non-
segmented negative-strand (NNS) RNA virus, vesicular
stomatitis virus (VSV), we investigated whether viral
derived inclusions are sites of RNA synthesis in infected
cells. Our work shows that prior to viral protein synthesis
the invading viral cores synthesize mRNA throughout the
host cell cytoplasm. Viral protein expression leads to the
formation of intracytoplasmic inclusions that contain the
viral machinery necessary for RNA synthesis and become
the predominant sites of transcription. The newly synthe-
sized viral mRNAs escape the inclusions by transport along
microtubules and this facilitates their translation. Our work
demonstrates that in contrast to the positive-strand and
double-strand RNA viruses, VSV does not require the
establishment of specialized compartments in the cyto-
plasm of the cell for RNA synthesis. Our findings suggest
that the confinement of RNA synthesis to inclusions once
infection is established may reflect a host response to
infection.

Sites of RNA Synthesis in VSV Infected Cells
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1:500 dilution. Calnexin was detected using a 1:250 dilution of a

mouse anti-calnexin antibody (BD Transduction Laboratories,

Franklin Lakes, NJ). GM130 was detected using a 1:100 dilution of

a mouse anti-GM130 antibody (BD Transduction Laboratories).

Early endosomal antigen 1 (EEA1) was detected using a 1:500

dilution of a mouse anti-EEA1 antibody (BD Transduction

Laboratories). Secondary labeling was performed using 1:750

dilutions of an anti-mouse antibody conjugated to DyeLight-549

(Jackson ImmunoResearch). Lysosomes and mitochondria were

detected by LysoTracker and MitoTracker dyes (Invitrogen) used

according to the manufacturer’s instructions.

Wide-field images were acquired using a Zeiss Axioplan 2 inverted

fluorescence microscope (Carl Zeiss MicroImaging, Germany)

equipped with a 636 (NA 1.4) objective. Samples were excited with

a Xenon lamp, and filtered emission photons were collected with a

Hamamatsu Orca-HR (C4742-94) camera (Hamamatsu, Bridge-

water, NJ). Confocal images were acquired using a Zeiss observer Z1

microscope (Carl Zeiss MicroImaging) fitted with a confocal spinning

disk unit (Yokogawa Electric Corporation, Atlanta, GA) and a 636
(NA 1.4) objective. Excitation wavelengths were 473 nm for Alexa

Fluor-488, 561 nm for Alexa Fluor-594 or DyeLight-549 and

660 nm for DyeLight-649. For 3-D acquisitions, images were

captured at intervals of 0.26 mm. The X, Y, Z positions of the stage

were controlled using a PZ-2000 automated stage (Applied Scientific

Instrumentation, Eugene, OR). Microscope hardware was controlled

with Slidebook 4.2 Software (Intelligent Imaging Innovations,

Denver, CO).

Electron microscopy
Vero cells were infected with VSV at an MOI of 3 and fixed

6 hpi with 2.5% glutaraldehyde (Electron Microscopy Sciences,

Hatfield, PA) to preserve membrane integrity and 2% parafor-

maldehyde (Sigma) in 0.1 M sodium cacodylate buffer (pH 7.4)

(Sigma) for 1h. The cells were then postfixed for 30 min in 1%

osmium tetroxide (OsO4)/1.5% potassiumferrocyanide (KFeCN6)

(Electron Microscopy Sciences), washed 3 times in H2O and

incubated in 1% aqueous uranyl acetate (Sigma). This was

followed by 2 washes in H2O and subsequent dehydration in

grades of alcohol for 5 min each (50%, 70%, 95%, 26 100%).

For immunogold EM, infected cells were fixed 6 hpi with 2%

paraformaldehyde (Sigma) and labeled with primary antibodies

against viral L (1:100 dilution) and N (1:50 dilution) as above. To

detect P, we infected cells instead with VSV-eGFP-P and

visualized the location of P with a rabbit anti-GFP antibody

(1:50 dilution) (Sigma). Secondary labeling was performed with

anti-rabbit or anti-mouse nanogold-1.4 nm (1:50 dilution) in 1%

BSA for 1 h at RT. Samples were washed 56 in 16PBS/1% BSA

for 1h and postfixed in 1% glutaraldehyde (Electron Microscopy

Sciences) in 16 PBS for 10 min. Cells were then washed 3 times

for 5 min in PBS, followed by 2 washes for 5 min in deionized

water and 1 wash for 5 min in 0.02 M citrate buffer. The 1.4 nm

gold particles were silver enhanced (giving ,15–40 nm particles)

by incubating the samples for 4 min in freshly mixed developer

using the HQ Silver Enhancement kit (Nanoprobes, Yaphank,

NY) and rinsed 3 times in deionized water for 1 min. Cells were

treated with 0.5% osmium tetroxide before dehydration.

For embedding, unlabeled and immunogold labeled cells were

removed from dishes using propyleneoxide (Sigma), pelleted at

3000 rpm for 3 min and infiltrated for 2 h in an equal mixture of

propyleneoxide and TAAB Epon (Marivac Canada Inc., St.

Laurent, Canada). The samples were subsequently embedded in

TAAB Epon and polymerized at 60 degrees C for 48 h. Ultrathin

sections (about 60nm) were cut on a Reichert Ultracut-S

microtome, picked up on to copper grids stained with lead citrate

and examined in a TecnaiG2 Spirit BioTWIN. Images were

recorded with an AMT 2k CCD camera.

Incorporation of modified nucleotides into viral RNAs in
vitro

Viral RNAs were transcribed in vitro as previously described [36]

with minor modifications [37]. Detergent activated, purified

recombinant VSV (rVSV) (10 mg) was incubated in the presence

of nucleoside triphosphates (1 mM ATP and 0.5 mM each of

CTP, GTP and UTP). Where indicated, reactions were supple-

mented with 0.1–1 mM 5-bromouridine 59-triphosphate sodium

salt (BrUTP) (Sigma), fluorescein-12-UTP, -GTP, -ATP, Alexa

Fluor-488-UTP (Invitrogen), Cy3-17-UTP (General Electric Life

Sciences, UK) or 15 mCi of [a-32P]-GTP (Perkin Elmer, Waltham,

MA). As a control, transcripts were also synthesized by T7 RNA

polymerase (New England Biolabs, Beverly MA) using the

previously described VSV expression plasmid pN [38].

Incorporation of BrUTP into RNA in cells
Approximately 30,000 BSR-T7 cells grown on cover slips in 24

well plates were infected with VSV at the specified MOI (3–500).

At the indicated times post infection, cells were depleted of uridine

by low glucose DMEM (Invitrogen) supplemented with 20 mM

glucosamine (Sigma), and transfected 1h later with 5 mM BrUTP

in 250 ml of DMEM supplemented with 6 ml of lipofectamine 2000

(Invitrogen). In some experiments, cells were treated 15–

40 minutes prior to BrUTP labeling with a variety of chemical

inhibitors (Sigma). Specifically, we used 10 mg ml21 actinomycin

D (ActD) to inhibit cellular transcription, 100 mM nocodazole

(Noc) to disrupt microtubules or 10 mg ml21 puromycin (Pur) to

inhibit protein synthesis. For pulse-chase analyses, the cell culture

medium was supplemented with 50 mM uridine (Sigma) through-

out the chase period. In some experiments, RNAs were

simultaneously metabolically labeled by the incorporation of

33 mCi ml21 [3H]-uridine (Perkin Elmer) from 4–9 hpi.

Purification and analysis of RNA by electrophoresis
The products of in vitro synthesis reactions were purified using an

RNeasy kit (Qiagen). For cellular RNA analysis, cytoplasmic

extracts were prepared and RNA was purified by phenol-

chloroform extraction as described previously [38]. Where

indicated, RNAs were immune precipitated by incubation with a

monoclonal antibody raised against bromodeoxyuridine (Roche

Diagnostics, Indianapolis, IN). Immune precipitations were

performed in Rose lysis buffer (1% Nonidet P40, 66 mM EDTA,

10 mM Tris-HCl pH 7.4) and the immune complexes collected

using protein G magnetic beads (NEB). RNA was analyzed by

electrophoresis on agarose-urea gels [39] and detected using a

Typhoon 9400 PhosphoImager (GE Healthcare).

Metabolic labeling of proteins
At the indicated times post infection, cells were starved of L-

methionine and L-cysteine for 1h in the presence of 10 mg ml21

ActD. Where indicated, cells were exposed to 10 mg ml21 Pur for

1 h or 100 mM Noc during the last 15 min of starvation. Proteins

were labeled by addition of 17.5 mCi [35S]EasyTag express (Perkin

Elmer) in DMEM lacking L-methionine and L-cysteine (Invitro-

gen). Where indicated, nocodazole was washed out to permit

repolymerization of microtubules. Total cytoplasmic proteins were

analyzed by 10% SDS-PAGE and detected by phosphoimage

analysis. Quantitative analyses were performed using ImageQuant

Software (GE healthcare).

Sites of RNA Synthesis in VSV Infected Cells
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Results

In infected cells, the VSV replication machinery is found
in inclusions

Previously we described a recombinant VSV in which eGFP

was fused to the N terminus of P [33]. In cells infected with this

virus, we observed that the eGFP-P protein localized to discrete

inclusions that were heterogeneous in size and shape (Figure 1A).

This was not simply a consequence of protein overexpression, as

we observed that eGFP-P was distributed throughout the cell when

expressed alone from a plasmid (Figure 1B). The eGFP-P

inclusions are visually similar to inclusions observed in rabies

virus infected cells that were shown to be sites of RNA synthesis

[30]. Consistent with the experiments with rabies virus, the VSV

N and L proteins also colocalize with P at inclusions (Figure 1C

and D respectively). The kinetics of VSV replication are very rapid

Figure 1. VSV N, P and L proteins localize to inclusions in infected cells. (A) CV-1 cells were infected with VSV-eGFP-P at an MOI of 3 and
fluorescent microscopy images acquired at 5 hours post infection (hpi). (B) CV-1 cells were transfected with 3.8 mg of a plasmid expressing eGFP-P
and examined by fluorescence microscopy at 24 hours post transfection. An image of a single representative cell illustrating the typical distribution
of P is shown. (C and D) BSR-T7 cells were infected with VSV-eGFP-P or VSV-RFP-P respectively as in panel A, and N (panel C, red) and L (panel D,
green) were detected by immune fluorescence microscopy. (E and F) Vero cells were infected with rVSV at an MOI of 5, and the distribution of the N
(red) and L (green) proteins (panel E) or M (green) and L (red) proteins (panel F) was detected by IF microscopy at the indicated hpi. (G) Vero cells
were infected with rVSV as in panel A and at 6 hpi were prepared for thin-section electron microscopy. To preserve intracellular membrane structures,
samples were fixed with glutaraldehyde as in methods. (H–J) Vero cells were infected with rVSV (H, J) or rVSV-eGFP-P (I) and prepared at 6 hpi for
immuno gold labeling as described in methods. Size bars are 5mm (panels A–D), 10mm (panels E, F) and 0.5mm (panels G–J). Note samples B–F were
also stained with DAPI to visualize the nuclei. ER = endoplasmic reticulum, Nuc = nucleus, Mit = mitochondria, VIB = viral inclusion body.
doi:10.1371/journal.ppat.1000958.g001

Sites of RNA Synthesis in VSV Infected Cells
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in cell culture with yields of virus increasing by .2 log by 4 hour

post inoculation. We therefore monitored the kinetics of inclusion

formation in cells over time. To do this, we infected cells with

rVSV at a multiplicity of infection (MOI) of 5 and monitored the

location of the N and L proteins by IF microscopy. Multiple foci of

N were detected as early as 2 hours post infection (hpi), with

characteristic inclusion-like structures being visualized by 4 h

(Figure 1E). As infection progressed the size of the inclusions

appeared to increase (Figure 1E). In contrast to the viral proteins

required for replication, the matrix (M) protein was neither

enriched nor excluded from these structures (Figure 1F).

To examine the cellular location of the inclusion-like

structures, we performed electron microscopy of cells infected

with VSV. As previously [40], viral inclusion bodies (VIB) were

detected in the cytoplasm of the cell (Figure 1G–J). These

inclusions do not appear to be associated with a cellular

membrane or specific organelle (Figure 1G). Consistent with

this, we did not detect colocalization of the inclusions with

markers for the endoplasmic reticulum, Golgi, endosomes,

lysosomes, and mitochondria (Figure S1). Rather, the inclusions

contain the viral N, P and L proteins which were readily detected

by immunogold electron microscopy (Figure 1H–J). These

observations confirm that like rabies virus, the VSV replication

machinery is found in discrete viral derived inclusion-like

structures in infected cells.

Incorporation of BrUTP into viral RNA
To visualize de novo synthesis of viral RNA, we tested the ability

of purified VSV L protein to incorporate fluorescent nucleotides in

vitro. Viral RNA synthesis was inhibited in reactions containing

fluorescein-12-UTP, -GTP or -ATP, Alexa Fluor-488-UTP or

Cy3-17-UTP or the RNA products were not fluorescent (data not

shown). This result indicates that L cannot incorporate nucleotides

that contain such large modifications. To test whether nucleotides

with smaller modifications can be incorporated into viral RNA, we

supplemented in vitro transcription reactions performed in the

presence of [32P]-GTP with 5-BrUTP, and monitored the

products of RNA synthesis by electrophoresis on acid-agarose

gels (Figure 2A). As the concentration of BrUTP in the reaction

increased from 0–1 mM, the overall yield of RNA decreased and

the transcripts migrated with a slightly faster mobility. The altered

mobility of the RNA suggests that L incorporates BrUTP into the

mRNA as a similar mobility shift is observed for transcripts

synthesized by T7 RNA polymerase (Figure 2A). The presence of

BrUTP in the viral transcripts was confirmed by their selective

immune precipitation with an antibody directed against bromo-

deoxyuridine, which failed to precipitate unmodified RNA

(Figure 2B). The BrUTP labeled mRNAs were also retained by

oligo dT chromatography, which demonstrates that the mRNAs

are full-length and contain polyadenylate (Figure 2C). The

agarose-urea gels separate products based upon their molecular

weight as well as charge [39], which likely accounts for the

observed mobility shift.

To examine whether BrUTP is similarly incorporated into viral

RNA in cells, we transfected 5 mM BrUTP into BSR-T7 cells that

were infected 6 hours earlier with VSV. Infected cells were

subsequently exposed to [3H]-uridine in the presence of ActD to

permit the labeling of viral RNA, and the total cellular RNA was

extracted, purified and BrUTP incorporation determined by

immune precipitation prior to electrophoresis on acid-agarose gels.

Consistent with the incorporation of BrUTP by the VSV

polymerase in vitro, viral mRNAs were immune precipitated from

cells that were transfected with BrUTP, but not from cells that

lacked BrUTP (Figure 2D). This set of experiments demonstrates

that VSV L incorporates 5-BrUTP into viral mRNA in vitro and in

infected cells.

Visualization of viral RNA in infected cells
To visualize the cellular localization of viral RNA, we infected

BSR-T7 cells with rVSV-RFP-P, and 5 hours later treated the

cells with ActD to inhibit cellular transcription and glucosamine to

deplete the intracellular pool of uridine [41,42]. Following a

1 hour incubation, the RNA was labeled by incorporation of

BrUTP for 1 hour and was subsequently visualized by IF

microscopy. In infected cells - as evidenced by the RFP-P

inclusions - we found BrUTP labeled RNA distributed throughout

Figure 2. VSV RNA polymerase incorporates BrUTP during transcription in vitro and in vivo. (A) Incorporation of BrUTP into RNA
synthesized in vitro. An autoradiograph of an acid agarose-urea gel is shown, depicting RNA transcribed by T7 RNA polymerase from a plasmid
encoding VSV N (lanes 1–5) or synthesized by detergent activated virus in vitro (lanes 6–10) in the presence of increasing concentrations (0, 0.1, 0.5 or
1 mM) of BrUTP. The products of the reactions are indicated alongside the gel. (B) The samples of panel A were immune precipitated using an
antibody raised against bromodeoxyuridine prior to acid-agarose gel electrophoresis. (C) The samples of panel A were isolated by oligo-dT
chromatography prior to acid-agarose gel electrophoresis. (D) BSR-T7 cells were infected with wild-type VSV and, where indicated (+), transfected
4 hpi with BrUTP (5mM final concentration). Cells were exposed to [3H]-uridine for 5 hours and RNA was isolated prior to acid-agarose gel
electrophoresis. Where indicated (IP) the RNA was immunoprecipitated as in panel (B).
doi:10.1371/journal.ppat.1000958.g002

Sites of RNA Synthesis in VSV Infected Cells
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the cytoplasm (Figure 3A, row 1, arrows). No BrUTP labeled RNA

was detected in uninfected cells (Figure 3A, rows 1 and 2). As

expected, in the absence of ActD we observed BrUTP labeled

cellular RNA, which was predominantly localized to the nucleus

(Figure 3A, row 3, arrowheads), and no RNA was visualized in

cells that did not receive BrUTP (Figure 3A, row 4). This result

shows that VSV RNA is localized throughout the cytoplasm in

infected cells. We could not discriminate, however, whether viral

RNA was synthesized throughout the cytoplasm, or at the RFP-P

inclusions followed by subsequent movement. Consistent with this

latter idea, we detected BrUTP labeled RNA in close proximity to

inclusions as well as throughout the cytoplasm when BrUTP

incorporation was allowed to proceed for only 30 minutes prior to

fixation (Figure 3B, arrows).

Viral RNAs are transported away from their site of
synthesis in a microtubule- dependent manner

Movement of viral RNA from inclusions may occur via a passive

or an active transport mechanism. The process of active transport

should be dependent upon the presence of an intact cytoskeletal

network. To examine whether the distribution of viral RNA is

microtubule-dependent, we monitored RNA localization in VSV

infected cells following chemical depolymerization of microtubules

(MTs) with nocodazole. Under those conditions viral RNA was

confined to specific regions of the cytoplasm (Figure 4A). In VSV-

RFP-P infected cells, we observed the viral RNA surrounding the

RFP-P inclusions in discrete quanta following a 40-minute pulse of

BrUTP (Figure 4B, lower panel). These images suggest that viral

RNA synthesis occurs at the inclusions, and that viral RNA is

transported away from the inclusions in a MT-dependent manner.

A pulse-chase analysis confirms that viral RNA is
transported away from inclusions

To confirm that viral RNA was transported away from

inclusions, we performed a pulse-chase analysis. To do this, we

first depleted intracellular pools of uridine with glucosamine

(+Gluc) [41,42], labeled the RNA by incorporation of BrUTP and

then subsequently ‘‘chased’’ with a 10-fold excess of unlabeled

uridine (see schematic in Figure 5A). When nocodazole was absent

during the indicated chase period, the viral RNA granules were

found a range of distances away from the inclusions rather than

closely surrounding them (Figure 5B). This observation confirmed

that the RNA was transported away from the inclusions in a

microtubule-dependent manner and suggests that this is an active

process. Consistent with this notion, RNA granules were observed

along and in close proximity to microtubules (Figure 5C, enlarged

inset, arrows). These RNA localization experiments reveal that

VSV RNA is synthesized at inclusions in infected cells and that the

viral RNA is transported away from those inclusions in a

microtubule-dependent manner to become distributed throughout

the cytoplasm.

The viral replication machinery is localized to inclusions
that are active sites of RNA synthesis

The viral protein requirements for RNA synthesis are N, P and

L. To determine whether inclusions containing N, P and L are

active sites of RNA synthesis, we infected cells with either rVSV or

rVSV-RFP-P and visualized RNA and protein using confocal

microscopy. In these experiments, we restricted RNA to its site of

synthesis by treating cells with nocodazole prior to transfection of

BrUTP. The viral RNA was observed as granular structures

around inclusions that were visualized by RFP-P expression or

following staining with antibodies against N or L (Figure 6A). All

visible inclusions are decorated with viral RNA suggesting that

they are each sites of RNA synthesis (Figure 6A and Videos S1, S2,

S3, S4, S5 and S6). Triple wavelength imaging of the RFP-P, L

and the BrUTP RNA confirmed that the viral proteins colocalize

and that viral RNA is present at the inclusions (Figure 6B). This

experiment demonstrates that the viral protein requirements for

RNA synthesis are localized to inclusions in infected cells, and that

those inclusions are sites of RNA synthesis. Although the N, P and

L proteins colocalize to inclusions, the RNA surrounds, but

appears to be excluded from, the inclusions. Whether this reflects

synthesis of the RNA at specific sites on the surface of the inclusion

or a limitation of detection of the RNA within the inclusion is

uncertain. The RNA decorating the inclusion also colocalized with

N protein, but not the P or L protein. This colocalization with N,

may reflect the previously reported association of viral mRNA

Figure 3. Visualization of viral RNAs in VSV infected cells. (A)
Fluorescent microscopy images of BSR-T7 cells showing virus infection
(red), viral RNA (green) and the cell nuclei (blue). Cells were infected
(+Inf) with rVSV-RFP-P at an MOI of 3 or mock infected (2Inf). At 5 hpi,
cells were depleted of UTP, treated with actinomycin D (+ActD) and
where indicated transfected 1h later with 5mM BrUTP (+BrUTP).
Following 1h incubation at 37uC to allow incorporation of BrUTP into
RNA, cells were fixed and the RNA was detected using an Alexa Fluor-
488 conjugated antibody against bromodeoxyuridine. The RFP-P
protein was visualized at 561nm, and the cell nuclei were stained with
DAPI. (B) Cells were infected and processed as in panel A, except that
the duration of the BrUTP labeling was reduced to 30 minutes. Size
bars = 5mm.
doi:10.1371/journal.ppat.1000958.g003
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with N protein [43], and/or may represent the N encapsidated

viral genomes.

Primary RNA synthesis occurs throughout the cytoplasm
The above experiments show that viral RNA is synthesized at,

and actively transported away from inclusions. To establish

infection however, the input RNP must synthesize mRNA

presumably in the absence of such inclusions. To determine

where such primary transcription occurs, we infected BSR-T7 cells

with rVSV-RFP-P at an MOI of 500 in the presence of the protein

synthesis inhibitor puromycin and monitored RNA synthesis by

BrUTP incorporation. Genome replication requires the ongoing

synthesis of N protein [29], so treatment of cells with puromycin

results exclusively in mRNA synthesis. Under those conditions,

viral mRNA was distributed throughout the cytoplasm even when

active transport on microtubules was abolished by treatment with

nocodazole (Figure 7A). This observation suggests that protein

synthesis is required for inclusion formation at which subsequent

RNA synthesis occurs, and demonstrates that the viral mRNAs are

not simply restricted to specific cytoplasmic sites by disruption of

the MT network. By infecting cells with rVSV and detecting the

input RNPs and primary transcripts we also show that they are

distributed throughout the cytoplasm at distinct locations (Figure

S2). This distribution of mRNA throughout the cytoplasm is not

simply a consequence of inhibiting protein synthesis, as treatment

of cells with puromycin at 7 hpi results in the typical distribution of

mRNA around inclusions (Figure 7B). By metabolic labeling of

viral RNA, we confirmed that puromycin inhibits genome

replication (Figure 7C). In contrast, nocodazole treatment is

relatively inert with regard viral RNA synthesis (Figure 7D). Taken

Figure 4. Viral RNA concentrates at the inclusions following depolymerization of microtubules with nocodazole. (A) rVSV infected
BSR-T7 cells (MOI = 3) were treated 4 hpi with nocodazole for 1h before transfection with BrUTP. Disruption of the microtubule network was
confirmed by immunostaining with an a-tubulin antibody (red). Viral RNAs (green) were visualized as described in Figure 3. (B) BSR-T7 cells were
infected with rVSV-RFP-P (red), treated with nocodazole and examined by fluorescence microscopy as in (A). Size bars = 10mm.
doi:10.1371/journal.ppat.1000958.g004
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together these data show that primary viral transcription occurs

throughout the cytoplasm, and that protein synthesis is required to

establish an inclusion at which subsequent RNA synthesis takes

place. Since genome replication is inhibited in the presence of the

protein synthesis inhibitor puromycin, the experiment also directly

demonstrates that the inclusions are sites of secondary mRNA

synthesis.

Microtubule-dependent transport of the viral mRNA
enhances translation

To determine whether the transport of the viral mRNA was

biologically important, we evaluated the effect of nocodazole

treatment on the rate of viral protein synthesis by metabolic

labeling. Following short-term nocodazole treatment, the rate of

viral protein synthesis was diminished by 40% compared to that in

untreated cells (Figure 8A and C). In contrast, the rate of total

cellular translation was unaffected by nocodazole treatment

(Figure 8A and C). This suggests that a MT-dependent transport

process is specifically required for efficient viral protein synthesis.

To correlate those effects on protein synthesis with transport of the

VSV mRNA, we performed an experiment in which we washed

out nocodazole and metabolically labeled cells with [35S]-

methionine (Figure 8B and D) or monitored the location of the

BrUTP RNA (Figure 8E). Translation of viral mRNA was rapidly

restored (within 15 minutes) of nocodazole wash-out (Figure 8B

and D), and this restoration of protein synthesis capability was

congruent with the transport of the mRNA away from the

inclusion (Figure 8E). While full assembly of the microtubule

network takes longer than the time period of our labeling

experiment, the repolymerization of microtubules is visible within

5–10 minutes of nocodazole wash-out in many fibroblast cells,

including Vero and baby hamster kidney cells used here [44,45].

This experiment therefore correlates the effects of nocodazole

treatment on protein synthesis with the physical location of the

mRNA and provides evidence that the transport of the viral

mRNA away from inclusions is required to maintain a high rate of

protein synthesis.

Discussion

In this study, we examined the sites of viral RNA synthesis in

cells infected with VSV. By direct biochemical analysis of the

products of RNA synthesis in vitro and in cells we show that VSV L

incorporates BrUTP into viral mRNA. We used triple wavelength

confocal microscopy to image the localization of the viral mRNA

and the N, P and L proteins that are necessary for RNA synthesis.

The following major conclusions are apparent from our study. The

incoming viral RNP can synthesize mRNA throughout the

cytoplasm of the cell. Once protein synthesis occurs, viral

Figure 5. Viral RNA is transported away from inclusions in a microtubule-dependent manner. (A) Schematic of the RNA pulse-chase
experiment performed in (B). (B) BSR-T7 cells were infected with rVSV-RFP-P (MOI = 3) and RNA was labeled using the strategy outlined in A. Viral
RNAs (green) and RFP-P (red) are shown following a 70-minute chase in which nocodazole was present (upper panels) or washed out (w/o, lower
panels) for the last 30 min. (C) An image of an rVSV infected BSR-T7 cell showing some BrUTP labeled RNA (green) is associated with a-tubulin (red).
Size bars = 5mm.
doi:10.1371/journal.ppat.1000958.g005
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Figure 6. The VSV N, P and L proteins localize at the sites of RNA synthesis. (A) Images of BSR-T7 cells infected with rVSV or rVSV-RFP-P
showing the distribution of the viral replication machinery N, P and L (red) in relation to newly synthesized VSV RNA (green). Cells were infected at an
MOI of 3 and at 4 hpi depleted of intracellular UTP and treated with ActD and nocodazole. Following a 1h incubation, cells were transfected with
BrUTP and fixed 40 minutes later. N and L proteins and viral RNA were detected by antibody staining and images acquired by confocal microscopy.
(B) Cells were treated as above. Triple labeling shows viral RNA (green) at the site of synthesis together with P (red) and L protein (blue). Size
bars = 5mm.
doi:10.1371/journal.ppat.1000958.g006
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inclusions form that contain the viral RNA synthesis machinery

and are the major sites of RNA synthesis. For efficient translation

the viral mRNAs are transported away from inclusions. These

findings are directly relevant to understanding whether viral

derived inclusions represent preferred sites of RNA synthesis

established by viruses in cells, or are instead a secondary

consequence of the host response to infection.

Location of VSV RNA synthesis
Detection of the first RNA synthetic events even following high

multiplicity infection is challenging to visualize. All studies to date

have reported on the presence of sites of RNA synthesis once

replication has been established. Here we took advantage of the

intrinsic properties of VSV with regard the ability to infect cells at

high MOI, and inhibit all RNA synthesis other than that directed

by the input genomic RNP complex. By performing infections in

the presence of protein synthesis inhibitor puromycin, we show

that primary viral mRNA synthesis occurs throughout the

cytoplasm (Figure 7). The distribution of the primary mRNAs

appears unaffected by nocodazole treatment of cells (Figure 7A),

consistent with the idea that the infecting RNP can synthesize

RNA anywhere within the cytoplasm and that a specialized site is

not required to compartmentalize the RNA synthesis machinery.

In contrast, once viral protein synthesis occurs, RNA synthesis

appears to be predominantly localized to inclusions. Although our

experiments demonstrate that protein synthesis is essential for the

formation of the inclusion, we cannot be certain whether this

reflects a requirement for viral protein synthesis alone, or whether

cellular protein synthesis might also be required. The requirement

for viral protein synthesis raises the possibility that the formation of

such inclusions may reflect an ability of the host cell to detect the

‘‘foreign’’ viral proteins, which triggers a response that results in

the viral replication machinery being corralled into an inclusion-

like structure. Such an idea is also compatible with the observation

that inclusions are not observed until viral replication is established

(Figure 1E).

Figure 7. Viral protein synthesis is required to establish inclusions that are sites of RNA synthesis. (A) Visualization of primary mRNA
transcripts. BSR-T7 cells were treated with puromycin 15 minutes before infection with rVSV-RFP-P (red) at an MOI of 500. At 2 hpi, cells were
depleted of intracellular UTP, exposed to ActD and where indicated, treated with nocodazole. After 1 h, cells were transfected with BrUTP and viral
RNA (green) was detected 1h later by immune fluorescence microscopy. (B) Visualization of secondary mRNA transcription. Cells were infected with
rVSV-RFP-P at an MOI of 3, treated with puromycin at 7hpi, depleted of UTP, followed by treatment with nocodazole and ActD. Cells were then
transfected with BrUTP and RNA detected 40 minutes later by immune fluorescence microscopy. Note, the size bars in panels A and B = 5mm. (C and
D) BSR-T7 cells were infected with rVSV at an MOI of 3 and viral RNA labeled with [3H]-uridine as described in methods, resolved by electrophoresis
on acid-agarose gels and visualized by fluorography. Where indicated, cells were pretreated for 15-minutes with puromycin (panel C) or nocodazole
(panel D) which remained present throughout the course of the labeling.
doi:10.1371/journal.ppat.1000958.g007
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Figure 8. Microtubules are required for efficient translation of VSV mRNAs. (A) BSR-T7 cells were infected with rVSV at an MOI of 3 and
following a 15 minute treatment with nocodazole 4 hpi, proteins were labeled by metabolic incorporation of [35S]-methionine. After a 5–15 minute
labeling period, cytoplasmic extracts were prepared and analyzed by SDS-PAGE and proteins detected using a phosphoimager. (B) BSR-T7 cells were
treated as in (A) except that nocodazole was washed out (wash-out) from the media prior to metabolic labeling. [35S]-methionine was added
immediately after removal of nocodazole (time point 0) or at subsequent 5-min intervals, and incorporation allowed to proceed for 10 min. (C)
Quantitative analysis of protein synthesis from four independent experiments of panel A. The intensity of the entire lane (for cellular translation) or of
the M protein (for viral translation) was measured using ImageQuant software and expressed as a % of the intensity of the time matched control that
lacked nocodazole. Error bars represent standard deviations. (D) Quantitative analysis of protein synthesis from three independent experiments of
panel B. The intensity of the M band for each time point was compared to the –Noc control. Error bars represent standard deviations. (E) BSR-T7 cells
were infected with rVSV-RFP-P at an MOI of 3. At 4 hpi, cells were exposed to ActD and nocodazole, and 15 minutes later were transfected with
BrUTP. Following 40 min of BrUTP incorporation, nocodazole was removed from the media and cells were fixed immediately (0 min) or following a 5–
15 min incubation. RNA and inclusions were visualized as previously. Size bar = 3 mm.
doi:10.1371/journal.ppat.1000958.g008
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Conversely, viral proteins might be specifically targeted to such

inclusions to promote RNA synthesis and/or assembly of progeny

RNPs. While the input RNP can synthesize mRNA in the absence

of inclusions (Figure 7 and S2), the picture for genome synthesis is

not certain. The kinetics with which inclusions are detected in cells

(Figure 1E) suggests that genome replication might occur in the

absence of inclusion formation. We cannot, however, eliminate the

possibility that smaller inclusions that are not readily visualized by

our microscopy approaches are present prior to genome

replication. Once inclusions are formed, they become the major

sites of RNA synthesis. Although we did not formally demonstrate

that RNA replication itself occurs at the inclusion, viral genomes

must be present at the inclusion to provide the template for

mRNA synthesis. The simplest interpretation of the data is that

replication as well as transcription occurs at the inclusions.

Experiments with the related NNS RNA virus, parainfluenza viurs

5 (PIV5) show that viral genomes are targeted into similar

cytoplasmic inclusion bodies that contain the viral replication

machinery [46]. In this case, however, it was suggested that the viral

genomes reside in such inclusions whilst the virus dismantles the host

innate immune response. This suggestion stems from the observation

that the viral genomes are largely restricted to such inclusions

following treatment of infected cells with interferon, linking an

antiviral response to the presence of inclusions [46]. While we did not

employ interferon treatment of cells in this study, we infected Vero

cells (Figure 1E), which are known to have defects in interferon

production. Consequently interferon production itself is not required

for viral inclusion formation. We also tested a VSV mutant that is

defective in host cell shut-off and is substantially less cytopathic. This

virus contains a single mutation in the M gene that results in amino

acid substitution M51R [47]. In cells infected with this rVSV-M51R

virus, the viral replication machinery was also localized to inclusions

(data not shown). Further experiments will therefore be required to

examine the relationship between inclusion formation and the host

response to infection.

Prior to the present study, experiments with two members of the

Rhabdoviridae, rabies and VSV had reached different conclusions

regarding the intracellular site of RNA synthesis. For rabies virus,

RNA synthesis occurs at intracytoplasmic inclusions [30], whereas

with VSV the viral RNA was found throughout the cytoplasm [32].

Working with VSV, we now show that RNA synthesis occurs

throughout the cytoplasm prior to protein synthesis. This is clearly

visualized in cells infected with wild-type VSV in which the input

RNPs are visualized by staining with an antibody against N protein

and the newly synthesized mRNA using an antibody against BrUTP

(Figure S2). In this case, 100s of input viral particles are detected

along with the RNA. Once viral protein synthesis occurs, RNA

synthesis is redirected to inclusions - even in cells infected at very high

multiplicity of infection (data not shown). Our analysis also

demonstrates that RNA, which is synthesized at inclusions, is

subsequently transported along microtubules to become distributed

throughout the cytoplasm. This likely explains the previous

observation [32] that VSV RNA was present throughout the

cytoplasm.

Microtubule-dependent RNA transport
The mechanism by which mRNA moves away from the

inclusions involves transport along microtubules. Three pieces of

evidence support this conclusion. First, the viral mRNAs are

restricted to the inclusions following chemical depolymerization of

microtubules with nocodazole. Second, the restriction of viral

RNA to the inclusions is quickly released upon wash-out of

nocodazole; and third, the viral mRNA are visualized along

microtubules. The finding that viral RNA undergoes such directed

transport is perhaps unsurprising as cellular and other viral RNA is

frequently transported within the cytoplasm [48,49]. For HIV,

which synthesizes mRNA in the nucleus, the viral mRNA is

transported in a microtubule-dependent manner to cytoplasmic

ribosomes for translation [50]. For VSV mRNA, we do not know

whether the RNA directly engages microtubule motor proteins or

whether additional proteins are required to form an RNP complex

that is transported by such motor proteins. Neither do we know

which motor proteins are required for this process of RNA

transport. It seems likely, however, that VSV has coopted the

conventional cellular RNA transport machinery for this purpose.

Ongoing experiments are aimed at determining how the virus

ensures that its mRNAs are transported from their site of synthesis.

An intriguing possibility is that the viral N protein facilitates this

process. This is suggested by the fact that N protein is colocalized

with the RNA on the surface of inclusions, but not once the RNA

is transported away from the surface (Figure 6A).

By metabolic incorporation of [35S]-met, we also show that the

depolymerization of microtubules diminished the rate of viral

protein synthesis by 40% (Figure 8). Since we measured rates of

protein synthesis rather than steady state levels, this suggests that

ongoing transport of mRNA from inclusions facilitates translation.

The rapid kinetics with which rates of viral protein synthesis are

recovered following wash-out of nocodazole provides further

support for the importance of an intact MT network for efficient

translation. The finding that an intact MT network is required for

efficient translation is in agreement with earlier work that

demonstrated that VSV mRNAs initially associate with the

cytoskeletal framework which facilitates their translation [51].

Our work now extends on this by providing evidence that the

mRNAs are loaded onto the cytoskeletal network at the inclusions

and this facilitates their translation. This suggests that the virus has

evolved to make use of cellular transport pathways to ensure that

the mRNAs are exported from the inclusions for translation.

VSV mRNAs are indistinguishable from cellular mRNA but they

are translated efficiently in the presence of a profound host cell shut-

off. Attempts to define a specific feature of the viral mRNA that

facilitates this efficient translation have revealed that this is not an

inherent property of the RNA. Rather, it reflects the ongoing and

abundant transcription of viral mRNA from the genome [52]. Our

data are consistent with and provide further support for this notion, as

depolymerization of MT diminishes the rate of viral protein synthesis,

even at 5 hpi when the intracellular pool of viral mRNA is high. We

cannot eliminate the alternate possibility, that the structural integrity

of the MT network plays a direct role in the translation of the viral

mRNA. Since we did not observe a similar reduction in cellular

protein synthesis following treatment with nocodazole (Figure 8A and

C), we find this alternate explanation unlikely. It is currently unclear

why there is a need for ongoing mRNA synthesis and transport to

facilitate efficient viral protein synthesis.

Formation of viral inclusions
In cells infected with VSV, we do not observe inclusion

formation until infection has been established (Figure 1E).

Combined with the fact that we can observe primary mRNA

synthesis throughout the cytoplasm we favor the idea that a host

response to infection results in the formation of inclusions. This

may reflect a response to the production of viral RNA, and/or the

N, P and L proteins. Since our data indicate that the viral mRNA

are transported away from the inclusions for efficient translation,

the viral proteins must in turn be targeted back to inclusions.

Experiments with rabies virus suggest that the inclusions share

some properties with cellular aggresomes [53,54]. Aggresomes are

cellular structures that recruit misfolded proteins by a dynein-
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dependent retrograde transport on microtubules [53,54]. Such a

transport mechanism might ensure the recruitment of viral

proteins to inclusions. For rabies virus it has been demonstrated

that P interacts with the LC8 dynein light chain [55,56], and this

may in turn bring L and N to such sites. Ongoing experiments are

defining the mechanism by which VSV proteins are transported to

such sites, as well as understanding whether the inclusions share

properties with known cellular structures.

Compartmentalization of the viral replication machinery is a

common property of many RNA viruses. Whether such compart-

ments serve to facilitate RNA synthesis, shield the products of RNA

synthesis from detection by innate immune sensors or are a

consequence of a host response to infection is uncertain. Our work

shows that for VSV, initial RNA synthesis occurs throughout the

cytoplasm and that only in the presence of protein synthesis are

inclusions formed. Such analysis of early events in infection,

combined with the cost to viral protein synthesis of restricting

mRNA to the inclusions lends some support to the idea that

inclusions may reflect a host response to infection. Further work with

VSV will likely help resolve the functional significance of such

compartments in NNS RNA virus infected cells.

Supporting Information

Figure S1 Localization of inclusions in relation to cellular

membranes and organelles. CV-1 cells were infected with rVSV-

eGFP-P (pseudo-colored in red) at an MOI of 3, fixed at 6 hpi and

markers of the endoplasmic reticulum (calnexin), Golgi (GM130) and

early endosomes (early endosomal antigen 1, EEA1) detected by

immune fluorescence microscopy (green). Lysosomes and mitochon-

dria were detected by incorporation of fluorescent lysotracker and

mitotracker (green) into cells for 30 minutes prior to fixation. Cell

nuclei were counterstained with DAPI (blue). Size bars = 10 mm.

Found at: doi:10.1371/journal.ppat.1000958.s001 (2.39 MB TIF)

Figure S2 Visualization of primary mRNA transcripts and input

RNPs. BSR-T7 cells were treated with puromycin 15 minutes

before infection with rVSV at an MOI of 500. At 2 hpi, cells were

depleted of intracellular UTP and exposed to ActD and

nocodazole. After 1 hour, cells were transfected with BrUTP.

Viral RNA (green) as well as N protein (red) were detected 1h later

by immuno staining prior to imaging by fluorescence microscopy.

Two representative cells are shown. Size bar = 5 mm.

Found at: doi:10.1371/journal.ppat.1000958.s002 (0.51 MB TIF)

Video S1 A Z-series showing RFP-P protein localization at viral

inclusions surrounded by RNA. BSR-T7 cells were infected with

rVSV-RFP-P at an MOI of 3, and exposed to nocodazole at 4 hpi.

Following a 1h incubation, cells were transfected with BrUTP,

fixed 40 minutes later and the viral RNA (green) and RFP-P (red)

visualized by confocal microscopy as described in methods. The

video of a single representative cell shows combined Z-stacks

(0.26 mm thickness) of images taken through the cell shown in

Figure 6A.

Found at: doi:10.1371/journal.ppat.1000958.s003 (0.05 MB

MOV)

Video S2 A three dimensional projection of viral RNA

surrounding RFP-P inclusions. A 3D view of the cell shown in

Video S1. The combined Z-stacks of images taken through the cell

are rotated around the Y-axis. Grid lines represent 5 mm2.

Found at: doi:10.1371/journal.ppat.1000958.s004 (0.26 MB

MOV)

Video S3 A Z-series showing N protein localization at viral

inclusions surrounded by RNA. BSR-T7 cells were infected with

rVSV at an MOI of 3 and exposed to nocodazole at 4 hpi. Following

a 1h incubation, cells were transfected with BrUTP, fixed 40 minutes

later and the viral RNA (green) and N (red) visualized by confocal

microscopy as described in methods. The video of the two adjacent

representative cells depicted in Figure 6A shows combined Z-stacks

(0.26 mm thickness) of images through the cells.

Found at: doi:10.1371/journal.ppat.1000958.s005 (0.12 MB

MOV)

Video S4 A three dimensional projection of viral RNA

surrounding inclusions containing N protein. A 3D view of the

cells shown in Video S3. The combined Z-stacks of images taken

through the cells are rotated around the Y-axis. Grid lines

represent 5 mm2.

Found at: doi:10.1371/journal.ppat.1000958.s006 (0.35 MB

MOV)

Video S5 A Z-series showing L protein localization at viral

inclusions surrounded by RNA. BSR-T7 cells were infected with

rVSV at an MOI of 3 and exposed to nocodazole at 4 hpi.

Following a 1h incubation, cells were transfected with BrUTP,

fixed 40 minutes later and the viral RNA (green) and L (blue)

visualized by confocal microscopy as described in methods. The

video of a single representative cell shows combined Z-stacks

(0.26 mm thickness) of images taken through the cell shown in

Figure 6A.

Found at: doi:10.1371/journal.ppat.1000958.s007 (0.35 MB

MOV)

Video S6 A three dimensional projection of viral RNA

surrounding inclusions containing L protein. A 3D view of the

cell shown in Video S5. The combined Z-stacks of images taken

through the cell are rotated around the Y-axis. Grid lines represent

5 mm2.

Found at: doi:10.1371/journal.ppat.1000958.s008 (0.35 MB

MOV)
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