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Abstract
Perception of breathy voice quality is cued by a number of acoustic changes including an increase
in aspiration noise level (AH) and spectral slope[1]. Changes in AH in a vowel may be evaluated
through measures such as the harmonic-to-noise ratio (HNR), cepstral peak prominence (CPP) or
via auditory measures such as the partial loudness of harmonic energy (PL) and loudness of aspiration
noise (NL). Although a number of experiments have reported high correlation between such measures
and ratings of perceived breathiness, a formal model to predict breathiness of a vowel has not been
proposed. This research describes two computational models to predict changes in breathiness
resulting from variations in AH. One model uses auditory measures while the other uses CPP as
independent variables to predict breathiness. For both cases, a translated and truncated power
function is required to predict breathiness. Some parameters in both of these models were observed
to be pitch-dependent. The “unified” model based on auditory measures was observed to be more
accurate than one based on CPP.

1. Introduction
An increase in the level of aspiration noise (AH) is one of the primary acoustic cues for the
perception of breathy voice quality [1,2]. Several algorithms have been proposed to quantify
the relative level of aspiration noise in voices [(see 3, for a review)]. These algorithms vary in
their underlying assumptions, but generally attempt to separate a vowel into a periodic and an
aperiodic component. The ratio of the level of these components is then used to quantify the
level of “breathiness” in vowels. More recently, Shrivastav and his colleagues [4,5] have
applied an additional transformation to these two components. They used an auditory
processing model as a signal processing front-end to estimate (1) the loudness of the harmonic
component in a vowel when it is masked by its aspiration noise, and (2) the loudness of the
aspiration noise itself. The resulting measures were called the “partial loudness” (PL) of the
harmonic energy and the aspiration “noise loudness” (NL), respectively. PL and NL, both
measured in ratio-level units called “Sones”, were observed to account for greater variance in
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perceptual judgments of breathiness than conventional measures that estimated the ratio of
aperiodic and periodic component levels. In these experiments, it was observed that breathiness
was negatively correlated with PL and positively correlated with NL. It was also found that
the breathiness in some of the vowels, particularly those with very high levels of AH, was
better predicted by NL rather than PL[4].

The auditory transformation of the acoustic signal provides certain advantages over many
conventional signal processing methods. First, it accounts for some of the non-linear
transformations that are inherent to the auditory-perceptual process, thereby improving the fit
to perceptual data. Second, the use of an auditory processing model also accounts for a part of
the multidimensionality observed between various acoustic cues for breathiness and its
perception. For example, it is known that in addition to AH, breathiness is also correlated with
acoustic features such as the amplitude of the first harmonic, spectral slope and formant
bandwidths [1]. Measures such as the PL and NL not only vary with the overall levels of AH
and harmonic energy, but are also affected by changes in the spectral shape of these signals.
Therefore, these auditory measures may capture, at least partially, the effects of multiple
acoustic cues for breathiness.

Another approach that has been successful in quantifying breathiness is the cepstral peak
prominence[2] (CPP). As the name describes, CPP is the normalized amplitude of the cepstral
peak of a vowel segment and this has been found to be negatively correlated to the vowels’
perceived breathiness. A direct comparison of the auditory based measures and CPP showed
that PL and NL were slightly better than CPP in accounting for the variance in perceptual
ratings of breathiness[4]. In contrast, other conventionally used measures of vowel acoustic
signals such as measures of frequency and intensity perturbation, relative noise levels and
spectral slope show relatively lower and often inconsistent correlation with perceptual
judgments of breathiness [6–10]. A direct comparison of the auditory measures, CPP and many
of these conventional acoustic measures (signal-to-noise ratio, jitter, shimmer, H1–H2, H1–
A1 and H1–A3) showed that both auditory based measures and CPP resulted in a stronger
correlation with perceptual data than the conventional acoustic measures [4]. Based on these
findings, CPP and the auditory measures PL and NL may be considered to be the most sensitive
measures to quantify changes in breathiness in vowels. Further, it must be noted that most of
the conventionally used acoustic measures were originally intended either as descriptors of the
voice acoustic signal (e.g. short-term perturbation measures) or were designed to identify some
information regarding vocal fold dynamics (for example see [11] for the physiological
correlates of H1–H2 or H1–A3). In contrast, some of the recently developed objective measures
of voice, such as the PL and NL, have specifically been designed to quantify the perception of
voice quality.

These differences in underlying bases for various objective measures may explain why a large
number of experiments have reported the correlation between specific acoustic measures and
perceptual judgments of breathiness but few have attempted to develop a formal model for
predicting breathiness in vowels. There are two limitations to using correlation data alone for
generating such a model. First, correlation does not indicate cause-and-effect relationships,
and thus, correlational evidence alone is not sufficient to completely understand how listeners
perceive breathiness. Second, correlation values do not show the nature of the psychophysical
relationship. Thus, for example, a high correlation between aspiration noise level (AH) and
perceived breathiness for a set of natural voices cannot establish how the magnitude of
perceived breathiness might change if all factors, except AH, were held constant. Without a
clear understanding of such psychophysical relationships, it is difficult to develop a
computational model for voice quality perception.
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One experiment to determine the psychometric functions for breathiness with varying signal-
to-noise ratio (SNR) was reported by Hillenbrand [12]. In this experiment, a set of synthetic
vowels varying in their spectral slope were evaluated by a panel of listeners using a direct
magnitude estimation task. A nonlinear but monotonic increase in perceived breathiness was
observed as the SNR was decreased. Interestingly, the effects of SNR on breathiness were
found to be independent of spectral slope, a finding that is in contrast to others that have reported
a positive correlation between spectral slope and breathiness [e.g., 13]. However, since recent
research has demonstrated that both auditory measures and CPP are better correlated with
perceived breathiness[4], it is advantageous to predict perceived breathiness using either of
these measures instead of SNR. For this reason, the present experiment examined the
psychometric functions for breathiness associated with increasing AH. However, unlike
Hillenbrand [12], these changes were modeled as a function of varying NL/PL as well as CPP.

In other words, the goal of this study was to determine how perceived breathiness varied with
NL/PL and CPP, and to develop a mathematical model to describe this relationship. This
information is necessary to understand how listeners perceive dysphonic voice quality and to
develop tools to quantify or predict changes in voice quality. In order to develop such tools, it
is essential to generate computational models for dysphonic voice quality that not only
discriminate vowels across specific voice quality dimensions, but also predict differences in
magnitude within each dimension.

However, it is essential to remember that although changes in AH are likely to be one of the
most important acoustic cues for breathiness, additional factors such as the vowel spectral
slope, fundamental frequency, etc. may also affect perception of breathiness. It is likely that
all of these factors are not adequately represented by the few acoustic and/or auditory- measures
evaluated in this experiment. Therefore, the computational model developed in the present
experiment should not be expected to provide a comprehensive description of breathiness.
Instead, the functions developed in this experiment are merely the first step in generating a
comprehensive model for the perception of dysphonic voice quality.

2. Methods
A. Stimuli

Ten samples of the vowel /a/ (5 male and 5 female) were synthesized with a Klatt synthesizer
using the LF model [14] as the source. These samples were based on natural speakers selected
from a large database of disordered voices (Kay Elemetrics Disordered Voice Database).
Speakers were selected to represent voices exhibiting a wide range of breathiness as judged by
a panel of four listeners in a pilot experiment. Two of these listeners were very familiar with
dysphonic voice quality (having worked with patients having dysphonic voices for > 5 years)
whereas two others were graduate students in speech-language pathology. All listeners initially
rated the breathiness in each voice using a five-point rating scale. Voices for which listeners
showed the greatest agreement in ratings were selected for this experiment. The average
fundamental frequency and the first three formants frequencies for each speaker were
determined manually and used to create a synthetic copy of each sample. Other relevant
synthesis parameters (open quotient, speed quotient, flutter, formant bandwidths) were
subjectively adjusted to obtain a close match to the target speaker. The goal of the synthesis
was not to obtain an exact match to the target speaker; rather, synthetic vowel stimuli were
generated so as to obtain the same range of breathiness as that observed in the natural voices.
The parameters used to generate these vowels are shown in Table 1. All stimuli were 500 ms
in duration.

Next, a pilot listening test was conducted to determine the range of AH that resulted in
perceptually “natural” vowels for each of these ten voice samples. Each synthesized vowel was
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used to generate a stimulus continuum that varied in AH from 0 dB to 80 dB in 5 dB steps.
Three listeners rated these stimuli as either “natural” or “synthetic.” The range of AH levels
that produced perceptually “natural” tokens for all three listeners was determined. Finally, this
range was linearly divided to produce a continuum of 11 stimuli for each synthesized vowel
sample resulting in a total of 110 stimuli for the main experiment (10 synthetic vowel continua
X 11 stimuli/continuum). Most vowel samples were judged as “natural” for the entire range of
AH (0 dB to 80 dB), except for the two samples that were based on speakers with the greatest
breathiness. In these two synthetic vowels, reducing the AH levels below 55 dB resulted in
stimuli that were described as “nasal” and/or “buzzy” by the listeners.

B. Listeners
Ten young-adult listeners from the student body at the University of Florida were recruited to
participate in this experiment. All listeners were native speakers of American English and had
normal hearing as confirmed by a hearing screening (hearing thresholds below 20 dB HL at
octave frequencies between 250 Hz and 8 kHz). Only listeners who had taken at least one class
on voice disorders were recruited for this experiment. This step was taken to ensure that all
listeners were familiar with breathy voice quality. However, one listener withdrew from the
study without completing all test sessions and that listener’s data were discarded. This listener
did not provide any further information about the reasons for discontinuing. Therefore, the data
reported here represent the perceptual judgments made by nine listeners. All listeners were
paid for participating in this experiment.

C. Procedures
Listeners were tested in a sound-treated room in three 1-hour sessions over a two-week period.
The stimuli were presented monaurally in the right ear at 75 dB SPL using ER2 ear inserts
(Etymotic Research Inc.). Monoaural presentation was preferred to avoid complications related
to binaural integration in the calculation of PL and NL. Ten blocks of stimuli, each consisting
of three repetitions of a stimulus from a single talker, were presented to the listeners using an
RP2 processor (TDT-System III; Tucker Davis Technology, Inc.). The order of the stimuli
within each block and the order of the blocks were randomized across listeners. Stimulus
presentation and listener responses were collected automatically using Sykofizx (Tucker Davis
Technologies, Inc.).

Listeners were asked to estimate the breathiness of each stimulus in a direct magnitude
estimation task. In this task, listeners assigned each voice stimulus a number that reflected the
magnitude of breathiness of that stimulus. Listeners were instructed that a stimulus perceived
to be twice as breathy as another should be assigned double the score as the first one. A value
of zero was not permitted, but listeners were free to use any other number, including fractions,
to estimate breathiness. Listeners were not allowed to repeat any stimuli and no anchor was
provided for making these ratings. Listeners made their judgments by typing the desired
numbers using a computer keyboard. Listeners were provided a maximum of 10 seconds to
respond; however, almost all judgments were made in the first couple of seconds and none
took longer than the maximum allotted time.

For statistical and modeling purposes, the geometric mean of the magnitude estimates for each
stimulus, across listeners and across ratings, was determined. The geometric mean was
preferred over the arithmetic mean since it is a better estimate of central tendency for ratio-
level data as obtained in the magnitude estimation task. For ease of computation, these values
were then transformed to a base-10 logarithmic scale. Since all the data obtained were between
100 and 1000, this transformation resulted in scores between 2 and 3. Log-transformed mean
estimations were then translated or shifted so as to obtain values between 0 and 1 which was
more convenient for determining the psychometric functions as described below. This
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translation was done merely to simplify the curve-fitting operations and it does not influence
the general form of the resulting functions. The absolute values of various constants in the
regression functions derived through this data were not critical because the data obtained in a
magnitude estimation task are highly context dependent [15]. Rather, our interest was in the
form of the psychometric function and how well it fit the observed perceptual data.

D. Computation of Auditory and Acoustic Measures
The PL and NL for all voice stimuli were estimated using a loudness model described by Moore,
Glasberg and Baer [16] and used in previous experiments to study breathy voice quality[4,5].
This model takes the spectrum of the periodic and aperiodic (i.e. aspiration noise) components
as input to calculate the PL and NL values for that vowel. Both PL and NL are measures of
loudness and are measured in units called “Sones”. Any sound perceived to have the same
loudness as that of a 1 kHz tone at 40 dB SPL is defined to have a value of 1 Sone. A sound
that is twice as loud would be assigned a loudness of 2 Sones whereas one that is half as loud
would have a loudness of 0.5 Sones. Thus, this unit of measurement provides information about
perceived loudness in ratio units of measurement.

The periodic and aperiodic components for each stimulus were isolated using the Klatt
synthesizer as follows. The periodic component was determined by re-synthesizing each
stimulus with the amplitude of aspiration noise set to zero but with the amplitude of voicing
left at its original value for each synthetic stimulus. Likewise, the aspiration noise was isolated
by re-synthesizing a copy of each stimulus with the amplitude of voicing set to zero, but with
the aspiration noise level left at its original value. The ratio of NL to PL (NL/PL) obtained for
each vowel stimulus was used as the independent variable in predicting the breathiness of that
vowel.

CPP was computed for each stimulus using the method described by Hillenbrand [2]. Briefly,
CPP is determined by first computing the cepstrum over a window of the signal. Next, a linear
regression line is fit between the cepstrum level (dB) and quefrency (ms). The CPP is calculated
as the difference between the level of the first cepstral peak and the level of the regression line
at the same quefrency as the first cepstral peak. As with the auditory measures, a second set of
functions using CPP for each vowel to predict the breathiness for each vowel continua were
derived.

3. Results
A. Reliability

Inter-rater reliability was estimated by calculating the average Pearson’s correlation between
each listener’s mean ratings. The average correlation was found to be 0.73 (range: 0.30 – 0.94).
Similarly, intra-rater reliability was determined by calculating the average Pearson’s
correlation among the three ratings of each stimulus. This was found to average 0.87 and ranged
from 0.77 to 0.97. Overall, these numbers suggest that listeners were able to complete the
magnitude estimation task consistently, both individually and as a group. Therefore, data from
all listeners was averaged and used to determine the general form of the functions relating
changes in perceived breathiness resulting from changes in AH. No additional corrections or
normalizations were applied to the magnitude estimates of breathiness prior to computing the
predictive functions described below.

B. Predicting breathiness from auditory measures: Modeling each vowel continuum
independently

A series of curve fitting operations were completed to determine the relationship between NL/
PL and breathiness for each vowel continuum. The decision to use the ratio of NL to PL as a

Shrivastav and Camacho Page 5

J Voice. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



predictor of breathiness was taken because a previous experiment had demonstrated a negative
correlation between breathiness and PL and a positive correlation between breathiness and NL
[4]. To obtain more precise regression functions, rather than trying to predict the whole dataset
with a single function, we first attempted to fit the data for each synthetic vowel continuum
individually. The curve fitting operations used and the rationale for each are described below.

The relationship between NL/PL and perceived breathiness for each of the ten synthetic vowel
continua are shown in Figure 1. It was observed that all vowel continua demonstrated a
monotonically increasing relationship between NL/PL and breathiness except for some stimuli
that were perceived to have very low breathiness. The magnitude estimates of breathiness at
very low NL/PL values showed random variation and were poorly correlated with changes in
NL/PL as well as with changes in AH. To account for the non-monotonic relationship between
NL/PL and breathiness at very low values of NL/PL, breathiness was modeled as a truncated
and translated function of NL/PL. In this function, a threshold breathiness value was first
determined for each vowel continuum. Stimuli with breathiness values at or below this
threshold (henceforth referred to as bTH) were set to have the NL/PL value as zero and their
breathiness values equal to bTH. The breathiness for the remaining stimuli (i.e. stimuli with
breathiness greater than bTH) was modeled as a power function of NL/PL. Given this constraint,
the following model was obtained:

(1)

where, η is the value of NL/PL for the test stimulus, b is the magnitude estimate of breathiness
for the same test stimulus, bTH is the magnitude estimate of breathiness at threshold NL/PL,
p is the power of the function relating breathiness to NL/PL, and k is a constant. The values
for these parameters were calculated for each of the ten vowel continua using an iterative
function that determined the parameters of the regression equation that resulted in minimum
error for that continuum. However, bTH was not computed for FEML5 and MALE5 because
these vowel continua did not contain any stimuli with NL/PL values close to zero as these were
generated with a minimum AH level of 55 dB only.

Finally, to predict breathiness from NL/PL, a pseudoinverse of equation 1 was derived. A
breathiness value of bTH was assigned to NL/PL values of zero, and the values of k and p were
used to predict breathiness for positive NL/PL values. The values of k, p, and bTH that resulted
in the smallest mean absolute error (MAE) were retained as the best set of parameters for that
particular stimulus sample. The minimum, maximum, and average values obtained for these
parameters over all the 10 samples are shown in Table 2. Based upon these data, the breathiness
in a vowel varying in aspiration noise level may be predicted using a function of the following
form:

(2)

Table 3 shows the MAE for the best fitting curve for each vowel continuum. The MAE were
relatively small compared to the range of variation in breathiness for all ten talkers
(approximately 5% of the range), suggesting that the truncated and translated power model
was a good predictor for changes in breathiness resulting from variations in AH. In developing
this model, the predictor variable (NL/PL) was not converted to a logarithmic scale because
several stimuli demonstrated NL value of zero. Incidentally, even if the stimuli with NL=0
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were discarded from this computation, the form of the function predicting breathiness from
NL/PL retained a similar form.

C. Predicting breathiness from auditory measures: Modeling all vowel continua with a single
function

The long-term goal of this research is to create a model to predict breathiness for all voices.
The following section describes the steps taken to derive a single function that might be
successful in predicting breathiness for all the vowel continua tested in the present experiment.
This model is hereafter referred to as the “unified” model.

The relatively large dispersion of various parameters (bTH, k and p) observed across the ten
vowel continua suggested that additional parameters may be necessary to generate a
satisfactory model for predicting breathiness from NL/PL. As shown in Figure 1, the
psychometric functions for the male vowels are characterized by higher bTH and shallower
slopes than for female vowels. This suggests that differences in pitch may contribute to the
breathiness psychometric functions. Based on this observation, the computational model
derived previously was modified to include fundamental frequency (F0) as an independent
variable.

Since F0 was correlated with pitch in our stimuli and because pitch is better expressed in a
logarithmic or quasi-logarithmic scale like the mel, ERB, or Bark rather than Hertz, we
transformed F0 from Hertz to each of these three scales. It was observed that all three of these
non-linear scales produced better results than the use of the Hertz scale. Of these three non-
linear scales, the ERB provided the best results, though the difference in performance between
the three was fairly small. Note that the bimodal distribution of F0 in our stimuli (because of
the two genders) makes it difficult to clearly determine the benefit of using one scale over the
others. Although more research is necessary to determine the ideal method and scale for
computing pitch in dysphonic voices, the ERB scale has been used to report all measures of
F0 in the present study.

A set of linear regressions was computed to determine the relationship between F0 (φ, in ERB)
and the parameters bTH, k and p. F0 was observed to account for a fairly large amount of
variance in bTH (R2 = 0.63, p = 0.0185), and p (R2 = 0.53, p = 0.0414), but it did not show a
significant correlation with k (R2 = 0.13, p = 0.3804). However, the limited number of stimuli
tested and the bimodal distribution of F0 may have reduced the accuracy of these results.
Therefore, these findings should only be considered as an approximation at this the present
time. The scatter plots for these regressions are shown in Figure 2.

Based on these findings, the bTH, and p values for each talker were recomputed using the linear
regression function based on F0. Since k was not found to be strongly F0-dependent, the mean
value of k for all 10 stimulus continua (k = 4.59) was used on the unified model for breathiness.
Thus, the unified computational model for breathiness is:

(3)

where bTH, and p are functions of F0(φ) measured in ERB according to the formulae obtained
using linear regressions.

Finally, to evaluate the success of this unified model, these equations were used to predict
breathiness for stimuli in each of the ten vowel continua, and the MAE for each continuum
was calculated. The results are shown in Table 3 and in Figure 3. The average MAE for the
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unified model (0.0598) is greater than that obtained using parameters based on individual
curves (0.0244). However, despite this increase the MAE remains significantly smaller than
the effective range of variation in breathiness reported by listeners (approximately 8% of the
range).

D. Predicting breathiness from CPP: Modeling each vowel continuum independently
The procedures used for predicting breathiness from NL/PL were also followed to develop a
model for predicting breathiness based on CPP. Figure 4 shows the relationship between CPP
and magnitude estimates of breathiness for each of the ten vowel continua. Note that the data
for CPP has been plotted in an inverse scale (-CPP) to facilitate visual comparison with
psychometric functions based on NL/PL (Figure 1). Figure 4 shows that unlike the NL/PL
curves, the CPP curves do not demonstrate a common zero point. In other words, the minimum
CPP level was different for each vowel continuum. Therefore, an additional parameter was
required to model the CPP curves - a threshold (cTH) that determines the CPP value at which
the power model starts to apply. The form of the equation to model CPP as a function of
breathiness is:

(4)

where c is the CPP of the stimuli, cTH is the threshold value of CPP, and the other parameters
are the same as those in equation (1).

As described previously, an iterative procedure was used to determine the values for the
parameters p, k, bTH, and cTH that resulted in minimum error for each vowel continuum. The
minimum, maximum, and average values of these parameters as obtained from the ten vowel
continua are shown in Table 4. Finally, the pseudoinverse function was computed to predict
breathiness from CPP values:

(5)

The set of parameters that produced the least MAE for each vowel continuum were retained
as parameters for that model. Table 5 shows the MAE for the best fitting curve for each vowel
continuum. A comparison between the MAE of the individual models in Tables 3 and 5
indicates that on average CPP was marginally better at predicting breathiness than NL/PL for
each individual vowel continuum.

E. Predicting breathiness from CPP: Modeling all vowel continua with a single function
The same procedures as used to generate the unified model using NL/PL were also used to
generate a unified model using CPP. Figure 5 shows the relations between F0 (in ERB) and
the parameters of the model. Only two of these parameters were observed to show a modest
correlation with F0, though neither approached statistical significance: bTH (R2 = 0.20, p =
0.2723) and k (R2 = 0.2062, p = 0.2583). However, estimating these parameters in a F0-
dependent manner provided the best overall results (i.e. lower overall MAE) and hence F0 was
included in the computational model. This also permits easy comparison of performance for
models based on CPP and auditory measures. The unified model using CPP may be described
as:
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(6)

where k and bTH are now functions of pitch (φ). The predicted breathiness for all vowel continua
using this equation is shown in Figure 6. The MAE of the unified model is shown in Table 5.
A comparison with the unified model using NL/PL in Table 3 indicates that, once F0 is
introduced into the model, the unified model using NL/PL is a better predictor of breathiness
(average MAE = 0.0598) than the unified model using CPP (average MAE = 0.0822).

4. Discussion
The goal of the present experiment was to understand how breathiness in a vowel changes as
a function of increasing aspiration noise levels in synthetic vowels and to determine how
auditory measures (NL/PL) and a cepstral-domain measure (CPP) may be used to predict
perceived breathiness. Aspiration noise levels were manipulated because a number of
experiments have suggested this to be the primary cue for breathiness [1]. Listeners estimated
the magnitude of breathiness for several stimuli and the resulting data were predicted either
using NL/PL or using CPP. These two measures were selected because prior research found
these to show the highest correlation with perceptual judgments of breathiness [4].

The auditory measure, NL/PL, is computed using a loudness model based upon psychoacoustic
data [16]. Estimating partial loudness involves computation of masked loudness whereas that
for noise loudness does not account for auditory masking. In both cases, the loudness model
represents specific processes that are believed to occur during the auditory transduction process
in an average listener. In contrast, the computation of CPP does not take any auditory-
perceptual processes into account. Nevertheless, the high correlation between CPP and
breathiness judgments in prior research [2,4,17] suggests that it may be a good candidate for
predicting breathiness in speech. Therefore, two different models for breathiness – one using
NL/PL and another using CPP – were computed.

For vowels that vary in AH only, breathiness was observed to increase with an increase in NL/
PL except when NL/PL was close to zero (as seen in stimuli that had very low levels of AH).
At higher values of NL/PL, the breathiness of a vowel is a power function of its NL/PL. For
the ten voice continua studied in the present experiment this function has an average power
value of 0.46 (inverse of 2.166 in Table 2) suggesting a compressive relationship between NL/
PL and perceived breathiness. This compressive relationship holds even if the stimuli with
NL=0 were discarded and the NL/PL for the remaining data were converted to a logarithmic
scale. In this regard, much like other psychophysical continua, the relationship between
aspiration noise level and perceived breathiness appears to follow Steven’s Law [18]. Further,
these effects appear to be pitch dependent since both, the threshold NL/PL and the power, were
observed to differ for male and female voices. In general, male voices (stimuli with lower pitch)
had a higher power and lower NL/PL thresholds. Therefore, when all other factors were held
constant, voices with lower pitch tend to show a greater increase in breathiness for the same
amount of change in NL/PL (which is related to changes in AH).

Breathiness in vowels could also be predicted by the CPP of that vowel. Breathiness is inversely
related to the CPP and a power relationship appears to be the best fitting function. However,
for the ten voices studied in this experiment, the average power was 1.1, a value that makes
the relationship very close to a linear function. As with the auditory measures, stimuli with
very low magnitudes of breathiness showed poor correspondence with CPP and the power
function applied only to those stimuli that were above a threshold CPP. However, unlike the
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auditory measures, the threshold CPP values were highly variable across stimuli and neither
the threshold CPP nor the power were found to have a clear pitch dependency. The unified
model for predicting breathiness from CPP did not fit the perceptual data as well as that based
on auditory measures. While CPP is significantly simpler to compute (relative to the auditory
measures), a single function predicting breathiness from CPP did not generalize as well to all
voice stimuli tested in this experiment.

Modeling the change in breathiness that occurs with increasing AH levels required defining a
threshold value for all stimulus continua. Listener judgments of breathiness below this
threshold (i.e. at very low values of NL/PL or CPP) remained highly variable, suggesting that
listeners were unable to estimate the magnitude of breathiness consistently. This inconsistency
in perceptual judgments may be explained by recent observation that the difference limens for
aspiration noise are fairly large at low AH levels [19,20]. These experiments found that stimuli
with low AH levels may need as much as a 15–20 dB change in AH before listeners can
discriminate its breathiness. In contrast, the stimulus continua tested in this experiment varied
the AH level only a maximum of 8 dB between successive stimuli. Since this change is less
than the difference limens at low AH levels, the first few stimuli in several vowel continua
may have perceptually equal breathiness.

The observation that the unified model based on auditory measures accounted for more
variance in perceptual data than one based on CPP follows previous findings based on
correlation data [4]. It is hypothesized that using an auditory processing model as a signal-
processing front-end helps account for some of the non-linear processes inherent to the auditory
perceptual process. Similar front-end processing is commonly employed in a number of
applications that require mapping a physical acoustic signal to its percept, such as in automatic
speech recognition, MP3 compression, etc. It is evident that the use of such a front-end is also
advantageous for the study of voice quality perception and in the development of tools for its
quantification.

While every attempt was made to obtain stable perceptual data for computing the psychometric
functions, a number of factors may have adversely affected the MAE. First, listeners rated
stimuli from each talker in a different listening “block”. Thus, all voices in a single continuum
were compared against each other, but were never directly compared to stimuli from other
voice continua. Since the absolute scores assigned in a magnitude estimation task are context
dependent [15], the scores for one talker may not be directly comparable to that of another.
Unfortunately, the unified model described here does not account for such context
dependencies in perceptual judgments, and these differences may have contributed to an
increase in the overall MAE. One solution to this problem is to obtain perceptual data using a
matching technique that is relatively unbiased by context. A matching technique for assessment
of breathiness has recently been described by Patel and colleagues [21] and may help improve
the MAE further.

Second, even though the data clearly show a pitch dependency, the methods used to determine
these relationships are only preliminary. This is because of two reasons – (1) the small number
of stimuli tested and (2) the use of the ERB scale to estimate pitch for these stimuli. The small
number of stimuli tested resulted in two clusters of low and high pitch (male and female
speakers, respectively). Unfortunately, there is little systematic variation of pitch within each
group of speakers. Therefore, although we obtained an overall positive correlation between
pitch and various model parameters, it is not clear how pitch affects these parameters within a
single gender. Further, it is possible that using a better method to compute the actual pitch
(instead of F0) for each voice may further improve the results of the unified models. Finally,
it is possible that there are additional parameters that affect the perception of breathiness that
have not been incorporated in the models reported here.
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The eventual success of any computational model can only be determined by testing its
performance for novel stimuli. More specifically, the success of the computational model needs
to be tested with different vowels, multiple complex synthetic stimuli and natural stimuli.
However, the fact that natural stimuli co-vary in multiple acoustic features makes it difficult
to isolate the contributions of one specific acoustic change to the overall voice quality percept.
The synthetic stimuli tested in the present experiment allow the development of a simple model
for the perception of breathiness in vowels that vary only in AH. Subsequent experiments will
build upon this initial finding and will help generate a model for the perception of breathiness
for natural vowels and running speech.

5. Conclusions
A model to predict changes in breathiness that result from variations in aspiration noise levels
is proposed. A truncated and translated power model predicting perceived breathiness from
NL/PL provided the best fit to the data. A high correlation between pitch and translation
parameters of the model was observed. This finding led to the inclusion of pitch into the model.
The resulting model suggests that breathiness ratings on a free magnitude estimation task are
related to the noise-to-partial loudness ratio. The relationship between this ratio and breathiness
beyond a specific threshold is best described by a power function. The power of this function
is pitch dependent, but is generally less than one. In sum, a compressive relationship between
NL/PL and perceived breathiness was observed.
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Figure 1.
Breathiness vs. NL/PL for each of the 10 vowel continua.
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Figure 2.
Linear regression predicting (a) bTH, (b) k, and (c) p from pitch; used for generating the unified
model predicting breathiness from auditory measures.
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Figure 3.
Breathiness for all 10 vowel continua as predicted by the unified model based on auditory
measures.
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Figure 4.
Breathiness vs. CPP for each of the 10 vowel continua.
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Figure 5.
Linear regression predicting (a) cTH, (b) bTH, (c) k and (d) p from pitch used in the unified
model from CPP.
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Figure 6.
Breathiness for all 10 vowel continua as predicted by the unified model based on CPP.
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Table 2

Range of values obtained for the parameters of the model based on NL/PL.

k p bTH

Minimum 1.802 1.256 0.1352

Average 4.591 2.166 0.2327

Maximum 8.519 3.285 0.3215
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Table 3

Mean absolute error (MAE) for the individual and group data using NL/PL. Separated models were not computed
for FEML5 and MALE5 because these continua did not demonstrate a threshold point.

Vowel Continua
Mean Absolute Error

Separated Models Unified Model

FEML1 0.0261 0.0387

FEML2 0.0212 0.0475

FEML3 0.0448 0.0462

FEML4 0.0214 0.0895

FEML5 ---------- 0.1234

MALE1 0.0224 0.0456

MALE2 0.0159 0.0621

MALE3 0.0263 0.0699

MALE4 0.0173 0.0336

MALE5 ---------- 0.0416

Average 0.0244 0.0598

J Voice. Author manuscript; available in PMC 2011 July 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shrivastav and Camacho Page 22

Table 4

Range of values obtained for the parameters of the model based on CPP.

k p bTH cTH

Minimum 17.15 0.6729 0.1382 18.98

Average 23.22 0.9024 0.2295 24.86

Maximum 30.84 1.289 0.3133 28.29
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Table 5

Mean absolute error (MAE) for the individual and group data using CPP.

Talker Mean Absolute Error

Separated Models Unified Model

FEML1 0.0199 0.0386

FEML2 0.0199 0.0684

FEML3 0.0170 0.0189

FEML4 0.0221 0.0609

FEML5 ---------- 0.0940

MALE1 0.0209 0.0619

MALE2 0.0096 0.0458

MALE3 0.0240 0.0441

MALE4 0.0315 0.1986

MALE5 ---------- 0.1903

Average 0.0206 0.0822
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