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Summary
For many diseases where there are several treatment options often there is no consensus on the
best treatment to give individual patients. In such cases it may be necessary to define a strategy for
treatment assignment; that is, an algorithm which dictates the treatment an individual should
receive based on their measured characteristics. Such a strategy or algorithm is also referred to as
a treatment regime. The optimal treatment regime is the strategy that would provide the most
public health benefit by minimizing as many poor outcomes as possible. Using a measure that is a
generalization of attributable risk and notions of potential outcomes, we derive an estimator for the
proportion of events that could have been prevented had the optimal treatment regime been
implemented. Traditional attributable risk studies look at the added risk that can be attributed to
exposure of some contaminant, here we will instead study the benefit that can be attributed to
using the optimal treatment strategy.

We will show how regression models can be used to estimate the optimal treatment strategy and
the attributable benefit of that strategy. We also derive the large sample properties of this
estimator. As a motivating example we will apply our methods to an observational study of 3856
patients treated at the Duke University Medical Center with prior coronary artery bypass graft
surgery and further heart related problems requiring a catheterization. The patients may be treated
with either medical therapy alone or a combination of medical therapy and percutaneous coronary
intervention without general consensus on which is the best treatment for individual patients.
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1. INTRODUCTION
Since its inception by Levin (1953), attributable risk (AR) has become a widely used
measure of association between risk factors and disease status. Jewell (2004) denotes the
population attributable risk as the fraction of all disease cases that can be linked to exposure
from some factor. AR has been referred to by many other names (e.g. ‘etiologic fraction’ or
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‘attributable fraction’) and has a long history within the medical and epidemiology
communities.

Observational data can be used to assess the impact of various treatment strategies on patient
health outcomes, where a treatment strategy is defined as an algorithm which dictates the
treatment an individual should receive based on their characteristics. Furthermore, we define
the optimal treatment strategy to be the strategy that will result in the smallest proportion of
poor outcomes (events) among the study population. In this manuscript, we propose a
generalization of the attributable risk measure which is defined as the fraction of observed
events that could have been prevented had the optimal treatment strategy been implemented.
In contrast to traditional AR studies where the goal is to measure the added risk attributed to
exposure of some contaminant, this estimator is intended to study the positive public health
impact of a treatment strategy. As such we will refer to it as attributable benefit (AB).

For simplicity we consider the case where there are two treatment options which will be
labeled by the treatment indicator T = 0 or 1. We denote the event of interest by the binary
indicator Y where Y = 1 denotes poor outcome and Y = 0 denotes good outcome. Let X
denote the vector of covariates measured on each individual that may be used to determine
which treatment they receive, we denote a treatment strategy g as a function that maps
values of X to 0 or 1. That is, g(x) denotes the treatment T (either 1 or 0) that will be
assigned to an individual with covariates X = x.

The goals of this paper are to define and estimate the optimal treatment strategy gopt(x); i.e.,
the treatment strategy which results in the smallest probability of a poor outcome, and to
estimate the attributable benefit of using the optimal regime. We will show that our
proposed estimator is a generalization of the standard attributable risk measure. In Section 2,
we describe the motivating example in more detail. In Section 3, we define the optimal
treatment strategy and develop an estimator for attributable benefit that is a function of an
individuals covariates. In order to formally define the parameter of interest and the required
assumptions, we will use the ideas of potential outcomes and causal inference as described
by Neyman (1923) and Rubin (1974). In Section 4, the large sample properties of the
estimator are developed and two strategies for developing confidence intervals are derived.
The behavior of the proposed estimator is described in the simulation studies of Section 5
and the example in Section 6. We conclude with discussions and limitations of the current
method.

2. Motivating Problem
Our motivating problem comes from the Duke Databank for Cardiovascular Diseases
(DDCD), a large database housed at the Duke University Medical Center (DUMC). Started
in 1969, the DDCD collects data on the in-hospital clinical course of all patients who
undergo cardiac catheterization at Duke University Medical Center. A wide variety of
baseline patient information is collected and the DDCD attempts to collect follow-up data on
patients with at least one diseased vessel six months and one year after hospitalization and
yearly thereafter. Data are collected in the form of a mailed questionnaire or surveyed by
phone for those who do not respond to the mailing (Al-Khatib et al., 2007). One of the
largest and oldest such databases, the DDCD provides essential information to cardiologists
about the effectiveness of various treatments on patient health.

Here we focus on the subset of patients with a previous coronary artery bypass graft
(CABG) surgery and requiring a later catheterization due to continued symptoms. For
technical reasons, the vast majority of patients are not considered to be candidates for a
second CABG surgery and therefore their treatment options are limited to either medical
therapies (MED) or some combination of medical therapies and percutaneous coronary
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intervention (PCI) which is also known as angioplasty. A question of clinical interest is
whether PCI provides some benefit (here in the form of lower 1-year mortality rates) above
optimal medical therapy for either the overall study population or some subset defined by
clinical characteristics.

3. Potential Outcomes and Statistical Causality
Using the ideas and notation developed by Rubin (1974) we define the potential outcomes
Y*(1) and Y*(0) to denote the indicator of a poor outcome (event) for an arbitrary individual
in our population had they received treatment 1 or 0 (respectively). In actuality, at most one
of these potential outcomes can be observed for any given individual. In addition, we also
collect baseline covariates X on these individuals. Consequently, the potential outcomes for
any individual will be defined as W = {Y*(1), Y*(0), X} and it is assumed that there is some
underlying population distribution for the potential outcomes W.

In contrast, the observable data will be denoted by O = (Y, T, X) where T denotes the
treatment (0 or 1) that was actually given to an individual, Y denotes the outcome indicator
that resulted from that treatment, and X is the vector of baseline covariates measured on the
individuals. The key assumptions that will allow us to derive important aspects of the
distribution of the potential outcomes, which are not directly observable, from the
distribution of the observable data were proposed by Rubin (1974).

The first assumption, also known as the Stable Unit Treatment Value Assumption
(SUTVA), states that the observed outcome for an individual is the same as the potential
outcome for the corresponding treatment that the individual received. An underlying and
often overlooked part of this assumption is that under SUTVA, we assume that there is no
interference between units. According to Rubin (1986), the SUTVA assumption implies that
the value of the potential outcome for a subject does not depend on what treatments other
subjects receive. In terms of the current framework, the SUTVA assumption can be written
as Y = Y*(1)T + Y*(0)(1 − T).

The second assumption is also referred to as the strong ignorability assumption or the no
unmeasured confounders assumption. This assumption states that the treatment T assigned to
an individual is independent of the potential outcomes {Y*(1), Y*(0)} conditional on the
covariates X. In an observational study the treatment that a physician chooses to give a
patient can be reasonably assumed to only be based on characteristics of the patient at the
time of treatment and not on the patients potential outcome (which of course is not known at
the time of treatment). Consequently, this second assumption will be tenable if the key
factors influencing the decision making process for a physician were captured in the data X.
If, however, there are additional factors beyond the data X that influence treatment
decisions, then this assumption may not hold. We discuss this issue further in Section 7;
however, for the remainder of this paper we will assume both SUTVA and strong
ignorability hold.

Under these assumptions, for example, we can compute the marginal probability P{Y*(0) =
1} from the distribution of the observed data as
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where we use the notation EX(·) to emphasize that this expectation is taken with respect to
the marginal distribution of X. Similarly, we can show that

3.1 Optimal Treatment Regime
As mentioned previously, a treatment regime is an algorithm which assigns treatment to a
patient according to factors that are measured on the individual. As such, we define a
treatment regime to be a function g which maps the values of X to 0 or 1. Hence the
treatment regime would assign treatment g(x) (either 0 or 1) to an individual whose
covariates X = x. We also denote by ℊ the class of all such treatment regimes. We can now
define the potential outcome for an arbitrary individual in our population under the
hypothetical situation that treatment regime g was being implemented by Y*{g(X)} =
Y*(1)I{g(X) = 1} + Y*(0)I{g(X) = 0} where I(·) denotes the indicator function. The most
simple strategies would be g0 or g1 where all patients were given treatment 0 or 1
(respectively) regardless of the values of their covariates X.

We now define the optimal strategy as the one which results in the smallest probability of a
poor outcome. That is,

Under the SUTVA and no unmeasured confounders assumption, it is straightforward to
show that

(1)

and the optimal treatment regime is given by

(2)

That is, the optimal treatment regime would assign treatment 1 to an individual with baseline
covariates X if the conditional probability that Y = 1 given T = 1 and X is smaller than the
conditional probability Y = 1 given T = 0 and X; otherwise give treatment 0.

Now that we have some notation and insight into the different treatment regimes, we can
formally define the parameter of interest. Recall that the objective is to estimate the
proportion of events that would have been prevented had the optimal strategy been used. We
define this quantity as the attributable benefit of using the optimal treatment regime. We
start by defining the attributable benefit for any treatment regime, say g(X). From the
notation above we write ABg as:
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(3)

(4)

Thus we define ABopt as:

(5)

Since P(Y = 1) denotes the overall probability of failure in the population using whatever is
the current clinical practice, then this can be estimated by the simple sample proportion

 without making any additional assumptions. Therefore, we will focus attention
on estimating the treatment regime gopt and the proportion of events for that regime
P{Y*(gopt) = 1}. Then we want to show how these results can be used to derive the
estimator and large sample properties for ABopt.

We note that ABg is a more general type of adjusted attributable risk that is commonly used
in epidemiological research. That is, if we were considering estimating the proportion of
disease that can be attributed to exposure (T = 1), then we would want to estimate

which under the assumptions of SUTVA and no unmeasured confounders is equal to

(6)

which is what is being estimated using the estimators for adjusted attributable risk given by
Benichou (2001) as well as Graubard and Fears (2005).

Returning to the more general case, we now consider how to estimate P{Y*(gopt) = 1} from
the sample of observed data (Yi, Ti, Xi), i = 1, …, n assumed to be independent and
identically distributed (i.i.d.). We begin by positing a statistical model where

(7)

Because Y is a binary variable, a natural choice is to use logistic regression models which
are used to study the impact of treatment, covariates, and their interaction. If we define d(x,
β) = q{μ(1, x, β)}− q{μ (0, x, β)} where q(·) is some arbitrary monotone function, then the
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optimal treatment regime defined by (2) can also be written as gopt(x) = I{d(x, β0) < 0},
where β0 denotes the true value of β. We introduce the monotone function q(·) because, as
we will see later, for the logistic regression models that we will be considering it will be
more convenient to work with the logit function; i.e., where q(p) = log{p/(1−p)}. A natural
estimator for gopt(x) is given by ĝopt(x) = A(x, β ̂n), where A(x, β) = I{d(x, β) < 0} and β ̂n is
the maximum likelihood estimator for β obtained by maximizing (in β)

For many practical situations there may exist a preferred or standard treatment, say
treatment 0. As suggested to us by the Editor, for such scenarios, we may only want to give
treatment 1 when this treatment is shown to be significantly better than treatment 0. Toward
that end we also want to consider the more conservative estimated treatment strategy ĝopt(x,
c) = A(x, β ̂n, c), where A(x, β, c) = I[d(x, β) < c × se{d(x, β ̂n)}] and se{d(x, β ̂n)} denotes the
standard error of d(x, β ̂n) which can be derived using the usual large sample properties of the
maximum likelihood estimator β ̂n and the delta method. That is, treatment 1 will be
preferred only for values of x where d(x, β ̂n)/se{d(x, β ̂n)} < c, where c (generally a negative
number) is chosen according to the strength of desired significance; for example, at the α
level of significance we would use Φ−1(α), where Φ is the standard normal distribution
function. Notice that ĝopt(x, c) = ĝopt(x) when c = 0 and because β ̂n converges in probability
to β ̂0 and se{d(x, β ̂n)} converges in probability to zero as n goes to infinity, this implies that
ĝopt(x, c) will converge to gopt(x) (the optimal treatment regime) as n goes to infinity for any
constant c. However, the smaller the value of c (i.e., the smaller the significance level α), the
more conservative the strategy is in the sense that we are less likely to give the non-standard
treatment.

Now if we define

(8)

then in accordance to equations (1) and (2), P{Y*(gopt) = 1} = E{h(X, β0, 0)} for which a
natural estimator (allowing for the conservative strategy) would be

Finally, the estimator for attributable benefit for the optimal treatment strategy would be
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The standard estimator for ABopt without using the conservative strategy will also be

denoted by ; that is, .

Because the response Y is binary, we generally will posit a logistic regression model,

(9)

where f(Xi, Ti) is a k × 1 vector. This will allow sufficient flexibility for the model to include
main effect terms involving treatment and the covariates as well as interactions between
treatment and covariates.

Remark 1—When considering the optimal treatment strategy we are entertaining the
possibility of assigning different treatments depending on the value of the measured
covariates X. Statistical models where μ(1, x, β) < μ(0, x, β) (i.e., treatment 1 is preferred) for
some values of x and μ(1, x, β) > μ(0, x, β) (i.e., treatment 0 is preferred) for other values of
x are said to have qualitative interaction. When building regression models using data from
observational studies or clinical trials, we often find significant treatment by covariate
interaction terms. Depending on the magnitude of the effect of such interactions these
sometimes result in qualitative interactions and sometimes they do not. In the latter case,
such interactions are referred to as quantitative interactions.

The issue of qualitative interactions is controversial. It is not unusual in the analysis of a
particular study to discover qualitative interactions which are then found to be spurious in
subsequent studies. This has caused many warnings by statisticians to be cautious about the
interpretation of the results of such models. Formal statistical tests for qualitative
interactions have been developed; for example, see Gail and Simon (1985). In fact, Peto
(1995) argues that quantitative interactions may be expected in clinical trials but qualitative
interactions are not.

Although it may be argued that in well controlled targeted clinical trials qualitative
interactions are not to be expected, the setting we are considering in this paper is one in
which different treatments are actually being used in practice with no general consensus on
which one is the superior treatment. In such settings, it may be the case that different
treatments may be better or worse for different subgroups of patients. Moreover, thanks to
the recommendation made by the Editor, if there are situations where one treatment is
considered to be standard, then we are also employing a conservative treatment strategy
where we only recommend the alternative treatment when there is strong statistical evidence
that it is significantly better. Such a strategy should alleviate the difficulties that spurious
qualitative interactions create to some extent.

There may also be the belief that quantitative interactions need not be considered in a model
because the inclusion of such terms will not affect treatment choice. Indeed, leaving out
quantitative interactions in a model will generally not affect the optimal treatment regime
but, as we will demonstrate later in some of our simulation studies, not including important
interaction terms, even if they are quantitative interactions, will lead to biased estimators of
the attributable benefit.

4. Large Sample Properties and Standard Errors
Because the estimator for attributable benefit involves the ratio of two estimators, it will be
convenient to work with the transformation log(1 − ABopt). We use large sample theory to
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show that  is asymptotically normal and
derive standard errors via the sandwich variance estimator. Most of this work surrounds

finding the influence function for , the details are available in the appendix.
The reader may see Tsiatis (2006) for a complete overview of the theory of influence
functions.

In the case of a regression model (9), we estimate the influence function for 
for the ith individual, ψi, from observed data with the quantity

(10)

where

Note that the estimated gradient ∂̂E{h(X, β0, 0)}/∂βT is derived using numerical derivatives
as described in the appendix (A.6).

Now that we have derived an estimated influence function for , the
estimated variance, using the sandwich variance estimator, is given by

Remark 2
In the appendix, we argue that one of the conditions necessary to prove the asymptotic
normality of our estimator is that E{h(X, β, 0)} be differentiable in β. For most models of
μ(T, X, β), if μ(1, x, β0) = μ(0, x, β0), then h(x, β, 0) will not be differentiable in β at β0.
Consequently, if P{μ(1, X, β0) = μ(0, X, β0)} > 0, then E{μ(X, β, 0)} would not be
differentiable in β at β = β0 and hence the asymptotic theory would not necessarily hold. For
example, if logit{μ(T, X, β)} = β1 + β2X + β3T, then μ(1, X, β0) = μ(0, X, β0) when β3 = 0.
For this model logit{h(X, β, 0)} = β1 + β2X + β3I(β3 < 0), which is not differentiable at β3 =
0. Therefore, we must be careful to avoid such situations. If the strong null hypothesis were

Brinkley et al. Page 8

Biometrics. Author manuscript; available in PMC 2010 June 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



true; i.e., μ(1, x, β0) = μ(0, x, β0) for all values of x, as in the example above at β3 = 0, then it
doesn’t matter which treatment is given to any patient and the issue of finding the optimal
treatment regime is no longer of interest. Therefore, to avoid this difficulty, we suggest that
one first consider testing the null hypothesis for no treatment difference and only if there is
strong evidence of treatment difference should one continue the exercise of deriving the
optimal treatment regime and its attributable benefit.

For scenarios where there is a standard treatment and the strong null hypothesis is true, then
the conservative strategy would with high probability conclude to give everyone the
standard treatment. Consequently, the conservative strategy may not be as susceptible to the
large sample difficulties under the null hypothesis. This will be investigated further in the
simulation studies.

4.1 Confidence intervals
We consider two different methods for constructing (1− α) confidence intervals for ABopt.
The first involves exponentiating the (1 − α)th × 100% confidence interval for

 to obtain the following interval

where zα/2 denotes the (1 − α/2)th quantile of a standard normal distribution. While the
second confidence interval is a by-product of the delta theorem, for which we have

It is not immediately clear if one interval is superior to the other, though it has been
suggested that the back-transformed intervals are superior. We will explore this through
simulation in the next Section.

5. Simulation Studies
We report results of several simulations, each based on 10000 Monte Carlo data sets. For
simplicity we consider data of the form Oi = (Yi, Ti, Xi) where Yi is binary disease status, Ti
is treatment, and Xi will be one potentially confounding covariate generated from a N(0, 1)
distribution. For each given Xi we generated a Bernoulli treatment indicator Ti from the
logistic regression model:

(11)

and a Bernoulli disease indicator Yi from the logistic regression model:

(12)
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Thus different choices of γ = {α0, α1, β0, β1, β2, β3} will lead to different ω = [P(T = 1), P(Y
= 1), P(Y*(0) = 1), P(Y*(1) = 1), P{Y*(gopt) = 1}], therefore different combinations of the
model parameters allow us to study the different items of interest. From model (12), one can
see that the parameter β3, the parameter associated with the interaction, will be essential for
finding scenarios where there is no one dominant treatment. For this model, the optimal
treatment regime is given by gopt(x) = I(β1 +β3x < 0) and the estimated optimal treatment
regime (without using a conservative strategy) is ĝopt(x) = I(β ̂1n + β ̂3nx < 0).

Once the data were generated, estimates of (β0, β1, β2, β3) were found for each Monte Carlo
dataset using SAS logistic procedure. The generated data and logit model estimates were

then input into SAS IML where , and confidence intervals were calculated for each
Monte Carlo dataset.

Table 1 illustrates seven different examples with different combinations of model
parameters. The first six are cases where there is treatment difference and hence the
asymptotic theory for estimating attributable benefit should hold. In the last example there is
no treatment difference and as indicated in our remark 2 the asymptotic theory may break
down. Although we did argue that we may not be interested in estimating attributable benefit
if there is no evidence of a significant treatment effect, this scenario was included in order to
investigate the extent of difficulty that such a scenario presents.

We depict the true γ and ω values along with estimates of , Monte Carlo standard error,
delta-theorem standard error and confidence intervals for both back-transformed and delta-
theorem methods averaged over all 10000 Monte Carlo samples. For comparison we also
considered the treatment regime where everyone gets the better of the two treatments; i.e.,
either treatment regime g0 or g1, whichever had the lower proportion of events. We refer to
this as the dominant treatment and the corresponding attributable benefit as ABdom. Sample
sizes of n = 1000 were used in all examples; however, we found that the coverage
probabilities were accurate in smaller sample sizes, except in those cases where the
probabilities in ω fell below 10%.

Examining table 1 we see that for the first six scenarios the Monte Carlo average of the

estimates for  were indeed very close to the true values as was the Monte Carlo
standard error and the average of the delta-theorem standard errors. Both sets of confidence
intervals provided very good coverage with probabilities around 0.95. In most cases the
back-transformed interval had better coverage than its delta-theorem counterpart.

From these examples we see the importance of ABopt as a measure of a regime’s benefit
when there are even small interactions between treatment and confounders. But in

simulation scenario 7 we do see that when there is no treatment difference 
overestimates the true attributable benefit of zero (as would be expected) and underestimates
the coverage probability.

We also considered the conservative estimate , with c = −1.96; i.e., the strategy
where we give the nonstandard treatment only to those individuals where the nonstandard
treatment is significantly better at the .025 level of significance. Specifically, we considered
the conservative strategy ĝopt(x, c) = I(β ̂1n + β ̂3nx < −1.96 × se), where se is the estimated
standard error of β ̂1n + β ̂3nx which can be easily derived from the estimated standard errors
of the parameters for the logistic regression model (12).
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The results are given in table 2. In cases where ABdom = ABopt then both the conservative
and optimal strategies are also the same. Although asymptotically  will converge to
ABopt as n goes to infinity, we do see that in cases where there is substantial qualitative
interaction (i.e., ABopt > ABdom) that the conservative strategy underestimates the
attributable benefit for the optimal treatment strategy slightly and consequently
underestimates the coverage probability. However, for simulation 7, where the strong null
hypothesis holds, we find that the estimated attributable benefit using the conservative
strategy showed little bias and better coverage probability as compared to the standard
estimator.

In addition to the simulations listed in table 1, additional simulations were performed to look
at various aspects of model and regime misspecification. Simulations with multiple
covariates (see the Web Appendix B) had similar results to the single covariate case in
showing the effectiveness of ABopt as a measure of public health interest. Model overfitting
was studied in the multiple covariate case and confidence intervals from overfit models
maintained good coverage for the true ABopt, as expected the overfit models did lose
efficiency versus the correct model.

While model overfitting did not seem to be a problem, model underfitting could lead to
biased estimators. Table 3 demonstrates four scenarios where the model was misspecified by
leaving out an important interaction term. That is, the data were generated as specified in
table 1, but the model that was fit was logit{P(Yi = 1|Ti, Xi)} = β0 + β1Ti + β2Xi. When the
incorrect model was fit without the interaction term, then such a model can only choose a
single treatment to be optimal. Thus the attributable benefit we are measuring is of the
strategy that gives everyone the dominant treatment (ABdom).

Consider first simulation 2, the proportion of deaths from the dominant treatment was only
slightly larger than the optimal treatment regime resulting in similar AB’s (i.e., ABdom = .
577, ABopt = .588). This corresponds to the case where there is only slight qualitative
interaction. However, in this case, the estimated attributable benefit for that dominant
treatment had a mean of .458 rather than the true .577. We see similar bias in simulations 3
and 6, along with very poor coverage probabilities. Simulation 4 however illustrates that
there may not always be such a bias. Thus a misspecified model not only cannot find the
optimal treatment regime but it also can result in a biased estimator for the benefit of the
treatment regime it does choose as optimal. Consequently, important interaction terms
whether they be quantitative or qualitative interactions need to be considered in the model.
Misspecification simulations were not performed for those simulations where ABdom = ABopt
or ABopt is small.

6. Example
Recall our motivating problem from the Duke Databank for Cardiovascular Diseases
(DDCD) and that we are focused on the subset of patients with a previous bypass surgery
and requiring a later catheterization due to continued symptoms. For technical reasons, the
vast majority of patients are limited to some form of medical therapy (MED) or a
combination of medical therapy and percutaneous coronary intervention (PCI). The question
of clinical interest is whether PCI provides some benefit in lowering 1-year mortality rates
above optimal medical therapy for either the overall study population or some subset defined
by clinical characteristics.

In studying this question we will explore the effects that covariates such as patient
demographics (i.e., age and gender), health status (i.e., body mass index, pulse, patient and
family history of coronary artery disease), and cardiovascular measurements (i.e., ejection
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fraction, number of diseased vessels) play as potential confounders. To see the benefit of
using ABopt we will compare estimators from models with zero, one, and several
confounding variables. The goal of which is to explore the impact of an optimal treatment
strategy while simultaneously examining the effects of confounding. The benefit of the
optimal treatment regime will be estimated by the proportion of one-year deaths that could
have been prevented if that optimal regime had been followed. The study population
includes 3856 individuals with a follow-up catheterization between the years 1986–2001 and
a history of CABG surgery who did not qualify for a second bypass surgery.

In the entire sample there were 267 deaths within 1 year of the follow-up catheterization,
195 first year deaths for those with medical therapy alone (7.83%) and 72 first-year deaths
from patients with a combination of medical therapy and angioplasty (5.27%). We will
define treatment in terms of a patient obtaining the poorer naive treatment. That is T = {0 if
the patient received angioplasty and medical therapy, 1 if the patient received only medical
therapy}. In trying to find the optimal treatment regime we used logistic regression models
to predict the probability of death at or before 1 year. In this example, we will assume that
the optimal treatment regime will come from the “best” model of one year death rates based
on treatment and covariates.

For this discussion we will consider many different models, starting with the simplest
model: first year deaths modeled as a function of treatment with no confounding variables.
Table 4 has several different logistic regression outputs, starting with treatment as the sole
predictor in model 1. With the complete data we have an estimate of the probability of first
year death P̂(Y = 1) = 0.0692. Under this model the treatment regime would be g0, because
without interactions the model favors a combination of angioplasty and medical therapy.

From the data we calculate an estimate of  with confidence intervals {0.0787,
0.3720} (back-transformed method) and {0.0936, 0.3851} (delta method).

To begin to see the effect of confounding, model 2 introduces a statistically significant
covariate (p < 0.05). This model again favors g0 as the regime of choice and we find

 with confidence intervals {0.0377, 0.3418} (back-transformed method) and
{0.0530, 0.3553} (delta method). We see an 3.5% drop in risk reduction with the addition of
a single confounder, and note the agreement between the ABopt confidence intervals and
logistic model p-value for treatment effect. For model 3, backward selection regression
techniques were used to include main effects into the model. Individual tests for interactions
between treatment and main effects were performed to help arrive at the “best” model for
this data. Ejection fraction values were missing for 561 patients, 420 of which had
angioplasty and medical therapy as their treatment. It was determined that a missing ejection
fraction value was informative to treatment decision and as such was itself a potential
confounding variable. In order to keep all observations in the analysis an indicator variable
was defined for presence of ejection fraction value, then an interaction term was used in the
model to determine the effect of an ejection fraction measurement. Note that if a patient did
not have an ejection fraction measurement then the indicators value is zero. This is an
important aspect to the results because this model now has different confounders working in
both directions; that is some confounders result in a higher probability of dying within the
first year of treatment, while others lower that probability.

Model 3 has an estimate of  with confidence intervals {0.0356, 0.3621} (back-
transformed method) and {0.0536, 0.3777} (delta method). Therefore the “best” model for
this data has ABopt estimates very close to the naive model, but there would have been no
way to know apriori that the confounders would have worked in opposing directions. Model
3 again favors the optimal treatment regime where every patient is treated with a
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combination of angioplasty and medical therapy. To examine the effect of extraneous
variables in the model we consider model 4 which has a non-significant interaction term
added (interacting treatment with congestive heart failure status). Model 4 had an estimate

of  with confidence intervals {.0066, 0.3476} (back-transformed method) and
{0.0257, 0.3642} (delta method). So we see that adding an insignificant variable to the

model lowered  by roughly 2% while increasing the delta theorem standard error.
Therefore, we conclude from this analysis that all patients should be treated with a
combination of angioplasty and medical therapy. We have restricted our discussion to

calculating estimates of ABopt using the non-conservative estimator , but since there
was no significant treatment by covariate interactions then ABdom = ABopt, in which case, a
conservative treatment strategy would also lead to the same answer.

7. Discussion
In this paper we have introduced the notion of attributable benefit associated with a
treatment strategy. This measure can be of public health interest and represents the fraction
of events that could have been prevented by using the optimal treatment regime. While
similar in spirit to adjusted attributable risk, the measure is designed to study the positive
public health impact of various treatment strategies. This estimator is most useful in cases
where there are qualitative interactions between treatment and patient covariates. In studying
the optimal strategy two alternate strategies were also discussed; first a strategy involving
giving everyone the dominant treatment, the second involving a conservative strategy where
one assigns a standard treatment unless a competing treatment is shown to be significantly
better in lowering the risk of an adverse outcome.

In this paper we have focused on deterministic treatment regimes g which mapped the
values of x to either 0 or 1. We could have also considered random treatment regimes where
g(x) = p for 0 ≤ p ≤1 to denote the strategy where patients are randomized to treatment 1
with probability p and to treatment 0 with probability (1−p) whenever X = x. In fact, under
the assumptions of this paper, the observed data can be viewed as resulting from a random
treatment regime gcurr(x) = P (T = 1|X = x). Another interesting strategy proposed to us by
the Editor is to use gopt(x) whenever |d(x, β ̂n)/se{d(x, β ̂n)}| > c (i.e., one of the treatments is
significantly better than the other) and to use current practice gcurr(x) otherwise. Such a
strategy is the random treatment regime

where A(x, β̂n, c) = I[d(x, β̂n)/se{d(x, β̂n)} < −c], B(x, β̂n, c) = I[d(x, β̂n)/se{d(x, β̂n)} > c],
and C(x, β ̂n, c) = 1 − A(x, β ̂n, c) − B(x, β ̂n, c). An estimator for E{Y*(g*(X)} could be
obtained by
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without having to posit a model for p(T = 1|X). We did not formally evaluate this treatment
strategy but we expect it will have properties similar to the conservative strategy discussed
in the paper.

Two types of confidence intervals were obtained; the back-transformed interval and the
delta method interval. Both had good coverage in the simulation studies we displayed,
although the back-transformed generally has more accurate coverage probabilities especially
in simulation studies we conducted with smaller sample sizes (not shown here).

With regards to the role of quantitative versus qualitative interactions of treatment and
patient covariates and the concern of over-interpreting these interactions, we found that
leaving out important interactions, whether qualitative or quantitative, can lead to biased
estimators for the attributable benefit of the optimal treatment strategy ABopt and that
models that were overfit generally led to better estimators for ABopt. Of course, overfitting
may also lead to treatment strategies that are more complicated than are necessary.
Therefore, we believe a reasonable strategy is to build models using model selection
techniques that tend to overfit but then use the conservative estimated treatment strategy
where the standard treatment is used except in cases where there is overwhelming statistical
evidence to the contrary.

There is also the concern about sample size, especially because the sample size necessary to
detect important interactions with sufficient statistical power may be prohibitively large.
Even though we do not have much control over the sample size of observational databases
that are used for this type of research, we believe estimating the optimal treatment strategy,
especially using a conservative strategy, is worthwhile. The utility and the accuracy of such
a treatment strategy can then be evaluated by the estimator for the attributable benefit and
the corresponding confidence interval.

We believe that estimating the attributable benefit of a treatment regime from observational
data can have positive public health impact, but only in those situations where it is
appropriate to do so. As we mentioned earlier, the key assumption that allows us to derive
estimators for causal parameters is that of no unmeasured confounders. This, unfortunately,
is also the most difficult to verify in practice and hence some have argued against using
medical databases to make decisions on treatment; see, for example some excellent
discussions on this point by Green and Byar (1984) and Yusuf et al. (1986). But we believe
that these databases can offer valuable insight if the assumption of no unmeasured
confounders was tenable. In order for that this assumption be plausible we must have some
confidence that all important information that may affect the treatment decision process be
captured in the database. For that reason, it is important during the creation of such a
database that discussions with investigators be carried out to identify all the factors that they
believe would influence their treatment decisions and all possible effort be made to capture
such information. The Duke Databank for Cardiovascular Diseases (DDCD) used in our
analysis has been a rich source of data for cardiovascular research in evaluating treatments
for many years and has been refined to include what are believed to be the most important
factors used in treatment decision making. Even so, there may be utility in conducting
sensitivity analyses that look at the effect that violations of the no unmeasured confounders
assumption would have on treatment effect. Such methods have been proposed, for example,
by Rosenbaum and Rubin (1983) and Brumback et al. (2004). A sensitivity analysis in the
spirit of Brumback et al. (2004) is proposed in the Web Appendix A.

One potential problem with this estimator, and all model based adjusted attributable risk
estimators, is in model misspecification. This entire methodology is predicated on having
the correct statistical model. In future work we will consider using doubly robust inverse
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propensity score estimators for the AB that will allow greater flexibility in finding unbiased
estimators. For those interested in the current estimator, a SAS macro has been developed to
calculate estimates along with back-transform and delta-theorem confidence intervals.
Coding and details of the macro can be found in Web Appendix C.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

In this Section we will demonstrate that  is asymptotically normal and derive an
estimator for its asymptotic variance by finding its influence function. Specifically, if we
denote the observed data by the i.i.d. random vectors O1, …, On then an estimator α ̂n(O1,
…, On) of a vector value parameter α is asymptotically linear if

(A.1)

where ψα ̂n(Oi) is a mean zero random vector with finite variance matrix and op(1) are terms
that converge in probability to zero as n goes to infinity. The random vector ψα ̂n(Oi) is
referred to as the influence function of the estimator α ̂n. The representation given in
equation (A.1) immediately implies that the estimator is asymptotically normal; that is,
n1/2(α ̂n − α0) → N (0, E(ψψT)). Furthermore the asymptotic variance can be estimated
consistently using the sandwich estimator

Here we will determine the influence function for estimators of several parameters and show
how the estimated influence functions will be used to derive the sandwich estimator for the
asymptotic variance of our attributable benefit estimator.

In order to find the estimated influence function for , it suffices to find the estimated
influence function of log[P̂n{Y*(gopt) = 1, c}] − log(Ȳn). By a simple application of the delta
method, when estimating log(α), then ψlog(α ̂)(Oi) = ψα ̂(Oi)/α, and when estimating α1 − α2,
ψα ̂1− α ̂2(Oi) = ψα ̂1(Oi) − ψα ̂2(Oi). For the simple sample average estimator Ȳn of E(Y), the
influence function is Yi −E(Y), the estimated influence function is Yi −Ȳn, and the estimated
influence function of log(Ȳn) is (Yi −Ȳn)/Ȳn. Therefore deriving the influence function for

 amounts to finding the influence function for P̂n{Y*(gopt) = 1, c}.

If we denote by β0 the true value of β from equation (7) then we note that

(A.2)

where h(Xi, β, c) is defined by (8), is an empirical average of i.i.d random variables which
converges to and has mean

(A.3)
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By definition, h(Xi, β, c) involves indicator functions and hence may not be differentiable for
all β. Thus, we can not be guaranteed of the usual Taylor series expansion to derive the
influence function for P̂n{Y*(gopt) = 1, c}. Instead we note that

(A.4)

(A.5)

Note that (A.4) is a sum of mean zero i.i.d. random variables Using empirical process theory
as described by van der Vaart (1998), if we can show that the functions h(x, β, 0) in a
neighborhood of β0 form a Donsker class, then we can use Lemma 19.24 of van der Vaart to
show that (A.5) can be written as

in which case, the asymptotic results will go through as long as E{h(X, β, 0)} is
differentiable in β even if h(X, β, 0) is not. For the models we are considering the functions
will generally satisfy a Lipschitz condition; namely, that |h(x, β1, 0) − h(x, β2, 0)|≤ m(x)||β1 −
β2|| for β1 and β2 in a neighborhood of β0, where m(X) is a square integrable function, in
which case, Example 19.7 of van der Vaart (1998) can be used to show that the functions
form a Donsker class. There are some cases however when even E{h(X, β, 0)} is not
differentiable, in which case, the asymptotic results may not hold and we may want to avoid
such situations (see remark 2).

Standard results for the maximum likelihood estimator can be used to show that

where

and μi(β) = μ(Ti, Xi, β). For the special case of the logistic regression model (9), the
influence function is given by
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where fi = f (Xi, Ti) and the estimated influence function is given by

Combining these results, we have

Let us denote the ith term in this summation; i.e., the influence function of P̂n{Y*(gopt) = 1,
c}, as qi = q(Oi, β0). Therefore, the estimated influence function is given by

where the gradient ∂E{h(X, β0, 0)}/∂βT is estimated using numerical derivatives; namely,
where the jth element of the vector ∂̂E{h(X, β0, 0)}/∂βT is obtained by a numerical
derivative,

(A.6)

j = 1, …, k, where k is the dimension of the parameter β, and 1j is a k-dimensional vector
where the jth element is 1 and all the other elements are 0. We chose εj = σ ̂(β ̂j)/100, where σ ̂
(bmβ ̂j) is the estimated standard error of the jth element of β; however, we found that the
result was insensitive to the choice of εj as long as εj was small.

Now that we have derived the influence function for P̂n{Y*(gopt) = 1, c}, we note that the ith
influence function for log[P̂n{Y*(gopt) = 1, c}] − log(Ȳn), call it ψi, is equal to
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and the estimated influence function ψ ̂i is given by (10).
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Table 3

Misspecification Simulation Results; BT represent back-transformed confidence intervals while DT represents
delta-theorem based confidence intervals

Simulation 2 3 4 6

ABdom 0.577 0.094 0.223 0.446

ÂBdom 0.458 0.298 0.223 0.339

SE(ABdom)mc 0.0484 0.0941 0.0495 0.0575

SE(ABdom)dt 0.0479 0.0933 0.0489 0.0570

BT Lower 95% 0.3557 0.0887 0.1210 0.2171

BT Upper 95% 0.5445 0.4588 0.3130 0.4417

BT Coverage 0.2505 0.5088 0.9474 0.4685

DT Lower 95% 0.3645 0.1151 0.1272 0.2272

DT Upper 95% 0.5522 0.4809 0.3188 0.4507

DT Coverage 0.3130 0.4121 0.9471 0.5258
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