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Abstract
Lymphatic metastasis is the main prognostic factor for survival of patients with breast cancer and
other epithelial malignancies. Mounting clinical and experimental data suggest that migration of
tumor cells into the lymph nodes is greatly facilitated by lymphangiogenesis, a process that
generates new lymphatic vessels from pre-existing lymphatics with the aid of circulating
lymphatic endothelial progenitor cells. The key protein that induces lymphangiogenesis is vascular
endothelial growth factor receptor-3 (VEGFR-3), which is activated by vascular endothelial
growth factor-C and -D (VEGF-C and VEGF-D). These lymphangiogenic factors are commonly
expressed in malignant, tumor-infiltrating and stromal cells, creating a favorable environment for
generation of new lymphatic vessels. Clinical evidence demonstrates that increased lymphatic
vessel density in and around tumors is associated with lymphatic metastasis and reduced patient
survival. Recent evidence shows that breast cancers induce remodeling of the local lymphatic
vessels and the regional lymphatic network in the sentinel and distal lymph nodes. These changes
include an increase in number and diameter of tumor-draining lymphatic vessels. Consequently,
lymph flow away from the tumor is increased, which significantly increases tumor cell metastasis
to draining lymph nodes and may contribute to systemic spread. Collectively, recent advances in
the biology of tumor-induced lymphangiogenesis suggest that chemical inhibitors of this process
may be an attractive target for inhibiting tumor metastasis and cancer-related death. Nevertheless,
this is a relatively new field of study and much remains to be established before the concept of
tumor-induced lymphangiogenesis is accepted as a viable anti-metastatic target. This review
summarizes the current concepts related to breast cancer lymphangiogenesis and lymphatic
metastasis while highlighting controversies and unanswered questions.
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1. Introduction
Metastasis is the leading cause of mortality in patients diagnosed with breast cancer [1;2]
and other solid tumors [3;4]. Frequently, the initial sites of metastasis are the regional lymph
nodes [5;6]. Mounting clinical and experimental data suggest that migration of tumor cells
into the lymph nodes is greatly facilitated by lymphangiogenesis, a process that generates
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new lymphatic vessels from pre-existing lymphatics [7;8] or lymphatic endothelial
progenitors [9]. This process is dynamic during embryogenesis but is relatively rare in
adulthood. The main protein that regulates lymphangiogenesis is vascular endothelial
growth factor receptor-3 (VEGFR-3) [10], a tyrosine kinase receptor expressed primarily on
lymphatic endothelial cells (LEC) [11]. The VEGFR-3 pathway is activated by binding
vascular endothelial growth factor-C (VEGF-C) [10;12] or a related protein, VEGF-D [13–
15]. These lymphangiogenic factors are commonly expressed in malignant [16–18], tumor
infiltrating [19;20] and stromal cells [21], creating a favorable environment for generation of
new lymphatic vessels [12;14;22]. Studies of clinical breast cancers [23;24] and
experimental breast tumor models [12;25;26] have provided substantial evidence of
increased densities of both intratumoral and peritumoral lymphatic vessels, and their
associations with metastasis as well as reduced survival. Recently, enhanced lymph node
lymphangiogenesis and lymph flow in tumor draining lymphatic vessels have also been
reported to contribute to metastatic spread. Agents that neutralize VEGF-C and VEGF-D, or
block VEGFR-3 signaling, reportedly suppress development of new lymphatic vessels,
lymphatic hyperplasia, and tumor metastasis in experimental cancer models [27;28].
Importantly, lower VEGFR-3 expression correlates with fewer positive lymph nodes and
longer patient survival [22].

Collectively, these data implicate lymphangiogenesis in promoting metastasis to lymph
nodes that are likely reservoirs for further dissemination to distant organs, suggesting that
targeting tumor-induced lymphangiogenesis would prevent or reduce cancer-related death.
Nevertheless, this is a relatively new field of study and much remains to be established
before this concept is accepted. The following review summarizes the established and
recently emerged concepts related to breast cancer lymphangiogenesis and lymphatic
metastasis while highlighting current controversies and unanswered questions.

2. Incidence and clinical significance of lymph node (LN) metastasis in
breast cancer
2.1. Prevalence of lymphatic vessel invasion (LVI) and metastasis through lymphatic
channels in breast cancer

Numerous reports suggest that lymphatic vessels facilitate metastasis by providing a portal
for tumor cell dissemination [29;30]. Compared with blood vessels, a lymphatic vessel
pathway offers many advantages for invasion and transport of pre-metastatic cells, such as:
1) discontinuous basement membrane and loose cell-cell junctions; 2) a much lower flow
rate that increases survival by minimizing shear stress; and 3) a 1000-fold higher lymph
concentration of hyaluronic acid, a molecule with potent cell-protecting and pro-survival
properties [31]. The lymphatic system is naturally equipped to transport cells throughout the
body while ensuring their survival and activity. Epithelial tumors, including breast [1;7],
melanoma [32], prostate [33], and head and neck [34] cancers, take advantage of the cell-
transport capabilities of the lymphatic system and preferentially disseminate through the
lymphatic vessels rather than through the hematogenous route.

The preferential spreading through lymphatic vessels might stem from the high frequency of
lymphatic vessel invasion (LVI) in breast cancer as compared with blood vessel invasion
(BVI) (Table 1 and Table 2). Vascular invasion encompassing both types of vessels has long
been recognized as a poor prognostic indicator [35–37]. However, early studies did not
distinguish between lymphatic and blood vessels due to the absence of specific lymphatic
markers. The emergence of specific lymphatic markers, such as LYVE-1 [38], Prox1 [39],
and podoplanin/D2-40 [40;41] has enabled clear distinction between lymphatic and blood
vessel invasion by tumor cells [42–44]. Using these markers in conjunction with double
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immunostaining yielded extensive evidence for preferential invasion of the lymphatic, rather
than blood vessels by breast carcinoma cells [42;44]. This is illustrated by several
independent studies involving a substantial number of patients (Table 2). One of the largest
studies conducted to date (N=1,408) showed the presence of LVI in 34.2% of all cases while
BVI was detected in only 4.2% [2]. A separate study of 177 invasive breast carcinomas [36]
detected lymphatic invasion in 96.4% of all specimens, whereas BVI was detected in only
3.5% [36]. A similar tendency of breast tumor cells to invade lymphatics has been shown in
additional studies collectively involving more than 3,000 patients that demonstrated a 2–3-
fold higher frequency of LVI in comparison with BVI (Table 2).

LVI has also been shown to significantly correlate with sentinel [45–47], non-sentinel [45]
and axillary LN metastasis [48] as well as with disease outcome[2;49]. Sentinel LN
metastasis was detected in 51% of LVI-positive as compared with 30% of LVI-negative
patients [46]. A separate study showed that peritumoral LVI (pLVI) is significantly
associated with LN metastasis (p=0.004), being present nearly three-fold more frequently in
node-positive than in node-negative patients (65% vs. 23%) [50]. This was also supported
by an independent study of 1,258 patients that identified pLVI as a highly significant
predictor of disease outcome [49]. A strong association between pLVI and axillary
metastasis was shown in a large study (N=850) in which positive LN were detected in 51%
of the LVI-positive group compared with 19% of the LVI-negative patients [51].

Some studies identified both LVI and BVI as poor prognostic markers [2], but the majority
of studies identified only LVI as an indicator of short survival {1105, 3497, 3160, 329}
(Table 2). This does not indicate that BVI and hematogenous metastasis do not play a
significant role in mortality from breast cancer. Clearly, the main cause of death from cancer
is not metastasis to lymph nodes per se, but distant metastasis that interferes with the
function of vital organs such as lung, bone, brain, etc. Nevertheless, strong association of
LVI with poor outcome in breast cancer suggests that local LVI eventually leads to BVI that
might occur in lymph nodes, or contributes independently of local BVI to distant metastasis
through the lymphatic vessel trafficking. Since in breast cancer LVI occurs more frequently
than BVI (Table 2), the evidence for LVI has more prognostic power for the disease
outcome than that of BVI. Collectively, these studies underscore the prevalence of LVI over
BVI in breast cancer. These data also suggest that tumor-associated both pre-existing and
newly-generated lymphatic vessels are the main means of transportation for metastatic cells
to loco-regional nodes.

2.2. Metastatic incidence to sentinel, axillary, and distant lymph nodes
In patients with clinically staged I and II breast tumors, lymph node status is one of the most
important prognostic factors for survival independent of tumor size, histological grade and
other clinicopathological parameters [53;54]. Until recently, complete axillary lymph node
dissections were conducted routinely and were found to be positive in 30% of patients [55].
However, axillary lymph node dissection is associated with long-term morbidity and poor
quality of life, manifesting in reduced shoulder mobility, sensory disturbance, and
lymphedema [55]. A much less intrusive procedure, the sentinel lymph node (sLN) biopsy
was first reported in 1993 to accurately predict spread of tumor cells to regional nodes [56].
The sentinel lymph node is the first node receiving lymphatic drainage from the tumor that
might contain metastatic cells [56]. Patients with positive sLN undergo a complete axillary
lymph node dissection, while sLN-negative patients can be spared the procedure. Overall,
the sLN is positive in 20–35% of patients with early-stage breast cancer [55–59]. Metastasis
to the sentinel lymph node can be defined as macrometastases (>2 mm), micrometastases
(<2 mm), or as isolated tumor cells identified by immunostaining using epithelial cell
markers [59]. Cytokeratin-based identification of tumor cells improves staging [60] and may
prevent local recurrence by removing positive nodes undetectable by routine H&E analysis.
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Dissemination of tumor cells from the sentinel to distal non-sentinel nodes, and then to
axillary lymph nodes, occurs in 30–35% of patients with positive sLN [61;62]. Presence of
macrometastases in the sLN is associated with a significantly higher risk for axillary node
metastasis (49% vs. 11%) [61]. Tumor cells can also metastasize to intramammary lymph
nodes, particularly in those having extensive axillary involvement and presence of LVI at
the primary site [63]. As summarized in Table 3, metastasis to sLN [49], non-sentinel,
intramammary [63] and axillary nodes [53;64;65] is strongly associated with poor disease-
free survival (DFS) and shorter overall survival (OS). The size of the metastatic lesion in the
lymph node [53;64;66] and the number of positive nodes [54;66] exacerbate the prognosis.
Combined, these studies indicate that metastatic breast tumor cells preferentially use
lymphatic channels to exit the primary site and that the sentinel LN metastasis is associated
with spread to distal nodes and non-lymphoid organs, as manifested by significantly reduced
DFS and OS rates.

3. Clinical evidence for association of lymphangiogenesis and LN
metastasis in breast cancer

While clinical significance of lymphatic metastasis in breast cancer is well recognized, the
means of tumor cell transportation to regional LN and relevance to distant metastasis is a
matter of considerable debate. Central to this debate are the following questions: (1) Do
clinical breast tumors induce lymphangiogenesis either intratumorally or in the
peritumoral tissue? (2) How do tumor cells access lymphatic vessels? (3) Are tumor-
induced new lymphatic vessels capable of transporting tumor cells? (4) Can lymphatic
metastasis occur in the absence of lymphangiogenesis? (5) Do metastatic cells in LN
contribute to distant spread? The answers to these questions are crucial to understanding
whether tumor-induced lymphangiogenesis is a viable target for inhibition of distant
metastasis that is, undoubtedly, the major cause of cancer-related mortality. The next chapter
summarizes the current clinical evidence that provides insights to these questions.

3.1. Do clinical breast tumors induce lymphangiogenesis?
To answer this question, multiple studies analyzed the three main parameters defining tumor
lymphangiogenesis: (A) expression of lymphangiogenic factors, VEGF-C and VEGF-D; (B)
the presence of dividing lymphatic endothelial cells identified by proliferative markers,
Ki-67 or PCNA; and (C) increase in lymphatic vessel density (LVD) and invasion (LVI) at
the tumor periphery or in the tumor proper.

3.1.1. Expression of the main lymphangiogenic mediators, VEGF-C and VEGF-
D—A number of studies correlated the expression of VEGF-C and VEGF-D with induction
of lymphangiogenesis, lymphatic metastasis and disease outcome (Table 4). Elevated
VEGF-C expression has been reported in 30–40% of breast cancers and has been shown to
associate with high incidence of LVI, lymph node metastasis and a lower DFS [67–69].
Another study found positive VEGF-C breast tumor cells in 39% of specimens (n=98) with
no expression in adjacent normal mammary glands [67]. Additional studies demonstrated
VEGF-C expression in 48% of 113 [70] and 87% of 123 [71] breast tumors, respectively,
and a significant correlation between tumor VEGF-C positivity, LVD, LN metastasis, DFS
and OS [70;71]. In contrast, some studies detected VEGF-C in the majority of the examined
tumors, but found no correlation with LVI or LN metastasis [72;73]. These discrepancies
might suggest a role for other factors besides VEGF-C and VEGF-D in induction of
lymphangiogenesis, or may relate to heterogeneity of analyzed patient populations.

Up-regulation of VEGF-D and correlation with LN metastasis was found in a smaller
number of studies, although one study reported immunohistochemical VEGF-D detection in
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as many as 81% of 105 breast cancer specimens [74]. Yet, other studies found no correlation
of VEGF-D with metastasis or survival, or decreased VEGF-D expression in malignant as
compared with normal breast tissue [72]. Studies of other tumor types also reported high
expression of VEGF-D in normal tissues [75] and reduced detection in malignant tumors
[75;76], suggesting that VEGF-C and VEGF-D play distinct physiological roles. It should
also be mentioned that both factors are highly expressed in tumor-associated macrophages
[19] suggesting that the tumor environment might be pro-lymphangiogenic regardless of
VEGF-C/VEGF-D expression by neoplastic cells.

3.1.2 Presence of dividing lymphatic endothelial cells in clinical breast cancer
—Detection of dividing lymphatic endothelial cells (LEC) became central to the current
controversy on whether lymphangiogenesis occurs in breast cancer and whether lymphatic
metastasis occurs through pre-existing or newly-formed lymphatic vessels [77–80]. This
controversy exists because neither the mere presence of pro-lymphangiogenic factors nor
frequent incidence of LN metastasis constitutes a proof of tumor-induced, actively ongoing
formation of new lymphatic vessels. Resolving this question has been sought by double
staining using antibodies to specific lymphatic markers (LYVE-1 or D2-40) combined with
antibodies to proliferative markers such Ki-67 (MIB-1) or PCNA. This approach represents
a significant improvement over previously employed histological evaluation (i.e., by H&E)
to identify dividing LEC. However, most studies still use colorimetric stains, which are
inferior to immunofluorescence in terms of discerning among individually stained structures.
As a result, interpretation of overlapped lymphatic marker/Ki-67 positivity might depend on
whether the positive cells are seen to be proliferating LEC, or dividing tumor cells that had
invaded lymphatic vessels. Additional challenges in detection of proliferating LEC are: 1) a
relatively low rate of vessel formation in well-established tumors; 2) a lower density and
heterogeneity of tumor lymphatics compared with tumor blood vessels; and 3) variability in
sprouting of new vessels at different points along the parental lymphatic vessel [81], with
the latter being undetectable in two-dimensional evaluation. Moreover, the formation of new
lymphatic vessels might not require endothelial mitotic division if they originate from
circulating progenitors or non-endothelial cells via transdifferentiation [82].

Given these technical and biological limitations, it is not surprising that several studies
failed to detect Ki-67 or PCNA markers on LYVE-1 or D2-40-labeled structures [77;78;80]
(Table 5). The authors of these studies concluded that active lymphangiogenesis is absent in
clinical human breast cancer, and lymphatic metastasis occurs either through undefined non-
vascular routes or through invasion of pre-existing lymphatic vessels juxtaposed to the
tumor-stroma border. These explanations are entirely possible as nothing prevents tumor
cells to invade pre-existing lymphatic vessels if the new lymphatic vessels are not formed in
a particular tumor environment. However, evidence from several research groups also
supports tumor-induced lymphangiogenesis and shows its clinical relevance to lymphatic
metastasis (Table 5). For instance, double Ki-67/podoplanin staining of a large panel
(N=177) of invasive breast carcinomas determined that 29% of specimens displayed Ki-67
positive nuclei in 2.2% of intratumoral, peritumoral and peripheral lymphatics [23].
Frequency of positive nuclei was strongly associated with a high lymphatic density
(P=0.001), LN metastasis and survival [23]. An independent study detected a similar
fraction of proliferating LEC (LECP%) in peritumoral lymphatics and also identified LECP
% as an independent prognostic factor for LN metastasis [83]. Studies that compared LECP
% in inflammatory and non-inflammatory breast cancers found that the former have both a
higher incidence of Ki-67 positive lymphatics (80% versus 50%) and an increased median
LECP% [24;84]. Active lymphangiogenesis was also detected in positive sentinel LN
[85;86] that displayed a significantly higher median LECP% (P<0.001) than uninvolved LN
[86]. Moreover, high frequency of Ki-67-labeled lymphatics in positive sLN was strongly
associated (P=0.01) with axillary metastasis [85], supporting the contention that tumor-
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induced lymphangiogenesis promotes dissemination from both the primary tumor and
secondary metastatic sites. Nevertheless, with the exception of very active
lymphangiogenesis in inflammatory breast cancer [24;84], a relatively low fraction of
dividing lymphatic endothelial cells (2–6%) and some discrepancy between high %LVI and
low %LECP in other breast cancer types suggest that both new and existing lymphatic
vessels partake in lymphatic metastasis.

3.1.3 Clinical evidence of increase in lymphatic vessel density (LVD)—In
contrast to challenges mentioned earlier in the detection of dividing LEC, enumerating
lymphatic vessels seemed initially a straightforward measure of lymphangiogenesis. It was
expected that quantitative analysis of intratumoral, peritumoral and non-tumor lymphatic
vessel densities (LVD) should settle the question of induction of breast cancer
lymphangiogenesis, analogously to the previous establishment of intratumoral blood vessel
density (BVD) as a reliable indicator of tumor-induced angiogenesis [87]. Technically,
however, LVD quantification is much more challenging than BVD because of the natural
heterogeneous distribution of lymphatic vessels. Additional complexity arises from the fact
that, in contrast to blood vessels, lymphatic vessels support spread of metastatic cells, but
not tumor cell proliferation and expansion of the tumor mass. Therefore, subtle increases in
LVD might be missed in tumor sections set aside for immunohistochemical analysis,
although they might suffice for tumor dissemination in a patient. As a result, findings and
interpretations from the studies that focused on infrequently occurring intratumoral
lymphatic vessels [79], or those that compared a heterogeneous LVD pattern to more orderly
tumor blood vessel distribution [77], fueled the debate whether lymphangiogenesis exists in
breast cancer [77–80].

The main evidence supporting the claim that lymphangiogenesis does not exit in tumors is
detection of decreased LVD or absence of intratumoral lymphatic vessels (LV) compared
with normal breast tissue [77–80]. The same studies, however, reported a significant
increase (P=0.0001) in peritumoral LVD [78;80] with some lymphatic vessels (LV)
containing tumor emboli [77]. Similar findings were also reported in an independent study
(N=180) in which the intratumoral LV were detected in only 12% of the tumors, whereas the
peritumoral LV were present in 94% [88]. The bias toward development of peritumoral
lymphatics has also been noted in a study on 177 specimens of invasive breast cancer, in
which intra- and peritumoral lymphatic vessels were detected in 41% and 100% of the
samples, respectively [23]. However, a study comparing LVD in a highly metastatic
inflammatory breast cancer (IBC, N=29) with invasive but non-IBC (N=59) tumors, found
intratumoral lymphatic vessels in as many as 80–82% of samples in both tumor groups [24].
As shown in Table 6, there is a wide range of opinions with regard to a prognostic value of
intratumoral LVD. However, a consensus seems to exist with regard to increased density of
peritumoral lymphatic vessels (Table 6) that might be sufficient for tumor cell transit to LN
even in the absence of intratumoral lymphatics.

3.2. How do tumor cells access lymphatic vessels?
It has been proposed that tumor cells, in addition to passive invasion of lymphatic vessels,
may use physiological attractants SDF-1 (also known as CXCL12) and CCL21 to migrate
through the lymphatic channels toward regional lymph nodes. This hypothesis has been
supported by several lines of evidence. First, significant number of breast cancers (30% to
up to 70%) over-express CXCR4 and/or CCR7, which are the receptors for SDF-1 and
CCL21, respectively [89–91]. Up-regulation of the expression of either CXCR4 or CCR7
strongly correlates with lymph node metastasis [89;92]. Second, SDF-1 is highly expressed
in tissues that are often sites for breast cancer metastasis, including lymph node, lung, liver,
and bone marrow, and the extracts from these tissues stimulates migration of breast
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carcinoma cells [93]. Third, stimulation of either CXCR4 or CCR7 with respective ligands
increases migration and invasiveness of cultured breast cancer cells [94–96]. Fourth,
antagonists or neutralizing antibodies against these chemokine receptors significantly reduce
both lymphatic and distant metastasis in breast cancer animal models [93]. Collectively,
these studies suggest that CXCR4 or CCR7-positive breast tumors may exhibit enhanced
lymphatic metastasis due to active chemo-attraction and directional migration toward
ligand-overexpressing lymph nodes.

3.3. Are tumor-induced new lymphatic vessels capable of transporting tumor cells?
3.3.1 Evidence for the ability of tumor-induced lymphatic vessels to transfer
fluid and metastatic cells—Lymphatic metastasis was reported also to occur in the
absence of intratumoral lymphatic vasculature [97;98]. It has also been shown in some
experimental systems that intratumoral lymphatic vessels might be present but conduct no
fluid whereas the only peritumoral lymphatics are functional [99;100]. This conclusion was
further supported by an experimental study of B16-F10 melanoma over-expressing VEGF-C
that demonstrated functionality in 40% of peritumoral but not intratumoral lymphatic vessels
[101]. The peritumoral lymphatics incorporated a proliferative marker [101], indicating
actively ongoing lymphangiogenesis rather than lymphatics existing prior to tumor
implantation. This study [101] showed a tracer uptake by peritumoral lymphatics, but did
not demonstrate actual lymph flow from the tumor to loco-regional nodes. In contrast, a
separate study using a fluorescent dye injected proximally to B16-F10 melanoma tumors
implanted into the foot of mice showed a 23-fold increase in lymph flow to the popliteal LN
as compared with the nontumor bearing leg [102]. Studies in the T241 fibrosarcoma model
over-expressing VEGF-C also showed an increase in volumetric lymph flow by 40%,
coincident with a 200-fold increase in tumor cell dissemination and a 4-fold increase in LN
metastasis [103]. Moreover, blocking VEGF-C reduced lymphatic hyperplasia, lymph flow,
and lymph node metastasis [104].

A recent study of orthotopic MDA-MB-231 breast tumors showed that tumors not only
enhanced lymph fluid flow but also transfer of metastatic cells [105]. Tumor cells labeled by
red fluorescence were imaged in real-time during invasion of “green” lymphatic vessels
visualized by FITC-dextran, then exiting the primary site through the lymphatics, clustering
into clumps at the lymphatic vessel junction, entering the subcapsular sinuses of the inguinal
lymph node and intruding the node parenchyma [105]. This work was the first to provide
unambiguous fluorescent imagery demonstrating the utilization of lymphatic vessels by
tumor cells for transit from the primary site to LN destination. It also highlighted specific
mechanistic steps occurring during this transfer, and demonstrated the role of high
interstitial pressure that might enhance the drainage rate and increase intravasation into the
peritumoral lymphatics [105].

3.3.2. Evidence for presence and functionality of lymphatic vessels
associated with sentinel lymph nodes—It was initially thought that the main factors
driving LN metastasis are access of tumor cells to lymphatic vessels and the flow rate of
lymph fluid in the draining vessels. Another significant factor is tumor-dependent induction
of lymphangiogenesis and increased lymph flow in the sentinel and other draining lymph
nodes [106]. This process, termed Lymph Node Lymphangiogenesis (LNL), has been
observed in multiple animal models of tumor and inflammation, and is supported by clinical
observations.

LNL was detected in the B16-F10 melanoma model, in which tumors implanted into the
footpad of C57BL/J6 mice increased lymphangiogenesis in the tumor-draining popliteal
lymph node by 9-fold (P<0.0001) compared with the non-tumor-draining lymph node [102].
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Significantly, morphologic changes in LN lymphatics occurred prior to detection of
metastasis suggesting that such changes might predict a metastatic risk. A nearly 15-fold
increase in lymph flow in the tumor-bearing footpads was detected by fluorescent imaging,
which recorded the arrival of quantum dots to the tumor-draining node within 2 minutes, as
compared with 30 minutes to the contralateral node [102]. Similar findings were obtained in
a model of nasopharyngeal carcinoma, which increased volume of the sentinel lymph nodes
by 3–4-fold compared with contralateral lymph nodes [107]. Lymph node enlargement was
accompanied by robust lymphangiogenesis manifested by both an increase in number of
lymphatic sinuses and diameter of their lumens [107]. LNL was also shown in a mouse skin
inflammation model that expresses VEGF-A in keratinocytes under the K14-promoter [108].
Compared with normal non-stimulated lymph nodes, the draining nodes from the
chronically inflamed skin had increased weight (4.3-fold), cellularity (3.9-fold) and density
of LYVE-1 positive vessels [108]. These studies showed that functionality of tumor-
draining lymphatic vessels is increased, rather than decreased, as has been previously
suggested [109]. The enhanced drainage that results from both hyperplasia and increased
lymphatic vessel density may increase transport of metastatic cells from the tumor periphery
to sentinel nodes and beyond.

3.4. Can lymphatic metastasis occur in the absence of lymphangiogenesis?
Although several studies suggested that LEC proliferation occurs in intratumoral and more
frequently, in peritumoral vessels, the pre-existing lymphatic vessels may equally contribute
to metastatic spread. In other words, lymphatic metastasis may not exclusively depend on
generation of new vessels, although, undoubtedly, increase in LVD significantly increases a
potential for a tumor cell to invade lymphatic vessel surface. This may account for strong
statistical associations between LVI encompassing both pre-existing and new vessels and
LN metastasis [37;51;110]. It is possible, however, that in some cases breast tumors fail to
induce lymphangiogenesis and lymphatic metastasis occurs only through the pre-existing
vessels [77]. Collectively, current reports suggest that new lymphatic vessels may provide
an additional track for tumor cell transit, thus bolstering the pro-metastatic activity of the
pre-existing lymphatic vessels situated at the tumor border.

3.5. Do metastatic cells in LN contribute to distant spread?
Current controversies include the prognostic value of lymphangiogenic markers, the active
status of lymphangiogenesis and the role of new lymphatic vessels in transportation of tumor
cells to lymph nodes. However, the most crucial issue to resolve is whether metastatic cells
stop their travel in lymph nodes or continue to disseminate throughout the body. This is
because lymph node metastases by themselves are not life-threatening and could be removed
surgically; it is only the distant metastasis to bone and visceral organs that causes death in
patients of breast [44] and other solid tumors.

There are two opposing views on this subject. One school of thought is that metastasis to
lymph nodes merely reflects tumor aggressiveness, with little to no contribution of nodal
metastatic cells to spread to distant organs (Fig. 1, pathway A describing lymphatic-
independent hematogenous model of metastasis). This proposal is mainly based on evidence
from clinical trials that showed no survival benefits for patients undergoing
lymphadenectomy (lymph node removal) [111]. The second argument supporting this notion
is based on the concept that tumor dissemination is organ-specific and, therefore, metastatic
cells adapted to lymphatic circulation and establishing lesions within the lymphatic system
may not be able to develop metastasis elsewhere [112]. Opponents of this view maintain
that, although primary tumors may disseminate independently from LN metastases, the latter
greatly contribute to the spread by generating metastatic cells that may use either LN blood
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vessels or efferent lymphatic vessels to colonize distal organs (Fig. 1, pathway B describing
lymphatic-dependent sequential model of metastasis and Fig. 2, panels 1–5).

The issue of survival benefits from lymphadenectomy remains controversial with several
caveats to be considered. First, the lack of therapeutic value of lymphadenectomy is mainly
based on trials conducted in the years 1980–2000 [111], when breast cancer detection was
delayed and patients were presented with more advanced disease. Second, node positivity in
earlier studies was primarily determined histologically, a method that misses 20–50% of
micrometastases and isolated tumor cells compared with cytokeratin immunostaining [113].
Indeed, re-examination of node specimens by anti-cytokeratin staining detected
micrometastases in 20% more cases than previously determined by H&E and demonstrated
differences in disease-free and overall survival in some of the groups with or without node
dissection [60]. Third, recent clinical trials showed significant benefit for patients with small
melanoma tumors who underwent lymphadenectomy immediately, thus disputing the
previous conclusion [114]. Fourth, experimental assessment of this question in a melanoma
model also showed significant survival benefit of sentinel lymphadenectomy for mice
bearing small tumors [115]. The same study also found that cells from primary tumors and
sLN have equal metastatic potential to colonize distant organs [115], thus arguing against
the hypothesis that nodal metastatic cells are biologically restricted to their first destination
site. Lastly, much of the recent information on tumor lymphatic biology directly contradicts
the opinion that metastatic cells in the lymph nodes “venture no farther” [116]. Several
recent lines of evidence support the active role of the lymphatic system in the distant spread
of metastatic breast carcinoma cells. Table 3 presents a selective list of large clinical studies
that demonstrated highly significant associations between LN metastasis and distant
metastasis, and survival. Table 1,Table 2,Table 4 and Table 6 show correlation of poor
outcome with additional lymphangiogenic parameters including VEGF-C expression [71],
LVD [70;88], LVI [18;36;50] and the consequences of partial [117] or omitted [118]
axillary dissection in sLN-positive patients.

Because clinical studies are correlative by nature, one can argue that all of the above
indicates tumor aggressiveness rather than promotion of metastasis by the lymphatic system,
although a perennial finding of pLVI as an independent prognostic factor for survival hardly
fits this explanation. However, it is even more difficult to explain mounting data from
experimental studies implicating lymphatic metastases as essential precursors for systemic
dissemination. Ectopic expression of a single protein, VEGF-C [12] or VEGF-D [119],
factors, which primarily affect lymphatic endothelial cells and not tumor cells [120],
invariably increases not only lymph node metastasis but also lung metastasis [7;119].
Moreover, distant metastasis does not develop in mice lacking LN lesions [121], suggesting
that nodal metastatic cells are pre-requisite for the formation of lung lesions. Defined
molecular agents neutralizing VEGF-C/-D suppress both LN and lung metastasis [122–124],
which is unexplainable if lung metastasis occurs independently of the lymphatic
dissemination. Additional argument in the favor of a sequential manner of dissemination
(Fig. 1, pathway B) is the observation that in many experimental systems LN metastasis
precedes metastasis to visceral organs [25;98;120]. The role of the lymphatic system in
distant metastasis is also supported by findings that tumor-induced LNL (section 3.2.2)
increases lymphatic surface and lymph flow in both afferent and efferent vessels of the sLN
[102], suggesting that tumor cell transit is accelerated not only toward the sLN but also
toward distal nodes located along the lymphatic trunk. Arrival of metastatic cells to the first
node as schematically illustrated in panel 4 of Fig. 2 further promotes remodeling and
enlargement of the lymphatic system [121]. The new concept of LNL strongly suggests that
both lymphatic and distant metastases are the combined result of tumor-inherent behavior
and reactivity of the host immune system, of which the sLN is the first organ, to tumor-
derived stimuli. Remodeling and expansion of the tumor associated lymphatic system has
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been documented not only before metastasis occurred [102;107;121], but even before the
primary malignant tumors were fully formed in transgenic mice [98]. This recent
information compels the conclusion that lymphangiogenesis plays an active role in distant
dissemination, which is critically relevant to development of effective anti-metastatic
strategies.

4. Experimental evidence supporting causality between lymphangiogenesis
and LN metastasis
4.1 Induction of lymphangiogenesis and LN metastasis by forced VEGF-C/VEGF-D
expression

The causality between tumor-induced lymphangiogenesis and lymph node metastasis has
been demonstrated in several experimental models targeting lymphangiogenic factors and
receptors through forced expression, RNA interference, antagonistic antibodies, soluble
receptor traps, and multi-kinase inhibitors. One of the first reports in an orthotopic green
fluorescent protein (GFP)-tagged MDA-MB-435 breast cancer model showed that
overexpression of VEGF-C increased intratumoral lymphangiogenesis by 4.6-fold, which
coincided with a 60% increase in incidence of LN metastasis [7]. Pulmonary metastatic
lesions were up to 60% larger in mice with VEGF-C overexpressing tumors compared with
control mice [7], suggesting that LN metastasis contributes to dissemination to visceral
organs.

Similar findings were demonstrated in studies using the MCF-7 breast carcinoma line. The
parental low-expressing VEGF-C line neither induced lymphangiogenesis nor generated
spontaneous metastasis upon implantation in the mammary fat pad of immunodeficient mice
[14]. In contrast, MCF-7 cells with ectopic VEGF-C expression developed tumors with
extensive intra- and peritumoral hyperplastic lymphatic vessels [14]. Significantly, LN
metastasis was detected in 70% of mice with VEGF-C overexpressing MCF-7 tumors as
compared with 0% in mice implanted with parental MCF-7 line [12;14]. A VEGF-C-
dependent increase in lymphangiogenesis and LN metastasis has also been demonstrated in
other models of solid tumors including lung [27], prostate [125], melanoma [120;126],
gastric carcinoma [127], fibrosarcoma [120] and colorectal cancer [128]. Most of these
studies reported a correlation between LN and distant metastasis [27;120;125], favoring the
hypothesis that lymph node metastasis is an intermediate step toward systemic
dissemination.

Whereas experimentally-induced VEGF-C invariably increased lymphangiogenesis and
metastasis, tumor lines with an endogenously high level of VEGF-C have been shown to
preferentially undergo spontaneous lymphogenous metastasis as shown in models of breast
[25;123;129], prostate [130] and gastric carcinomas [131]. Depletion of VEGF-C by stable
shRNA in mouse breast carcinoma C166 and BJMC3879 models drastically reduced
intratumoral lymphangiogenesis and inhibited LN and lung metastasis [123;124]. In
contrast, suppression of VEGF-C in a PC3 prostate cancer model reduced intratumoral LVD
by 3-fold but had no effect on peritumoral lymphatics or the incidence of LN metastasis
[130], suggesting that tumor cells can also disseminate through pre-existing vessels whose
maintenance does not depend on VEGF-C.

A role for VEGF-D in lymphatic metastasis has been shown in experimental models of lines
overexpressing this factor including HEK293 [15], hepatocellular [132] and pancreatic [133]
cancer cells. VEGF-D overexpression induced intratumoral or peritumoral
lymphangiogenesis and lymphatic hyperplasia, which coincided with a significant increase
in LN metastasis. A transgenic RipTag model that forms spontaneous VEGF-D
overexpressing pancreatic β-cell tumors showed a significantly increased intratumoral and
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peritumoral LVD accompanied by a 60–80% increase in LN and lung, but not liver,
metastases compared with β-cell tumors that did not express VEGF-D [119]. The high
incidence of pulmonary and lack of hepatic metastasis suggested that tumors metastasized
first to the lymph nodes and subsequently colonized the lungs but did not spread
hematogenously to colonize the liver.

4.2 Role of VEGF-A in promotion of breast tumor-induced lymphangiogenesis
In addition to being a potent angiogenic factor [134;135], VEGF-A has recently emerged as
a strong promoter of inflammatory [108;136;137] and tumor lymphangiogenesis [138–140].
This was first demonstrated by induction of new lymphatic vessels in the ear and peritoneal
lining of nude mice infected with VEGF-A over-expressing adenovirus [136]. These neo-
lymphatics resembled hyperplasic vessels found in lymphatic malformations, suggesting that
elevated VEGF-A at malignant and chronically inflamed sites might contribute to
pathological lymphangiogenesis. This hypothesis was subsequently supported by studies
demonstrating induction of a strong lymphangiogenic response in the rat [141] and mouse
[142] models of corneal injury, chronic inflammation [137] and VEGF-A-induced skin
tumorigenesis [138]. Additionally, VEGF-A mediated lymphangiogenesis has been shown
in T241 fibrosarcoma [140] and MDA-MB-435 breast carcinoma cells [26] that have been
engineered to overexpress VEGF-A. In all tumor experimental models studied to date,
induction of VEGF-A-dependent intratumoral [12] or peritumoral [140] lymphatic vessels
correlated with lymphatic invasion [138], and lymph node and distant metastasis
[26;138;140]. We recently demonstrated, using an orthotopic luciferase-tagged MDA-
MB-231 tumor model, that neutralizing VEGF-A reduces the density of intratumoral
lymphatic vessels by 80% [25] and inhibits LN and lung metastasis by 3.2-fold and 4.5-fold,
respectively [25]. Inhibition of VEGF-A signaling by anti-VEGFR-2 antibody also
suppressed new lymphatic vessels and tumor spread, although less efficiently than anti-
VEGFR-3 antibody treatment [26]. These studies support the causality between tumor
induction of lymphangiogenesis and both lymphatic and distant metastasis, thus suggesting
that targeting VEGF-A may suppress both hematogenous and lymphatic metastasis.

4.3 Potential role of other factors mediating lymphangiogenesis
Additional factors implicated in lymphangiogenesis include angiopoietins (Ang-1, Ang-2,
Ang-3), fibroblast growth factor (FGF)-2, platelet-derived growth factor (PDGF), insulin
growth factor-1 and -2 (IGF-1,-2), hepatocyte growth factor (HGF) and growth hormone
(GH). Ang-1 and Ang-2, ligands for the tyrosine kinase receptor Tie-2 expressed by
endothelial and stromal cells regulate both angiogenesis and lymphangiogenesis. In contrast
to antagonistic effects of Ang-1 and Ang-2 on blood vessels, both factors are agonists for
Tie-2 activation in cultured LEC [143] and lymphatic endothelium in vivo, as illustrated by
Ang-1-dependent rescue of lymphatic defects in Ang-2 knockout mice [144]. Ang-1 and
Ang-2 are elevated in plasma of breast cancer patients [145;146] and are indicators of
lymphatic metastasis [147–149]. Lymphangiogenic effects of FGF-2 [150], PDGF, IGF-1
and -2 [151], as well as HGF [152], have been shown in a mouse corneal assay whereas the
effect of GH was shown in a wound healing model [153]. FGF-2 and HGF-induced
lymphangiogenesis correlated with increased VEGF-C expression and was inhibited by anti-
VEGFR-3 blocking antibody [150;152]. In contrast, the effects of PDGF isoforms [154] and
IGF-1 and IGF-2 factors [151] were not inhibited by soluble VEGFR-3, suggesting an
independent mechanism. Although extensive circumstantial data link these factors to both
vessel formation and metastasis [155–157], none was examined systematically with regard
to breast cancer-induced lymphangiogenesis, lymphatic invasion and lymphatic metastasis.
Currently, their roles in these processes are not fully established.
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4.4 Role of circulating LEC progenitors in tumor-induced lymphangiogenesis
Circulating stem progenitor endothelial cells have been shown to contribute to growth of
blood vasculature during embryonic development, inflammation, tissue remodeling and
malignancy [158–161]. In comparison, few studies have focused on LEC progenitors,
particularly with regard to their contribution in tumor lymphangiogenesis. The cell types that
potentially comprise adult LEC progenitors include CD34-positive hematopoietic stem cells
(HSC) [9;162], CD14+ monocytes [163] and CD11b+ macrophages [82]. Contribution of
HSC to lymphangiogenesis has been shown by bone marrow (BM) transplantation of GFP-
labeled cells co-expressing VEGFR-3 and LYVE-1 that incorporated into 1–3% of
lymphatic vessels in the liver, intestine, gastric tract, and the kidney [164]. GFP+ labeled
HSC injected into APCMin/+ mice with spontaneous intestinal adenomas have been shown to
incorporate into tumor lymphatic vessels [164]. Lymphatic vessel integration of LYVE-1-
positive, GFP+/CD34+ cells has also been shown in a tumor T241 fibrosarcoma model and a
model of inflammatory lymphangiogenesis induced by FGF-2 in the mouse cornea [162]. A
corneal inflammation assay also showed incorporation of CD11b+ macrophages to new
lymphatic vessels [82]. A notably elegant study examining lymphangiogenesis in gender-
mismatched renal transplant patients undergoing rejection identified donor-derived Prox1+

LEC progenitors incorporated into the lymphatic vessels [163]. This strongly supports an
active pro-lymphangiogenic role of circulating progenitors in inflammatory
lymphangiogenesis in humans.

In contrast to the aforementioned studies, transplantation of unpurified GFP+ BM cells into
mice bearing Lewis lung carcinoma showed extensive BM cell recruitment to the vicinity of
tumor lymphatic vessels but did not show incorporation of progenitors into the vessels
[165]. The discrepancy with other studies [162;164] could relate to the fact that total BM
cell mixture, not purified CD34+ hematopoietic cells, was used for transplantation, which
diluted the number of transplanted LEC progenitors of CD34 lineage that comprise a
relatively low (1–3%) fraction [164]. This topic is currently a subject of debate, and the
extent and specific functions of LEC progenitors in breast tumor lymphangiogenesis are yet
to be established.

5. Cellular and molecular mechanisms of lymphangiogenesis
Although tumor lymphangiogenesis might be regulated in a distinct manner from
physiologically driven lymphangiogenesis occurring during embryogenesis, or, in adults
during wound healing, such differences are not readily apparent. The common pathway
involved in embryonic, adult, physiological and pathological lymphangiogenesis is
VEGFR-3. This conclusion is reached because antibodies blocking this pathway, through
either receptor or ligand binding impairment, suppress the formation of new lymphatic
vessels in all examined settings, regardless of the developmental stage or health status. We,
therefore, will focus on regulation of the VEGFR-3 pathway as it is the main established
contributor to development of new lymphatic vessels, including those generated in or around
breast tumors.

5.1 Regulation of expression of VEGF-3 ligands, VEGF-C and VEGF-D
VEGF-C and VEGF-D are secreted glycoproteins that induce proliferation, migration, and
survival of LEC through activation of VEGFR-3 [10;166]. VEGF-C/-D undergo proteolytic
processing to form 31/29kD immature isoforms that exclusively activate VEGFR-3 and
21kD mature isoforms that have increased affinity to VEGFR-3 and additional capacity to
bind VEGFR-2 [167;168]. Both VEGF-C and VEGF-D are processed by the furin
convertases, PC5 and PC7 [169;170], and the serine protease, plasmin [171]. VEGF-C [172]
but not VEGF-D [173] is required for embryonic development of the lymphatic system
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[172]. VEGF-C induced lymphatic vessel hyperplasia and lymphangiogenesis in embryonic
and postnatal mice, whereas VEGF-D induced these effects only in postnatal mice [174].
Comparative frequency of VEGF-C and VEGF-D expression in normal and malignant
tissues suggest that VEGF-C plays a more important role in tumor lymphangiogenesis.
Taken together, these studies suggest that although VEGF-C and VEGF-D bind the same
receptor, these two ligands might play distinct functions in maintenance of normal lymphatic
vessels and inducing new ones.

5.2. Role of VEGFR-3 receptor pathway in LEC activation and induction of
lymphangiogenesis

VEGFR-3 is a member of the VEGF-receptor family, a group of structurally related receptor
tyrosine kinases comprised of seven immunoglobulin-like domains, a single transmembrane
domain, and an interrupted kinase domain [175]. VEGFR-3 exists in two alternatively
spliced isoforms, long (VEGFR-3L) and short (VEGFR-3S), differing by 65 amino acids in
the C-terminus [176]. VEGFR-3L contains 16 tyrosine residues in the intracellular domain,
six of which are located in the cytoplasmic tail [177]. Three of the six most distal
phosphorylated tyrosine residues are absent in VEGFR-3S, suggesting the two isoforms
have different signaling capabilities [178]. RT-PCR analysis of breast and prostate
carcinomas showed that VEGFR-3S isoform is expressed at a higher level than VEGFR-3L
and correlates with lymphatic metastasis [179;180]. This suggests that VEGFR-3S is the
predominant splice variant in malignant cells; however, it remains unclear whether mRNA
for the two isoforms correlates with protein expression.

The VEGFR-3 pathway follows canonical activation of tyrosine kinase receptors, including
binding of VEGF-C/-D homodimers followed by receptor dimerization and phosphorylation
of tyrosine residues in the kinase domains. The VEGFR-3 pathway has been partially
elucidated using tryptic mapping and deletion mutants. Phosphorylation of VEGFR-3
activates Akt, JNK and Erk signaling pathways through interaction with adaptor proteins
Shc and Grb2 [166;181]. VEGFR-3 signaling in LEC is also mediated through PKC-
dependent activation of the p42/44 MAPK pathway [166]. Deletion of tyrosines
Y1230/1231 and Y1337 decreased endothelial cell proliferation, migration and survival in
vitro [178] while mutation of Y1337 drastically reduced phosphorylation of Shc protein
[178]. Another means to regulate VEGFR-3 is through the formation of heterodimers with
VEGFR-2 receptor [182]. This interaction may block phosphorylation of the two most distal
tyrosines, thus inhibiting downstream VEGFR-3 signaling [183].

VEGFR-3 can also be regulated through its interactions with integrins that control
endothelial cell adhesion to the extracellular matrix (ECM) necessary for cell survival [184].
Both fibronectin, the major ligand for α5β1 integrin, and VEGF-C156S, a specific activator
of VEGFR-3, promote VEGFR-3/α5β1 interactions leading to phosphorylation of PI3K and
enhanced endothelial cell survival [185]. Likewise, ECM proteins enhance VEGF-D-
induced migration of LEC [186]. In a corneal inflammation assay, inhibition of α5 integrin
signaling by the inhibitor JSM6424 reduced lymphovascular area by 50% compared with
control animals [187]. These studies suggest that α5β1 integrin contributes to VEGFR-3
signaling in inflammatory lymphangiogenesis, although the extent of integrins to tumor-
induced lymphangiogenesis remains to be determined.

5.3. Promotion of lymphangiogenesis and LN metastasis by tumor-associated
inflammation

Chronic inflammation is a hallmark of breast cancer [103;188] and has been repeatedly
linked to increased tumorigenesis [189;190], angiogenesis [191;192], lymphangiogenesis
[20;193] and metastatic progression [194–196]. Lymphangiogenesis, driven by chronically
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inflamed tumor environment, substantially increases the area of lymphatic-tumor interface,
thus increasing intravasation of tumor cells and their potential to reach regional lymph
nodes. The tumor inflammatory environment is created mainly by infiltrates of immune cells
[197;198] that may contain macrophages [18;19;141], dendritic cells [199], neutrophils
[193] and mast cells [200]. The presence of infiltrates that secrete an array of pro-angiogenic
factors[18;201] is associated with poor prognosis [202;203]. Additional sources of
inflammatory mediators are tumor fibroblasts[193] and endothelial cells [204;205], as well
as cytokine-overexpressing neoplastic cells. The inflammatory stimuli derived from these
cells mediate their effects mainly through activation of the NF-κB pathway [206]. This key
intracellular mediator of inflammation plays a paramount role in induction of
lymphangiogenesis through several complementary mechanisms. First, NF-κB induces
expression of lymphangiogenic factors VEGF-C [207] and VEGF-A [208]. Second, many
genes transcribed by NF-κB (e.g., TNF-α, IL-1β, IL-6, IL-8, IL-7 and COX-2) increase
lymphangiogenesis indirectly, by up regulating expression of VEGF-C or VEGF-D
[21;209;210]. Third, NF-κB regulated enzymes, metalloproteinases, and uPA degrade
extracellular matrix and proteolytically cleave VEGF-C and VEGF-D to create mature forms
with higher affinity to VEGFR-3 and the new ability to activate VEGFR-2 receptor [171].
Lastly, NF-κB activates transcription of the VEGFR-2 receptor that binds VEGF-A as well
as mature versions of VEGF-C/-D factors [196;211]. Our laboratory recently established
that NF-κB also directly regulates VEGFR-3 expression, thus enhancing LEC
responsiveness to VEGF-C in vivo [212]. Collectively, this evidence suggests that
inflammation-induced activation of NF-κB facilitates metastasis not only by enhancing
proliferation [213;214], migration [215;216], survival [217;218] and invasion [195;216]of
the tumor cells but also through transcription of critical lymphangiogenic genes. The
strategies to counteract the traits endowed by tumor-associated inflammation are likely to
reduce node metastasis and improve patient survival.

6. Therapeutic opportunities for inhibiting lymphatic metastasis in breast
cancer

Given strong associations among tumor-induced lymphangiogenesis, LVI, regional
lymphatic spread, distant metastasis and survival (Table 1–Table 6), inhibition of tumor
lymphatic vessels appears to be an attractive target. Based on the current understanding of
mechanisms governing malignant lymphangiogenesis (Fig. 2, panels 1 and 2), the most
logical targets for pharmacological inhibition are the main lymphangiogenic factors and
receptors (VEGF-C, VEGF-D, VEGF-A, VEGFR-3 and VEGFR-2), lymphatic invasion
ligand•receptor promoting pairs (e.g., SDF-1•CXCR4, CCL21•CCR7) and a variety of pro-
lymphangiogenic ancillary proteins (e.g., Ang-2, neuropilin-2, inflammatory mediators).
Inhibition of lymphangiogenic factors or receptors has been assessed in several experimental
models that demonstrated a significant anti-metastatic efficacy when administrated in
animals with recently implanted or small-sized tumors [26;120;219]. However,
monotherapies with either anti-VEGFR-3 and anti-VEGFR-2 antibodies were significantly
less efficacious in suppressing metastasis in mice with well-established tumors [26], which
is an anticipated situation in clinics. This is probably because, at the time of diagnosis,
lymphangiogenesis is already induced at both the primary site and the sentinel lymph node,
pre-existing lymphatic vessels are activated, tumor lymph drainage is increased and
micrometastases might be present at least in the sentinel node. It is, therefore, unlikely that
depletion of lymphangiogenic mediators, even at earlier stages of the disease, would
significantly affect the rate of lymphatic metastasis, although it is likely to reduce the
incidence of subsequent distant metastasis. Likewise, bevacizumab monotherapy that targets
the most potent tumor angiogenic factor, VEGF-A, is minimally effective in clinics [220]
despite strong performance in experimental models [221;222]. In contrast, combination
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therapies using bevacizumab and various chemotherapeutic drugs [223] are highly
successful in both tumor models [129;224] and clinical studies [220;225;226]. This is
mainly because VEGF-A [227;228], like VEGF-C [166;229] and VEGF-D [166;229], is a
potent survival factor for endothelial cells that cannot recover from damage inflicted by
simultaneously administered cytotoxic therapies. Analogously, a combination of chemo- and
anti-lymphangiogenic therapies might be highly effective in eliminating metastatic cells
while preventing the re-building of the damaged lymphatic vasculature. Agents that may
block lymphangiogenesis include antibodies, fusion proteins, or shRNA, as well as orally-
administered inhibitors that target tyrosine kinase receptors required for angiogenesis and
lymphangiogenesis (Sunitinib, E7080, cediranib, Vadnetanib, PTK/ZK, and MAZ51) [229].
This approach is particularly appealing given the new concept of LEC division induced at
both the tumor vicinity [23] and the draining nodes [85;86], which suggests susceptibility of
tumor-associated lymphatic endothelium to commonly used anti-proliferative anti-cancer
drugs.

Abbreviations

ALNM axillary lymph node metastasis

BM bone marrow

BVI blood vascular invasion

DFS disease-free survival

H&E hematoxylin and eosin

IHC immunohistochemistry

LEC lymphatic endothelial cells

LN lymph node(s)

LNL lymph node lymphangiogenesis

LVD lymphatic vessel density

LVI lymphatic vessel invasion

MFP mammary fat pad

OS overall survival

sLN sentinel lymph node

qRT-PCR quantitative reverse transcriptase polymerase chain reaction

pLVI peritumoral lymphatic vascular invasion

VEGF-A-C,-D vascular endothelial growth factor-A, -C, -D

VEGFR-2, -3 vascular endothelial growth factor receptor-2, -3
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Figure 1. Comparison of lymphatic-independent (hematogenous) and lymphatic-dependent
(lymphogenous) pathways of metastatic dissemination
A. Lymphatic-independent, hematogenous metastatic model. This concept implies that
lymphangiogenesis is either not induced or, if induced, new lymphatic vessels do not
contribute to tumor dissemination. It is envisioned that the main disseminating pathway is
through invasion of intratumoral blood vessels that deliver metastatic cells to distant organs
such as lung, liver, bone, and brain. Based on this model, aggressive tumor cells may also
invade pre-existing peritumoral lymphatics that transport tumor cells to loco-regional nodes;
however, node-derived metastatic cells do not contribute to distant metastasis. B.
Lymphatic-dependent, sequential model of dissemination in breast cancer. The second
model suggests that breast tumors induce intratumoral or peritumoral lymphangiogenesis as
well as remodeling of the lymphatic system in the sentinel and distal lymph nodes. This is
manifested by increased number of lymphatic vessels, increased frequency of dividing
lymphatic endothelial cells and increased lymph flow between the primary tumor and the
sentinel node. These attributes promote tumor cell dissemination through tumor-associated
lymphatic vessels to the sLN and spread to intramammary and axillary lymph nodes. Nodal
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metastatic cells can use either lymphatic or blood vessels for subsequent dissemination.
Transport through the lymphatic system ends in the entering the thoracic duct whose
contents are subsequently mixed with the venous blood, giving rise to metastatic lesions in
the lungs and other visceral organs. Two models are not mutually excluding and in some
tumors, hematogenous and lymphogenous metastasis may occur simultaneously.
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Figure 2. Mechanisms of lymphatic metastasis
Panel 1: Inflammation, hypoxia and reactive oxygen species (ROS) up-regulate expression
of pro-lymphangiogenic factors VEGF-C, VEGF-D and VEGF-A produced by both tumor
neoplastic and tumor-associated stromal cells (e.g. macrophages and fibroblasts). Panel 2:
New lymphatic vessels are formed mainly in the peritumoral region but in some cases also
intratumorally. The formation of new lymphatic vessels involves activation of VEGFR-3 by
VEGF-C/-D and VEGFR-2 by VEGF-A as well as mature forms of VEGF-C/-D. Following,
LEC proliferate, migrate and assemble into new vessels. The process may include
incorporation of tumor-recruited circulating LEC progenitor cells. Panel 3: Tumor cells
might actively invade intratumoral or peritumoral lymphatic vessels, or might be passively
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encapsulated by lymphatic vessels. Both types of interactions promote LVI leading to
lymphatic metastasis to the sentinel lymph node. The active metastasis includes chemotactic
recruitment of tumor cells expressing CCR7 or CXCR4 receptors by corresponding
chemokines (CCL21 and SDF-1) expressed by the local lymphatic system. Panel 4:
Unknown tumor-secreted factors that may include, but not limited to VEGF-A and VEGF-
C, elicit profound morphological changes in the sentinel LN culminating in lymph node
lymphangiogenesis (LNL) and lymphatic hypertrophy. Dramatically increased lymph flow
in and out of the sLN promotes both lymphatic metastasis and further dissemination to
distant organs. Panel 5: The pathway to distant organs may occur through both blood and
lymphatic vasculature. Following dissemination through lymphatic vessels to the sentinel
LN, tumor cells may enter the blood circulation through nodal blood vessels, or proceed
with the lymphatic flow and enter the venous circulation via the thoracic duct, both
pathways leading to distant organ metastasis.
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Table 1

Association of lymphatic vessel invasion (LVI) with lymphatic metastasis in breast cancer

# of
Patients

Method of
Analysis Comments P valuea Reference

4,351 H&Eb Sentinel LNb metastasis was strongly associated with
peritumoral vascular invasion (pVI)

P<0.0001 [37]

2,606 H&E LN metastasis significantly correlated with perivascular
invasion encompassing both LVIb or BVIb

P<0.0001 [110]

850 H&E LVI detected in 51% of patients was the most significant
predictor for axillary LN metastases

P<0.001 [51]

400 IHCb Patients with LVI were more likely to have sLNb metastases
(51.3% of LVI-positive patients had positive sLN)

P<0.001 [46]

374 IHC LVI was significantly associated with a higher risk for
developing lymph node metastasis

P=0.004 [50]

254 H&E and
IHC

In a multivariate analysis, LVI was the strongest predictor for
ALNMb with an odds ratio of 3.489

P=0.0003 [41]

206 H&E LVI was significantly associated with non-sentinel LN
involvement (41% of LVI-positive patients had also positive
LN versus 26% of LVI-negative patients)

P=0.021 [230]

194 H&E and
IHC

Strong association was found between pLVI and non-sentinel
LN metastasis (65% versus 37%)

P=0.001 [231]

177 IHC LVI was strongly associated with LN metastasis, distant
metastasis, decreased disease-free interval and overall survival

P<0.001 [36]

165 H&E LVI in the primary tumor was the only factor significantly
associated with metastases in the non-sentinel LN

P<0.01 [45]

123 IHC LVI but not BVI significantly correlated with lymphatic
metastasis

P=0.002 [42]

118 H&E LVI was a strong predictor of axillary LN metastasis regardless
of tumor size

P<0.0001 [232]

113 IHC LVI correlated with LN metastasis, LVDb and VEGF-Cb P< 0.0001 [70]

98 IHC LVI correlated with VEGF-C, which was expressed in ~40% of
breast cancers but not in adjacent normal mammary glands

P=0.0004 [67]

95 H&E and
IHC

Only peritumoral LVI, but not BVI, was associated with LN
metastases. LVI exceeded BVI in both the number of invaded
vessels and the size of the emboli. (P=0.004)

P=0.002 [44]

a
P value indicates association of intratumoral or peritumoral lymphatic vessel invasion with LN metastasis.

b
Abbreviations: H&E, hematoxylin & eosin; LN, lymph node; LVI, lymphatic vascular invasion; BVI, blood vascular invasion; IHC,

immunohistochemistry; sLN, sentinel lymph node; pLVI, peritumoral lymphatic vascular invasion; DFS, disease-free survival; OS, overall
survival; ALNM, axillary lymph node metastasis; LEC, lymphatic endothelial cells; LVD, lymphatic vessel density; VEGF-C, vascular endothelial
growth factor C.
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Table 4

Correlation of VEGF-C and VEGF-D with lymphatic metastasis

# of
Patients

Method of
Analysis Comments P valuea Reference

177 IHCb VEGF-Cb was highly expressed in 37% of specimens.
VEGF-C expression was associated with a higher LVDb
(P=0.014), lymph node and distant metastasis (P<0.001
and P=0.008, respectively) and a shorter OSb (P= 0.028)

P<0.001 [68]

123 IHC VEGF-C was detected in 87.3% of specimens. High
VEGF-C was associated with poor DFSb and OS
(P=0.0165 & P=0.0175)

P=0.0131 [71]

121 IHC VEGF-D correlated with the presence of intralymphatic
tumor cells

[80]

113 qRT-PCRb VEGF-C mRNA level also correlated with LVD
(P=0.0409)

P=0.0074 [70]

105 IHC VEGF-Db expression was identified in 86 cases (81.9% of
all cases) and highly correlated with LN metastasis

0.0238 [74]

98 IHC No correlations were found between VEGF-C or VEGF-D
expression and tumor size, grade, estrogen receptor status,
axillary lymph node metastases and other parameters

NS [235]

80 IHC VEGF-C was also significantly associated with higher
peritumoral LVD, lymphatic invasion and number of
positive nodes in patients with micropapillary breast
carcinoma

P=0.003 [236]

70 IHC Both VEGF-C and COX-2 correlated with LN metastasis,
LVD, LVIb as well as with worse DFS and OS

P=0.01 [237]

51 IHC There was no significant correlation between VEGF-C and
LN status, LVI, tumor size, grade or other parameters

NS [73]

33 RT-PCR VEGF-C mRNA expression and LVI or lymph node
metastasis

NS [72]

29 qRT-PCR &
IHC

Intratumoral VEGF-C and VEGF-D expression by
quantitative RT-PCR correlated with D2-40c but not with
CD31c microvessel density

P=0.0414 [238]

a
P value indicates association of VEGF-C or -D expression with LN metastasis.

b
Abbreviations: IHC, immunohistochemistry; VEGF-C and VEGF-D, vascular endothelial growth factor C or D; OS, overall survival; DFS,

disease-free survival; LVD, lymphatic vessel density; qRT-PCR, quantitative reverse-transcriptase polymerase chain reaction; LVI, lymphatic
vascular invasion.

c
D2-40 and CD31 are markers of lymphatic and blood vascular endothelial cells, respectively.
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Table 5

Correlation of lymphatic endothelial cell proliferation and lymphatic metastasis

# of
Patients

Method of
Analysis

Comments P valuea Reference

177 Double IHC,
D2-40/Ki-67

Proliferating lymphatics were detected in 29% of
specimens and were significantly associated with
inflammatory infiltrate

Not assessed [23]

123 IHC Higher incidence of LVI was associated with increased
LEC proliferation and correlated to the presence of
micrometastases

P=0.002 [42]

121 Double IHC,
podoplanin &
Ki-67

No correlation between intratumoral lymphatic vessel
density inside the lymph node metastases and patient
survival

NS [80]

110 Double IHC,
D2-40/Ki-67

Median intra- and perinodal lymphatic endothelial cell
proliferation fractions were higher in metastatic LN

P<0.001 [86]

75 Double IHC,
LYVE-1/Ki-67

None of the breast carcinomas displayed dividing
lymphatic endothelial cells, but a fraction of the
peritumoral lymphatics contained tumor emboli

NS [77]

65 Double IHC,
D2-40/Ki-67

LECP%b correlated with a positive non-sentinel LN status P = 0.01 [85]

56 Double IHC,
D2-40/Ki-67

The degree of lymphatic endothelial cell proliferation was
predictive of LN metastasis. Inflammatory breast cancer
specimens displayed significantly higher LECP% than
non-inflammatory breast tumors (5.74% vs. 1.83%,
P=0.005)

P = 0.01 [24]

32 Double IHC,
LYVE-1/Ki-67

Inflammatory breast cancers contained significantly higher
LECP% than non-inflammatory specimens (P = 0.033)

Not assessed [84]

a
P value indicates significant association of a fraction of lymphatic endothelial cells undergoing division with lymphatic metastasis.

b
LECP%, lymphatic endothelial cell proliferation fraction or percent of total LEC identified by specific lymphatic endothelial cell markers.
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Table 6

Association of lymphatic vessel density (LVD) with lymphatic metastasis in breast cancer

# of
Patients

Method of
Analysis

Comments P valueb Reference

180 IHCa Higher than median LVD a was significantly associated
with unfavorable prognosis

P=0.033 [88]

177 IHC Tumors with higher total LVD were significantly
associated with LN metastasis and shorter OS a

P<0.001 [23]

121 IHC Intratumoral lymphatic vessels were present in ~10% of all
patients and did not correlate with LN metastasis.
Peritumoral lymphatic vessel density was not assessed

NS [80]

113 IHC LVD also strongly correlated with poor DFS a and OS
(P=0.0033 & P=0.0391)

P<0.0001 [70]

87 IHC D2-40-stained intratumoral lymph vessels were present in
80% of non-inflammatory and 82.8% of inflammatory
breast cancers specimens

P=0.001 [24]

80 IHC Higher LVD correlated with the number of positive LN in
patients with invasive micropapillary breast carcinoma

P=0.045 [236]

75 IHC Lymphatic vessel density was unrelated to LN status NS [77]

61 IHC LVD was higher in breast carcinoma than in benign
mammary lesions and significantly correlated with higher
expression of VEGF-C and VEGF-D, P<0.01

P<0.01 [69]

61 IHC Intratumoral lymphatic vessels were reduced or absent in
tumors compared with normal breast tissue. Peritumoral
LVD was not assessed

N/A [79]

55 IHC There was an increase in peritumoral LVD as compared
with normal breast) but a decrease in intratumoral LVD
(both P = 0.0001)

P = 0.0001 [78]

29 qRT-PCR LVD also correlated with VEGF-C and VEGF-D
expression measured by qRT-PCR (P=0.0291)

P=0.0558 [238]

a
Abbreviations: IHC, immunohistochemistry; LVD, lymphatic vessel density; OS, overall survival; DFS, disease-free survival; other abbreviations

are given under Table 1.

b
P value indicates association of intratumoral or peritumoral LVD with LN metastasis.
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