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Summary
Physical activity has many well-documented health benefits for cardiovascular fitness and weight
control. For pregnant women, the American College of Obstetricians and Gynecologists currently
recommends 30 minutes of moderate exercise on most, if not all, days; however, very few pregnant
women achieve this level of activity. Traditionally, studies have focused on examining individual or
interpersonal factors to identify predictors of physical activity. There is a renewed interest in whether
characteristics of the physical environment in which we live and work may also influence physical
activity levels. We consider one of the first studies of pregnant women that examines the impact of
characteristics of the built environment on physical activity levels. Using a socioecologic framework,
we study the associations between physical activity and several factors including personal
characteristics, meteorological/air quality variables, and neighborhood characteristics for pregnant
women in four counties of North Carolina. We simultaneously analyze six types of physical activity
and investigate cross-dependencies between these activity types. Exploratory analysis suggests that
the associations are different in different regions. Therefore we use a multivariate regression model
with spatially-varying regression coefficients. This model includes a regression parameter for each
covariate at each spatial location. For our data with many predictors, some form of dimension
reduction is clearly needed. We introduce a Bayesian variable selection procedure to identify subsets
of important variables. Our stochastic search algorithm determines the probabilities that each
covariate’s effect is null, non-null but constant across space, and spatially-varying. We found that
individual level covariates had a greater influence on women’s activity levels than neighborhood
environmental characteristics, and some individual level covariates had spatially-varying
associations with the activity levels of pregnant women.
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1. Introduction
A recent population-based study found that while approximately two-thirds of pregnant women
reported some leisure activity during pregnancy, less than one-sixth reported meeting the
recommendations for activity (Evenson et al., 2004). Physical activity during pregnancy has
well-established benefits, including prevention of excess weight gain (Clapp and Little,
1995) and reduced risk of certain complications such as gestational diabetes (Dempsey et al.,
2004) and preeclampsia (Saftlas et al.). During pregnancy, women change their activity
patterns and tend to adopt more health promoting behaviors (e.g., avoidance of cigarettes or
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binge drinking). If healthy behavioral patterns established during pregnancy could be
maintained afterwards, a woman’s weight status and general health could be improved. There
is renewed interest in whether characteristics of the physical environment in which women live
and work influence physical activity levels during pregnancy. In this paper we study the
associations between six types of moderate to vigorous physical activity and several factors
including personal characteristics, meteorological/air quality variables, and neighborhood
characteristics for pregnant women in four counties of North Carolina.

Physical activity patterns are highly dependent on geographic location. Our data includes
women from Orange, Durham, Alamance, and Chatham counties in central North Carolina
(Figure 1). These counties are quite heterogeneous, with communities ranging from the more
urban area of downtown Durham, to the college town of Chapel Hill, to rural areas of Alamance,
Chatham, and northern Orange counties. Properly accounting for spatial clustering of the
responses is needed to study the effects of our predictors on physical activity (Reich et al.,
2006,Hoeting et al., 2006).

These sources of spatial heterogeneity made investigators suspect that some exposures may
have different associations with physical activity in different areas. For example, sidewalks
may be more important on busy streets than on quieter ones. Porches on homes in rural areas
may be associated with both larger lots and residents more likely to spend considerable time
in outdoor household physical activity related to gardening or farm upkeep; however, in Chapel
Hill, a porch may be a marker of living in a new urbanist neighborhood development
distinguished by homes on smaller lots in an area designed specifically to encourage walking.
Identifying spatially-varying effects can both improve the predictive model and also reveal
confounders or missing interactions that, when accounted for, can improve our understanding
of the effect of these exposures on physical activity. To capture these spatially-varying effects,
we extend the spatially-varying coefficient model of Gelfand et al. (2003) to the multivariate
setting.

Implementing the multivariate spatially-varying coefficients model for these data is
challenging for two reasons: (1) the data are clearly non-Gaussian, with a large proportion of
zeros corresponding to women with no moderate to vigorous activity of a given type, and (2)
there are 29 predictors, so allowing all of the predictors to have spatially-varying effects leads
to an over-parameterized model. Figure 2 plots the transformed (log[activity+1]) transportation
activity levels. Nearly 80% of the women in the study reported no transportation-related (e.g.,
walking or bicycling to destinations) moderate to vigorous physical activity. One approach
would be to dichotomize the data and apply spatial logistic or probit regression to the binary
responses (e.g., Kelsall and Diggle, 1998;Paciorek, 2007). While this approach would simplify
the analysis, it ignores the large differences in the non-zero responses, e.g., the difference
between a woman who rides her bike to work compared to a woman who walks uphill to the
bus stop. We elect to retain all the information in the data and simultaneously analyze the zero
and continuous non-zero responses.

Stein (1992) introduces a truncated normal distribution for spatial data. Exploratory analysis
shows that this model is not flexible enough to fit the positive observations and have sufficient
mass at zero to accommodate the large proportion of zeros. For example, Figure 2b plots the
truncated normal density with parameters estimated using MLE. The estimated truncated
normal has nearly 80% of its mass at zero, matching the sample proportion, but the fit above
zero is unsatisfactory. Therefore, we develop a zero-inflated spatially-referenced truncated
Gaussian model. Zero-inflated models are common for spatial count data (e.g., Agarwal,
2002) and non-spatial semicontinuous data (Olsen and Schafer, 2001; Berk and Lachenbruch,
2002; Albert and Shen, 2005; Zhang et al., 2006) but have not been applied to semicontinuous
spatial data. There is an important distinction between our approach and previous non-spatial
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models for semicontinuous data. These models include two regression coefficients for each
predictor: the first is used to model the probability at zero and the second is used to predict the
magnitude of the non-zero responses. Our model includes only a single regression coefficient
for each predictor, and thus allows both the zero and non-zero observations to inform about
the regression coefficients.

To reduce the dimension of the model we develop a stochastic search variable selection (e.g.,
George and McCulloch, 1993; Chipman, 1996; George and McCulloch, 1997; Mitchell and
Beauchamp; 1998) procedure for spatially-varying coefficients. The literature on variable
selection for spatial data is limited. Hoeting et al. (2006) and Huang and Chen (2007) propose
classical variable selection methods for univariate Gaussian spatial data without spatially-
varying coefficients. Smith and Fahrmeir (2007) develop a Bayesian variable selection method
for univariate data on a lattice with spatially-varying coefficients. Their approach is to perform
local variable selection, that is, to allow for a different subset of the covariates to be included
at different lattice points. They use an Ising prior to encourage neighboring lattice points to
include similar variables. Our approach differs from Smith and Fahrmeir in several ways. Their
model is tailored to univariate Gaussian data on a lattice; our data are multivariate, zero-
inflated, and not on a lattice. Also, we take a more global view to variable selection in that we
select the same variables throughout the spatial domain but allow some of their effects to vary.
Smith and Fahrmeir’s model does not explicitly place prior probability on variables being
completely removed from the model or included throughout the spatial domain with the same
effect across space. This is appropriate for their analysis of fMRI data in which the objective
is to uncover “hot spots” with a small number of covariates. However, in our setting with many
variables, encouraging these models is desirable. Our prior gives non-zero mass to three models
for each covariate and for each outcome: (1) no association, (2) spatially non-varying
association, and (3) spatially-varying association. This allows us to include efficiently a large
number of predictors in the model, without forcing each to have a spatially-varying effect. Our
hierarchical model encourages variables to be included/excluded consistently across activity
types, producing a more interpretable multivariate model.

The paper proceeds as follows. Section 2 describes the PIN3 physical activity data. Section 3
develops the statistical model, the zero-inflated model and variable selection algorithm.
Computational details are given in Section 4. The methods are applied in Section 5 to PIN3
data. Section 6 concludes.

2. Description of the data
The third phase of the Pregnancy, Infection, and Nutrition (PIN3) Study recruited pregnant
women seeking prenatal care at the University of North Carolina Hospitals. Because of the
cachement area of UNC Hospitals, most study women resided in Orange, Durham, Alamance,
or Chatham counties in central North Carolina. One aim of the study was to investigate patterns
of physical activity during pregnancy. We examine factors related to physical activity during
the second trimester of pregnancy in six domains, including recreational activity, work activity,
transportation activity, child or adult care activity, and both indoor and outdoor household
activities.

Women enrolled in the study were interviewed about their moderate and vigorous activity in
the past week. Moderate to vigorous activity was defined in the questionnaire as activity that
raised the woman’s heart rate. The questionnaire assessed both frequency and duration of
activity in each of the six domains. Intensity of activity was assessed using published metabolic
(MET) tables (Ainsworth, 2000). The MET, 1 kilocalorie per kilogram per hour, is defined as
the amount of energy the body uses when sitting quietly. Reported activities were converted
to MET equivalents based on the published tables. Examples of MET equivalents for activities

Reich et al. Page 3

Biometrics. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reported in the PIN3 study include indoor household activities like vacuuming (3.5 METs),
outdoor household activities like raking the lawn (4.3 METs), transportation activities like
biking less than 10 mph (4.0 METs), or recreational activities such as a swimming slow
freestyle laps (7 METs) or running at a 8.5 minute mile pace (11.5 METs). The number of
MET minutes per week in each activity domain was then calculated by summing over the
activities within each domain, weighted by the duration of each activity reported. For example,
a woman who swam slow laps for one hour twice per week (and reported no other recreational
activities) would be assigned 7 × 2 × 60 MET minutes of recreational moderate to vigorous
activity; a woman who reported biking <10mph to work for 10 minutes each direction 5 days
per week would be assigned 4 × (10 + 10) × 5 MET minutes of moderate to vigorous
transportation-related activity.

Potential predictors of physical activity during pregnancy include sociodemographic,
meteorological, and neighborhood environmental factors. Because women with fewer
socioeconomic resources are less likely to meet recommendations for physical activity
(Evenson et al., 2004), we include as predictors household income (measured as percent of the
poverty line, which adjusts income for the number of household members supported on that
income), years of maternal education, marital status (married or unmarried), employment status
(working outside the home or not), and an indicator of black race, all of which have been
associated with socioeconomic status in the PIN data. Other maternal-level predictors of
interest include biologic factors (age in years and body mass index), an indicator of whether
the mother is pregnant with her first child (women with previous children may be less likely
to have time for recreational activities and more likely to spend time in child care activities),
an indicator of diagnosis of gestational diabetes in pregnancy, and an indicator of whether the
mother reported smoking cigarettes during pregnancy. Meteorological variables of interest
include weekly average ozone (obtained from the US EPA,
http://www.epa.gov/ttn/airs/airsaqs/) and weekly average temperature and precipitation
(obtained from the National Climate Data Center, http://cdo.ncdc.noaa.gov/CDO/cdo).
Meteorological data was taken from the nearest of the six stations in the study area. We use
ozone data from ten monitoring locations from the four counties in the study and adjacent
counties. Since ozone is fairly homogeneous over space and only one of the ten stations
measures ozone year-round, we use the average of the reported ozone values over the ten
stations as the daily ozone value. Because women reported activity levels as a weekly summary,
it is unclear whether meteorological variables will be as closely related to activity as they would
be if daily information on activity were available.

Finally, investigators are also interested in whether activity levels were associated with
physical characteristics of the neighborhood built environment, measured at the level of each
woman’s street segment (defined as the minimal length of street not intersected by another
road; e. g. the length of her block). The neighborhood environment may influence physical
activity behavior, though results in the literature have been mixed (Laraia et al. 2007; Yen et
al. 1998; Ross, 2000). Although neighborhood quality scales have been developed for urban
neighborhoods (Caughy et al. 2001), our exploratory work suggests that these measures,
developed in inner-city environments, may be inappropriate for our primarily small-town and
rural study area, so that we examine the neighborhood environment through multiple
individual-level indicators. These included whether the segment was urban or rural, the speed
limit, whether or not the residential units were in good condition, whether or not the grounds
were in good condition, whether or not abandoned residential units were present, and whether
public spaces on the segment (such as parks) were in poor condition. In addition, raters of each
street segment noted whether litter or graffiti were present, whether houses on the street had
decorations (e. g. a wreath on the front door), whether borders (like fences or hedges) separated
yards from the street, presence of signs (including neighborhood entrance signs and crime
watch signs), whether most homes had porches, whether people were visible in their yards or
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along the street, whether there were playgrounds on the street segment, and whether a sidewalk
was present along the segment. Descriptive statistics for these predictors for the n = 921
participants are presented in Table 1.

3. Variable selection for the multivariate spatially-varying coefficient model
Because the observed physical activity has a high proportion of zeros (Figure 2), we use a
truncated normal model. However, exploratory analysis suggests that there is more mass at
zero than can be accounted for by the truncated normal model. Section 3.1 introduces a zero-
inflated truncated normal model for these data. Section 3.2 describes the spatially-varying
coefficients model relating the predictors to physical activity, and Section 3.3 proposes a
Bayesian variable selection algorithm to search for the subset of the predictors best fitting the
data.

3.1 Zero-inflated truncated normal spatial model
Let yli be the observed activity level of type l for subject i with spatial location (lat/long of
residence) si, l = 1, …, k and i = 1, …, n. We assume

(1)

where zli ∈ ℛ is a latent variable, , and pl ~ Unif(0,1) is the additional mass at
zero for activity type l that can not be explained by the truncated normal model. An extension
of this model would allow the probability pl to vary with individual; however, the probability
of no activity under the proposed model is

(2)

so although pl is constant across individuals, Prob(yli = 0) is not. We assume pl is constant
across individuals to avoid identifiability problems.

To account for potential correlation between activity types, we model the latent process as
multivariate normal

(3)

where μli is the spatially-varying mean, the errors are (ε1i, …, εki)′ ~ N(0,Σe), and Σe ~
InvWishart(k + 0.1, 0.1I) is the k × k cross-covariance matrix. Since the mass at zero in (2)
depends on zli’s density, both non-zero and zero observations provide information about the
mean μli and covariance Σe.

3.2 Spatially-varying coefficients model
Spatial correlation and covariate effects are modelled in the mean using the spatially-varying
coefficient model of Gelfand et al. (2003),
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(4)

where x0i = 1 for all i, xji is the value of the jth covariate for subject i, and βlj(si) is the
corresponding regression parameter for activity type l. The spatially-varying coefficient model
allows the regression parameters for the jth covariate and lth activity type, βlj = βlj(s1), …, βlj
(sn))′, to be different in different locations. The regression coefficients are taken to be
independent across covariates, but correlated across activity type because it is likely that

covariates have a similar effect on multiple activity types. We assume  is a
Gaussian process with mean θj ⊗ 1n and separable covariance

where θj = (θ1j, …, θkj)′, the scalar θlj is the spatial average of βlj, 1n is the n-vector of ones,

Kj is the n × n spatial correlation matrix, and  is the k × k covariance matrix that controls
the cross-covariance between activity types. We select a separable prior for computational
convenience. Also, since most covariates are included as spatially-varying with high
probability for a small subject of the activity types, identifying more complicated spatial
structures would be difficult.

We assume the Matern spatial correlation (Handcock and Wallis, 1994), that is, the (i, i′)th

element of Kj is

where Bνj is the modified Bessel function. The Matern correlation has two parameters: νj
controls the smoothness (i.e., the degree of differentiability) of the process and ρj controls the
range of spatial correlation. If νj = 0.5 we have the exponential correlation exp(||si − si′||/ρj),

and if νj = ∞ we have the squared-exponential correlation . We choose priors
νj ~ Uniform(0.5,2.5) and ρj ~ Uniform(0.2,2.5). Under these priors, the prior 95% interval for
the spatial correlation for any pair of locations separated by 10% of the spatial domain’s
maximum diameter in Figure 1 is (0.01, 0.99).

3.3 Bayesian variable selection
Including all of the covariates described in Section 2 in the spatially-varying coefficient model
gives an over-parameterized model. Therefore, we propose a Bayesian variable selection model
that reflects the prior belief that many of the variables should be included in the model, but
only a small number have spatially-varying effects. We consider three possible relationships
between activity type l and the jth covariate, xj:

1. xj is removed from the model and βlj(si) = 0 for all si,

2. xj’s effect is constant across space and βlj(si) = θlj for all si, or
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3. xj’s effect varies spatially and βlj(si) varies from location-to-location.

Our Bayesian variable selection routine uses stochastic search variable selection to compute
the posterior probability of each of these three relationships.

The overall average effect θlj is given the spike and slab prior, popularized for variable selection
in the usual linear regression setting by George and McCulloch (1993). That is,

(5)

where γ1lj ∈ {0, 1} and αlj ~ N(0,σj). If γ1lj = 0 then θlj = 0 and xj’s average (over space) effect
on activity type l is zero.

To determine which regression parameters should be allowed to vary spatially, the prior for

the columns and rows of the covariance matrix  also have positive mass at zero. Let

(6)

where γ2lj ∈ {0, 1} and Ωlj ~ InvWishart(k + 0.1, 0.1Ik). If γ2lj = 0 then βlj(si) = θlj for all si and
the effect is xj is constant across space for activity type l.

Since we believe there is always some spatial correlation in the residual activity due to missing
covariates, we fix γ1l0 and γ2l0 to be one for all l. The prior for remaining binary variable
inclusion indicators ensures that the effects are not allowed to vary spatially unless the overall
average is non-zero. We choose the prior

(7)

In this prior, π1j is the prior probability that xj is included in the model (either constant or
spatially-varying) for activity type l and π2j is the conditional probability that the effect of xj
varies spatially given that it is included in the model for activity type l.

Note that the prior probabilities π1j and π2j and variance  are shared across activity types.

The hyperpriors areπ1j ~ Beta(a1,b1), π2j ~ Beta(a2,b2), and ; this
hierarchical model facilitates pooling information regarding the importance of xj across activity
types. Integrating over π1j gives mean inclusion probability E(γ1lj) = a1=(a1 + b1) and
correlation Cor(γ1lj, γ1l′j) = 1/(1 + a1 + b1). Therefore, the prior favors sparse models if a1 <
b1 and favors models with the same predictors for all response types with small a1 and b1. We
use a1 = a2 = b1 = b2 = 1 for the PIN3 data analysis in Section 5 to give uniform priors for each
inclusion probability.

Collinearity can be problematic for variable selection. Often when a group of important
predictors are highly correlated variable selection methods will select only a single member of
the group or miss the group altogether. We assume that the inclusion indicators γ1lj and γ2lj
and regression coefficients αlj and βlj(si) are independent across covariates. Inspecting the
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posteriors of the inclusion indicators suggests that collinearly is not a large problem for our
data. An alternative to the independent prior in the presence of collinearity is powered
correlation prior of Krishna et al. (2009), which uses non-independent priors for the inclusion
indicators and regression coefficients to combat collinearity.

4. Computing methods
To facilitate MCMC sampling, we introduce auxiliary variables gli which indicate whether the
yli is drawn from the point mass of zero or the truncated normal model in (1), that is, gli ~ Bern
(pl) and

(8)

gli is updated via Gibbs sampling; for observations with yli > 0 gli is fixed at zero, for
observations with yli = 0 the full conditional probability that gli = 1 is pl/(pl + (1 − pl) * Prob
(zli < 0)). The proportion pl is updated from its full conditional pl ~ Beta(1 + Σgji, 1 + n −
Σgji).

The latent variables zli for observations with yli = gli = 0 are drawn using Gibbs sampling from
their truncated normal full-conditionals; if gli = 1 zli no longer appears in the likelihood and it
is updated from its normal prior. The covariance matrices Σe and Ωlj are drawn using Gibbs
sampling from their inverse Wishart full-conditionals and ρj and νj are drawn using Metropolis-
Hastings sampling with Gaussian candidate distributions. Candidates with no prior mass are
simply rejected.

For computational convenience, we rewrite the spatially-varying mean as

(9)

where , βj ~ N(0,Kj ⊗ Ωj). The parameters in μli are updated using blocked-Gibbs
sampling with blocks Θlj = {γ1lj, γ2lj, αlj, βlj}. To derive the full-conditionals, let Θ(lj) be the
set of all parameters not included in Θlj. We draw from p(Θlj|z, Θ(lj)) by first integrating over
(αlj, βlj) and drawing (γ1lj, γ2lj) from p(γ1lj, γ2lj|z, Θ(lj)) and then drawing (αlj, βlj) from p(αlj,
βlj|γ1lj, γ2lj, z, Θ(lj)).

Define the residuals (not removing the xj’s effect on the lth activity type) as rli = zli − μli + xji
[γ1ljαlj + γ2ljβlj(si)] and simply rl′i = zl′i − μl′i for l′ ≠ l. Also, let U−1 = Σe and V−1 = Ωj. Routine
algebra shows that

(10)

where Σr = (UllΓX′XΓ + Δ−1)−1,
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and Γ is the (n + 1) × (n + 1) diagonal matrix with diagonal elements γ1lj, γ2lj, …, γ2lj. The
posterior probability of each (δ1lj, δ2lj) combination is computed and (δ1lj, δ2lj) is drawn

accordingly. Given (δ1lj, δ2lj),  is drawn from a multivariate normal distribution with
mean Σrβ ̂ and covariance Σr.

5. Analysis of the PIN3 data
In this section we analyze the PIN3 data described in Section 3. This is a multivariate model
for activity in the six domains (work, recreational, outdoor household, indoor household, adult
and child care, and transportation) as a function of demographic and other person-level
variables as well as meteorological and neighborhood-level variables.

Figure 3a shows the inclusion probabilities for each covariate and activity type. To illustrate
the effect of jointly modeling the inclusion probabilities across response type, Figure 3b shows
the inclusion probabilities using a fixed prior across activity types (i.e., with π1j = π2j = 0.5 and
σl = 1). The inclusion probabilities are more consistent across activity types under the joint
model. For example, employment status is included for only 4 of the 6 activity types with fixed
priors for the inclusion probabilities. All six inclusion probabilities are higher under the joint
model and employment status is included for all 6 activity types. Also, borrowing strength
across activity types removes some variables with inclusion probabilities just over 0.5 for one
activity type (speed limit, bad residential units), which are likely to be spurious associations.

Table 2 gives the 95% intervals for the zero-inflation parameters and the residual correlations.
Outdoor household and transportation-related activity have the largest proportions of zero in
the data set, and these activities generally have the largest zero-inflation parameters pl (95%
intervals (0.26, 0.40) for outdoor household and (0.16, 0.30) for transportation) which represent
the excess mass at zero not explained by the truncated normal model. These parameters are
clearly separated from zero, motivating the zero-inflated model even after accounting for
covariate effects and spatial correlation. For the other four types of activity, a truncated
Gaussian distribution fits fairly well, and the zero-inflation parameters are near zero. The
residual correlation between indoor household activity and all other activities except
transportation and recreational activity are significantly positive, and the only other
significantly non-zero correlation is between care and recreation. Indoor household activity
may serve as an indicator of women’s overall activity level in this group of women in mid to
late pregnancy. Due to this correlation the posterior probability at zero in Table 2a (“posterior”)
is larger than the observed proportion at zero for indoor activity.

Individual-level factors tended to be more strongly associated with physical activity levels than
neighborhood environmental factors, with several factors having posterior inclusion
probabilities > 0.90. Education, age, number of previous births, and employment status are
important predictors of at least five of the six activity types (Figure 3a). In particular, more
highly educated women tend to have higher levels of recreational, outdoor household, care,
and transportation activity and lower levels of work-related and indoor household activity.
These women may be more likely to have sedentary jobs and to hire domestic workers to help
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with household chores, freeing more time for leisure activity and playing with children. The
data show that activity patterns differ by race; black women generally exert more energy on
work and transportation-related activities and less energy on recreational, outdoor household,
and child and adult care activities. Also, women with high BMI are less likely to participate in
recreational or outdoor household activities. Gestational diabetes and smoking were associated
with increased work activity, which is perhaps a reflection of the demographics of these
conditions.

Ozone is a predictor of outdoor household and child and adult care activities. The posterior
mean of the ozone coefficient is positive for outdoor household activity, that is, women are
more likely to be active outdoors when the ozone is high. This is somewhat surprising given
the well-documented health effects of ozone exposure (National Research Council, 2008),
especially for susceptible groups. To investigate this issue further, we refit the model with
separate ozone effects for women with (n=643) and without (n=278) at least 16 years of
education. For the high education group ozone is included with probability 0.47 for child and
adult care and no more than 0.38 for the other activities. The posterior mean for the overall
average effect α for child and adult care is −0.04, which corresponds to roughly a 4% decrease
in MET minutes per week (exp(−.04)=.96) for a standard deviation (10.4 ppb) unit increase in
ozone. In contrast, for the low education group ozone is an important predictor for only outdoor
household activity (probability 0.67) and the posterior mean for the overall average effect is
0.09, which corresponds to roughly a 9% increase in MET minutes per week for a standard
deviation unit increase in ozone. Therefore, the association between physical activity and ozone
is dependent on education level.

Ozone is highly related to temperature. The posterior correlation of the inclusion indictors
γ1lj for temperature and ozone was −0.45 for recreational activity (the absolute correlation was
less than 0.4 for all other covariate pairs and activity types), so there is some uncertainty
whether ozone, temperature, or both should be included in the model for recreational activity.
To test whether temperature was properly accounted for we added a quadratic temperature term
and the association between ozone and outdoor activity persisted. Ozone levels tend to be
higher in summer when recreational and outdoor household activity is more frequent, and given
that reporting is only on a weekly basis, presence of high ozone for the week could very well
be a marker of a week with nice weather and only one red or orange ozone day. Along these
lines, higher temperatures were associated with more recreational and outdoor household
activity, and lower child and adult care activity (perhaps because children participated in
recreational activity).

Several neighborhood characteristics are also identified as important predictors of activity.
Women in neighborhoods with abandoned residential units engage in more child care and
transportation activity, perhaps a sign of lower socioeconomic status. Also, outdoor household
activity increases in neighborhoods with porches and no sidewalks. This may be because such
lots are more common in rural areas in which yards are larger and opportunities for outdoor
household activities, such as gardening, are more plentiful. However, the presence of a
sidewalk increases the average amount of transportation activity, perhaps because mothers are
more likely to walk or bike to work or other places.

Figure 3c plots the posterior probability that each covariate is a spatially-varying effect. As
expected, only a small number of the covariates have spatially-varying effects. Four
associations, employment status with working and transportation activity, BMI with
recreational activity, and the first birth indicator with adult and child care activity, have
inclusion probability greater than 0.9. This indicates a strong signal from the data because the
prior probability of a spatially-varying effect is only 0.25. Figure 4 shows that employed
women are generally more active in working and transportation throughout the spatial domain.
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The association between employment status and work-related activity (Figure 4a) is strongest
in urban areas and weakest in rural areas, perhaps because women in rural areas may consider
some outdoor household activities on farms to be work-related activities. Employment status
is also identified as having a spatially-varying effect on transportation activity, with a stronger
effect (Figure 4b) in the rural parts of Alamance and western Orange counties.

While not having given birth previously was associated with lower levels of child and adult
care activity, this effect (Figure 4c) was weaker in rural areas of northern Chatham and southern
Alamance counties. The negative association between BMI and recreational activity is the
strongest in the Chapel Hill area (southeast Orange County) and in southwest Alamance county.

None of the neighborhood variables are included as spatially-varying effects with probability
greater than 0.5. The variable most likely to be included is the effect of porch on work activity.
This variable is included in the model with probability 0.56 and is included as a spatially-
varying effect with probability 0.39. Therefore the conditional probability of being spatially-
varying given inclusion in the model is higher than 0.5 (Figure 3d). Figure 4e shows that the
positive effect of having a porch is the largest in rural Chatham County in which a porch may
indicate a house with greater acreage requiring upkeep.

One possible explanation for spatially-varying effects is missing interactions, either with
variables already in the model or with variables not included in the study. Although it is not
computationally feasible to include all possible interactions between the p = 31 covariates, we
can search for important interactions using the results of the spatially-varying coefficients
model. For example, regressing the posterior mean of spatially-varying BMI effect for
recreational activity on the other predictors reveals several interactions. Six variables are
significant at the α = 0.05 level: household income, black race, urban residence, and presence
of abandoned residential units are positively associated with the BMI effect, while age and bad
residential units are negatively associated with the BMI effect. The association between BMI
and recreational activity is generally negative, so these results indicate that the association
between BMI and recreational activity is the strongest for older, less affluent, non-black women
in rural areas. Regressing the posterior mean of spatially-varying first-birth effect for care
activity on the other predictors also reveals several interactions. Education, age, urban
residence, and presence of a sidewalk are negatively associated with the spatially varying
effect, thus pregnant women with that have previously given birth with these characteristics
spend more effort on care activity. Marital status, BMI, speed limit of nearest road segment,
and presence of bad residential units, litter, and a crime watch sign are negatively associated
with the spatially-varying effect.

Finally we conduct a sensitivity analysis to determine the effect of the prior for the covariance
matrix for the spatially-varying effects. We used Ωj ~ InvWishart(k + ε, εIk) with ε = 0.1 in the
analysis above. We also tried ε = 0.01 and ε = 1. The average (sd) over covariate and activity
type inclusion probability for the spatially-varying effects was 0.084 (0.209) for ε = 0.01, 0.194
(0.239) for ε = 0.1, and 0.181 (0.171) for ε = 1. Therefore, there is some sensitivity to this
hyperprior, with ε = 0.1 giving the largest range of posterior inclusion probabilities, and thus
the most separation between important and unimportant predictors. For all three hyperpriors,
the four predictors with inclusion probability greater than 0.9 (shaded black in Figure 3c) were
included as spatially-varying with probability greater than 0.5.

6. Discussion
In this paper we developed a Bayesian hierarchical model to analyze data from an
epidemiologic study designed to assess whether neighborhood environmental characteristics
had a noticeable effect on physical activity levels of pregnant women. To adequately model
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these complex data, we develop a spatial model for semicontinuous data which allows the effect
of a subset of the predictors to vary over the spatial domain. We found that while some
neighborhood characteristics were associated with physical activity levels, these associations
were not particularly strong, especially in relation to individual characteristics of the women
under study, such as age or level of education. We also found a positive relationship between
weekly average ozone exposure and outdoor activity; this association held only for mothers
with less than 16 years of education, suggesting a need for further education about the effects
of ozone exposure for the pregnant population.

Another important direction of research in this area is to identify factors that lead to a change
in activity from pre-pregnancy to postpartum. We cannot fully address this question with these
data because we do not have pre-pregnancy activity data collected in a similar manner as in
pregnancy. However, the survey does include a self-reported binary indicator of whether the
mother regularly exercised three months before pregnancy. When we included this variable as
a predictor in our hierarchical model it was an important predictor of recreational activity only,
and the associations between the other predictors and the outcome remained largely the same.

Other future work involves examining determinants of change in physical activity levels from
pregnancy to the postpartum. In this study, a subset of subjects provided physical activity data
when their children were 3 and 12 months of age. While neighborhood environmental
characteristics were not strongly associated with activity levels during pregnancy, we anticipate
some different trends in the postpartum period. For example, a woman might be unlikely to
walk or jog with her infant in a stroller without having a sidewalk. We are interested in
extending the methods to account for longitudinal, multivariate responses in order to determine
whether neighborhood environmental characteristics may be related to change (or retention)
of activity levels during the postpartum period.
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Figure 1.
Population density of the PIN3 study participants.
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Figure 2.
Plot of log(transportation-related activity +1). The solid line in Panel (b) is the N(−1.82, 2.44)
density fit using MLE.
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Figure 3.
Posterior inclusion probabilities (mean of γ1jl) for the full model (Panel (a)) and the model with
fixed prior inclusion probabilities (i.e., with π1j = π2j = 0.5 and σj = 1, Panel (b)). Panels (c)
and (d) plot the posterior probabilities of being selected as a spatially-varying coefficient (mean
of γ2jl) and the conditional probability of being included with a spatially-varying coefficient
given the variable is included in the model (mean of γ2jl/mean of γ1jl). Gray and black boxes
represent probabilities greater than 0.5 and 0.9, respectively. The “+” and “−” for the inclusion
probabilities indicate the sign of the posterior mean of overall average effect θjl.
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Figure 4.
Posterior mean of the spatially-varying effects, β
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