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Abstract
Background—The Bogalusa Heart Study is a long-term study on cardiovascular disease and has
followed a biracial (black/white) population from childhood. Risk factor data pertaining to many
patients have been collected over 35 years, and the time course of hypertension has been documented
by repeated examinations and measurements. Considerable sex and racial differences have been
found to be related to cardiovascular disease. Urinary angiotensinogen (UAGT) is a novel biomarker
for the intrarenal activity of the renin–angiotensin system in hypertension and kidney disease. We
aimed to determine the relationship of UAGT with traditional cardiovascular disease risk factors in
asymptomatic young adults in this biracial population.

Method—We recruited 251 individuals and collected a single random spot urine sample from each
one. Because UAGT is significantly increased in diabetic patients and the use of antihypertensive
drugs affects UAGT levels, we excluded patients who had diabetes, who were receiving
antihypertensive treatment, or both. Consequently, 190 participants were included for this analysis.

Results—UAGT levels did not differ with race or sex, but were significantly correlated with SBP
(r = +0.23, P = 0.0015) and DBP (r = +0.24, P = 0.0012). Moreover, high correlations were shown
in men, especially in black men (SBP, r = +0.85, P = 0.0005 and DBP, r = +0.72, P = 0.0079). Thus,
UAGT is correlated with blood pressure in men, even when they do not show overt proteinuria or
albuminuria.

Conclusion—The biomarker, UAGT, may facilitate the identification of individuals that are at
increased risk for the development of hypertension and early asymptomatic renal disease.
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Introduction
Uncontrolled hypertension induces structural and functional alterations in the kidney, which
can eventually lead to end-stage renal disease [1]. Effective control of blood pressure (BP)
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retards the progression of renal failure and reduces the morbidity and mortality rates associated
with hypertensive vascular disease [2–5]. Identification of individuals at risk of developing
hypertension and renal disease is of cardinal importance.

The Bogalusa Heart Study [6–9] is a long-term study of cardiovascular disease (CVD) and has
followed a biracial (black/white) population from childhood. Risk factor data on many patients
have been collected over 35 years, and the time course of hypertension has been documented
by repeated examinations and measurements. Considerable sex and racial contrasts have been
noted in relation to CVD [6–9].

Recent findings related to the renin–angiotensin system (RAS), one of the most important
mechanisms of BP regulation and water–electrolyte homeostasis, have provided an improved
understanding of the pathophysiology of hypertension [10,11]. In recent years, the focus of
interest on the RAS has shifted to the role of the local/tissue RAS in specific tissues [12]. Many
studies have reported the importance of the tissue RAS in the brain [13], heart [14], adrenal
glands [15], vasculature [16,17], and kidneys [10,11]. Further, there is substantial evidence
that the major fraction of angiotensin II present in renal tissues is locally generated from
angiotensinogen (AGT) delivered to the kidney as well as from AGT locally produced by the
proximal tubule cells [18]. Renin secreted by the juxtaglomerular apparatus cells into the renal
interstitium and vascular compartment also results in the local generation of angiotensin I
[19]. Angiotensin-converting enzyme is abundant in the kidney and is present in the proximal
tubules, distal tubules, and collecting ducts [20]. Angiotensin I delivered to the kidney can also
be converted to angiotensin II [21]. Therefore, all of the components necessary to generate
intrarenal angiotensin II are present along the nephron [10,11].

AGT is the only known substrate for renin, the rate-limiting enzyme of the RAS. Because the
level of AGT is close to the Michaelis–Menten constant for renin, changes in AGT levels as
well as renin levels can control the activity of the RAS, and upregulation of AGT levels may
lead to increases in the angiotensin peptide levels and in BP [22,23]. Recent studies [24–32]
on experimental animal models and transgenic mice have documented the involvement of AGT
in the activation of the RAS and development of hypertension. Genetic manipulations that lead
to overexpression of AGT have consistently been shown to cause hypertension [33,34]. In
human genetic studies, a linkage has been established between the AGT gene and hypertension
[35–38]. Thus, AGT plays an important role in BP regulation.

Recently, we reported that urinary excretion rates of AGT provide a specific index of the
intrarenal RAS status in angiotensin II-dependent hypertensive rats [39–43]. Further, we
recently developed a direct quantitative method to measure urinary AGT (UAGT) using human
AGT ELISA [44]. This method has recently been used to determine the urinary excretion rates
of AGT, and these rates have been found to be a novel biomarker for the intrarenal activity of
the RAS in chronic kidney disease [45,46], hypertension [47], and diabetic nephropathy [48,
49]. The current study was performed to determine the relationships of UAGT with traditional
CVD risk factors in asymptomatic young adults in the biracial populations of the Bogalusa
Heart Study.

Methods
Study design and participant recruitment

The protocol of this observational study was approved by the Institutional Review Board and
by the Clinical and Translational Research Center at Tulane University. Two hundred and fifty-
one individuals were recruited in Tulane University Health Sciences Center and associated
clinics, and samples were obtained from them after acquiring written informed consent. It has
been reported that UAGT is significantly increased in diabetic patients [46], and the use of
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antihypertensive drugs also affects UAGT levels [47]. Therefore, we excluded patients who
had diabetes, those who were receiving antihypertensive therapy, or both, from further
analyses. Consequently, 190 samples were analyzed. A random spot urine sample and a blood
sample were obtained from the participants when they visited our clinic. Height and body
weight were also recorded on the same day. BP was measured as previously described [46,
50]. Briefly, participants sat quietly for at least 5 min prior to BP measurements in their right
arms. We used an automated manometer (Omron Corporation, Kyoto, Japan) to make at least
three BP measurements, 2 min apart. The mean BP values were calculated from the last two
SBP and DBP readings that fell within 5 mmHg of each other.

Measurements
Serum concentrations of sodium, creatinine, and cystatin C, and urinary concentrations of
sodium and protein were measured in the clinical laboratory in the Tulane University Health
Sciences Center with an AU 400 Auto-analyzer (Olympus, Melville, New York, USA). Urinary
concentrations of albumin and creatinine were measured with a DCA 2000 Analyzer (Bayer
AG, Leverkusen, Germany). Urinary concentrations of AGT were measured with human AGT
ELISA kits as previously described [44]. The coefficients of variation of the intraassay and of
the interassay of this AGT ELISA were 4.4 and 4.3%, respectively [44].

Statistical analyses
Pearson correlation coefficients and Spearman correlation coefficients were used for
parametric data and nonparametric data, respectively. The standard least squares method was
used for multiple regression analysis. Comparisons of continuous variables between groups
were performed using one-way analysis of variance and Dunnett’s test. All data are presented
as means ± SEM. A P value of less than 0.05 was considered significant. All computations,
including data management and statistical analyses, were performed with the JMP software
(SAS Institute, Cary, North Carolina, USA).

Results
Participants’ profiles and laboratory data

The demographics and baseline laboratory data of the study participants are summarized in
Tables 1 and 2, respectively. The important finding is that serum creatinine levels, urinary
protein–creatinine ratio, fractional excretion of sodium, serum cystatin C levels, or urinary
albumin–creatinine ratio are not different and thus renal functions were similar among the
groups in this study.

Single regression and correlation analyses
We performed single regression and correlation analyses of UAGT–creatinine ratio (UAGT/
UCre) with clinical parameters. The UAGT/UCre levels were not correlated with age, height
(r = −0.03, P = 0.6481), body weight (r = +0.00, P = 0.9745), BMI, serum sodium levels, serum
creatinine levels (r = −0.11, P = 0.131), serum cystatin C levels, or fractional excretion of
sodium. However, the UAGT/UCre levels were significantly and positively correlated with
the SBP (Fig. 1a, r = +0.23, P = 0.0015), DBP (Fig. 1b, r = +0.24, P = 0.0012), urinary sodium–
creatinine ratio (r = +0.16, P = 0.0342), urinary albumin–creatinine ratio (r = +0.39, P <0.0001),
and urinary protein–creatinine ratio (r = +0.47, P <0.0001).

Multiple regression analysis
Factors that were found to have a significant correlation with the UAGT/UCre levels in the
single regression analyses (SBP, DBP, urinary sodium–creatinine ratio, urinary albumin–
creatinine ratio, and urinary protein–creatinine ratio) were used as explanatory variables in the
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multiple regression analysis. To reduce the impact of multicollinearity, we selected explanatory
variables such that the mean sum of the squares of the residual would be minimal in the multiple
regression analysis. As a result, SBP and urinary albumin–creatinine ratio were excluded from
the multiple regression analysis (Table 3). The remaining three parameters were subjected to
multiple regression analysis by stepwise method for UAGT/UCre. These three parameters
accounted for almost 30% of the variations in UAGT/UCre levels (Fig. 1c; r = 0.54, R2 = 0.29,
P <0.0001).

Relationship of urinary angiotensinogen–creatinine ratio levels with blood pressure in the
study populations

The average UAGT/UCre levels did not differ with race or sex (Fig. 1d). However, as described
above, the UAGT/UCre levels were significantly correlated with the SBP and DBP. Moreover,
these levels were strongly correlated in men, especially in black men with the SBP (Fig. 1e;
r = +0.85, P = 0.0005) and DBP (Fig. 1f; r = +0.72, P = 0.0079).

Discussion
In this study, we recruited men and women without any bias in the selection process.
Accordingly, there were some differences among the participant groups in terms of height,
body weight, and serum creatinine levels (Tables 1 and 2). However, most of these differences
may have stemmed from well recognized sex-related differences, and we emphasize here that
none of these parameters (height, body weight, and serum creatinine levels) were correlated
with the UAGT/UCre levels. Therefore, it seems unlikely that the above differences affected
the final results reported herein.

Although most of the circulating AGT is produced and secreted by the liver, the kidneys also
produce AGT [11]. Intrarenal AGT mRNA and protein have been localized in the proximal
tubule cells, indicating that intratubular angiotensin II may be derived from locally formed and
secreted AGT [51,52]. In the proximal tubule cells, AGT appears to be directly secreted into
the tubular lumen; in addition, some AGT is broken down intracellularly to produce
metabolites, which are then secreted into the tubular lumen [53]. Proximal tubular AGT
concentrations in anesthetized rats have been reported to be in the range of 300–400 nmol/l
and greatly exceed the free angiotensin I and II tubular fluid concentrations [10]. Because of
its molecular size (50–60 kDa), little plasma AGT is expected to filter across the glomerular
membrane, which further supports the concept that proximal tubular cells secrete AGT directly
into the tubules [54].

To determine whether circulating AGT is a source of UAGT, human AGT was infused into
hypertensive and normotensive rats, and it was found that circulating human AGT was not
detectable in the urine [42]. The failure to detect human AGT in the urine indicates limited
glomerular permeability, tubular degradation, or both. These findings support the hypothesis
that UAGT is derived from the AGT that is formed and secreted by the proximal tubules and
not from plasma AGT.

As described previously, we reported that UAGT excretion rates provide a specific index of
the intrarenal RAS status in angiotensin II-dependent hypertensive rats [39–43]. To determine
whether the increase in UAGT excretion was simply a nonspecific consequence of the
proteinuria and hypertension, further studies were performed in a rat model of hypertension
established by administering a deoxycorticosterone acetate salt and a high-salt diet to the rats
[42]. Although the urinary protein excretion rates in the deoxycorticosterone acetate salt-
induced volume-dependent hypertensive rats were increased to the same or greater extent, the
UAGT levels were significantly lower in the volume-dependent hypertensive rats than in
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angiotensin II-dependent hypertensive rats and were not greater than the levels in control rats
[42].

Similar observations were made in patients with chronic kidney disease [46]. The UAGT/UCre
levels in patients with type 2 diabetic nephropathy (795.67 ± 296.03 μg/g) or with membranous
nephropathy (503.53 ± 297.68 μg/g) were much higher than the overall average levels in
patients with chronic kidney disease (273.17 ± 62.22 μg/g) [46]. Importantly, activation of the
intrarenal RAS has been reported to be involved in the progression of renal injury in human
patients with diabetic nephropathy [55,56] or membranous nephropathy [57]. In contrast, the
UAGT/UCre levels in patients with minimal change disease (8.28 ± 3.70 μg/g) were similar
to those in control individuals (10.78 ± 3.42 μg/g), even though the patients with minimal
change had severe proteinuria [46]. The findings in hypertensive animals as well as those in
patients with chronic kidney disease support the hypothesis that the enhanced UAGT observed
in this study was not a nonspecific consequence of proteinuria.

Further, important evidence was recently reported in relation to juvenile patients with type 1
diabetes [49]. The UAGT/UCre levels were compared between patients with type 1 diabetes
and the age and sex-matched control individuals. Neither the urinary albumin–creatinine ratio
nor the urinary protein–creatinine ratio was found to be increased in patients with type 1
diabetes compared with the control individuals, suggesting that these patients were in the
premicroalbuminuric phase of diabetic nephropathy. However, the UAGT/UCre levels were
significantly higher in the patients with type 1 diabetes than in the control individuals. These
data indicate that in patients with type 1 diabetes, the increase in UAGT levels precedes the
increase in urinary albumin levels. Taken together, these data indicate that augmented UAGT
excretion is not simply a nonspecific consequence of proteinuria.

Hypertension is a multi-etiological disease and multiple factors are involved [1,58]. Our data
suggest that in men, especially in black men, the pathway described in Fig. 2 is a major
contributor to the pathogenesis of hypertension. In human genetic studies, a linkage has been
established between the AGT gene and hypertension [35–38,59]. Also, oxidative stress-induced
intrarenal AGT enhancement is reported to play an important role in the development of
hypertension in animal models [60–62] and in clinical studies [48,55]. In addition, it is also
reported that metabolic disorders augment AGT expression [63–66]. These factors may lead
to increases in kidney/UAGT levels. Renin is secreted by the juxtaglomerular apparatus [67,
68] and by principal cells of collecting ducts [54,69–72]. Angiotensin-converting enzyme is
also abundant in the kidney and is present in the proximal tubules, distal tubules, and collecting
ducts [20]. Because the level of AGT is close to the Michaelis–Menten constant for renin
[22,23], increases in kidney/UAGT levels may lead to the increases in kidney/urinary
angiotensin I and thus angiotensin II levels. The augmented kidney/urinary angiotensin II levels
are reported to enhance salt sensitivity and lead to BP increases via salt retention [73–75].
Although it is not possible to address these mechanistic issues in this observational study, our
results are consistent with this perspective. Obviously, further studies, including interventional
studies and a randomized clinical trial, are required to confirm its applicability.

The limitation of this study comes from the nature of the observational study using one-point
sample collection. Although these data would establish a foundation of the normal range
allowing comparison with data from patients with various diseases, we believe that a larger
multicenter, randomized, control study is required to extend these observations. A prospective
study to determine the relationship between the effect of RAS blockade on UAGT and CVD
events will be helpful in assessing the clinical significance of the decrease in UAGT with RAS
blockade. On the basis of these findings, a randomized clinical trial has been projected to
establish the clinical significance of the decrease in UAGT with RAS blockade.
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In summary, in asymptomatic young adults taken from a biracial population of the Bogalusa
Heart Study, UAGT/UCre levels were significantly and positively correlated with the SBP,
DBP, urinary sodium–creatinine ratio, urinary albumin–creatinine ratio, and urinary protein–
creatinine ratio. They were not correlated with age, height, body weight, BMI, serum sodium
levels, serum creatinine levels, serum cystatin C levels, or fractional excretion of sodium, and
did not vary with race or sex.

However, these levels were strongly correlated with SBP and DBP, especially in black men.
Because UAGT originates from the AGT that is formed and secreted by the proximal tubules
and not from plasma AGT, the enhanced UAGT may not be just a nonspecific consequence of
proteinuria, but rather indicate activation of the intrarenal RAS. These data suggest that UAGT
excretion is correlated with the BP in men, even when they do not show overt proteinuria or
albuminuria. Although a longer observation period is required to study long-term clinical
outcomes such as cardiac events for which UAGT acts as a biomarker, UAGT may facilitate
the identification of individuals at increased risk for the development of hypertension, and early
asymptomatic renal disease.
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Fig. 1.
(a and b) Single regression analyses for urinary angiotensinogen–creatinine ratio levels.
UAGT/UCre levels are not correlated with age, height (r = −0.03, P = 0.6481), body weight
(r = +0.00, P = 0.9745), BMI, serum sodium levels, serum creatinine levels (r = −0.11, P =
0.131), serum cystatin C levels, or fractional excretion of sodium. However, UAGT/UCre
levels are significantly and positively correlated with SBP (a; r = +0.23, P = 0.0015), DBP (b;
r = +0.24, P = 0.0012), urinary sodium–creatinine ratio (r = +0.16, P = 0.0342), urinary
albumin–creatinine ratio (r = +0.39, P <0.0001), and urinary protein–creatinine ratio (r = +0.47,
P <0.0001). (c) Multiple regression analyses for UAGT/UCre levels. Only three parameters
(DBP, urinary sodium–creatinine ratio, and urinary protein–creatinine ratio) can account for
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almost 30% of variation of UAGT/UCre levels (r = 0.54, R2 = 0.29, P <0.0001). (d–f)
Relationship of UAGT/UCre levels with blood pressure in populations. UAGT/UCre levels
were not different among race or sex (d). However, as described in this figure, UAGT/UCre
levels were significantly correlated with SBP and DBP. Moreover, high correlations were
shown in men, especially in black men in SBP (e; r = +0.85, P = 0.0005) and DBP (f; r = +0.72,
P = 0.0079). UAGT/UCre; urinary angiotensinogen–creatinine ratio (in μg/g).
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Fig. 2.
Perspectives based on the findings in this observational study. SNP, single-nucleotide
polymorphisms
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Table 3

Multiple regression analysis by stepwise method for urinary angiotensinogen–creatinine ratio

Parameters Estimate F ratio P

Intercept −6.41 0.00 1.0000

UPro/UCre (g/g) 29.41 51.66 0.0000*

DBP (mmHg) 0.11 10.92 0.0012*

UNa/UCre (mEq/g) 0.01 4.71 0.0314*

UAlb/UCre (mg/g) 0.00 2.41 0.1221

SBP (mmHg) 0.00 1.18 0.2798

UAlb/UCre, urinary albumin–creatinine ratio; UNa/UCre, urinary sodium–creatinine ratio; UPro/UCre, urinary protein–creatinine ratio.

*
P <0.05.

J Hypertens. Author manuscript; available in PMC 2010 July 1.


