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Abstract
We study the calcium-induced vesicle release into the synaptic cleft using a deterministic algorithm
and MCell, a Monte Carlo algorithm that tracks individual molecules. We compare the average
vesicle release probability obtained using both algorithms and investigate the effect of the three main
sources of noise: diffusion, sensor kinetics and fluctuations from the voltage-dependent calcium
channels (VDCCs). We find that the stochastic opening kinetics of the VDCCs are the main
contributors to differences in the release probability. Our results show that the deterministic
calculations lead to reliable results, with an error of less than 20%, when the sensor is located at least
50 nm from the VDCCs, corresponding to microdomain signaling. For smaller distances, i.e.
nanodomain signaling, the error becomes larger and a stochastic algorithm is necessary.

1. Introduction
The role of stochasticity in biological processes has been the subject of increasing interest. In
particular, fluctuations arising due to a limited number of signaling molecules in subcellular
pathways have been recognized as important sources of noise [1–8]. These fluctuations can
have a profound effect on the dynamics of the pathway and can determine the final outcome
of the signaling cascade. Importantly, these fluctuations prohibit the use of deterministic, mean-
field approaches to model these pathways. Instead, fluctuations arising from the small number
of signaling molecules and the stochasticity of binding and reaction kinetics need to be taken
into account.

A number of algorithms have been developed to deal with stochastic pathways. Some of these
subdivide the computational space into small regions within which the concentration is
assumed to be well mixed [9] while others model the Brownian motion of individual molecules
[10]. An example of the latter, MCell, incorporates complex geometries, channel kinetics and
molecule–molecule interactions [11] and has been used to study a number of biophysical
problems including the characterization of fluctuations in receptor–ligand binding [7,8,12], the
signaling in neurons [13,14] and the Min pathway in bacterial division [15].
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Even though these programs have been optimized, it is clear that for most problems a
deterministic approach is computationally more efficient and easier to implement. Thus, it is
worthwhile to determine in which cases a deterministic analysis is not sufficient and a
stochastic study is needed. Such an analysis has been carried out recently for the calcium-
induced calcium release in the dyadic cleft of cardiac cells using a custom-made random walk
algorithm [16]. This study, however, described the ryanodine receptor as having a single
binding site with linear kinetics. This is, of course, not the case in all signaling pathways and
in this paper we will compare the results of stochastic and deterministic simulations in a system
where the receptor contains multiple binding sites, exhibiting nonlinear binding kinetics. Our
goal is to determine under which conditions a deterministic approach is valid and for what
parameter values a stochastic analysis is required. We should note that we only compare
averaged quantities and that determining the variance of the biophysical quantities necessitates
a stochastic approach.

The system we investigate is the calcium-induced vesicle release into the synaptic cleft.
Calcium controls a number of important biological processes and the role of noise in the
dynamics of intracellular calcium has been widely studied in recent years [17]. In neurons, the
release of vesicles, critical for neuronal information processing, is controlled largely through
the local calcium concentration. Calcium ions bind to a calcium sensor which leads to the
release of a nearby vesicle. Our goal here is not to construct a detailed calcium model for this
release, as this has been the subject of a number of recent studies. Rather, we set out to question
the role of stochasticity in the release process using two representative models [18]. In
particular, we ask the question under what conditions stochastic simulations that incorporate
fluctuations give rise to release probabilities that are markedly different from the results of
deterministic simulations in which these fluctuations are ignored. Note that we will not address
the neuroscience of the vesicle release problem, the subject of a recent study [14].

2. Model
A full description of our model synapse is given in the supplementary data available at
stacks.iop.org/PhysBio/7/026008/mmedia and is further detailed, along with the relevant
neurophysical details, in [14]. Briefly, we modeled the sequence of events at a pre-synaptic
terminal synapse beginning with the arrival of an action potential, the opening of voltage-
dependent calcium channels (VDCCs), diffusion of calcium from the VDCCs to a calcium
sensor and the triggering of vesicle fusion and release. A schematic overview of the synapse,
along with the relevant components, is shown in figure 1(A). More specifically, we considered
a cluster of VDCCs located at the center of one of the faces of our computational box (see
figure 1(B)). Each channel is described by a five-state process with time-dependent transition
rates detailed in the supplementary data. The number of VDCCs in the cluster can be varied
and the average flux through a single channel is shown in figure 1(C).

The computational domain contains a fixed concentration of mobile buffers and the boundaries
of the domain are covered by plasma membrane calcium (PMCA) pumps that keep the resting
calcium concentration at a constant value of 100 nM. The kinetic schemes of the buffers and
the pumps are given in the supplementary data. A calcium sensor is located at a variable distance
from the VDCC cluster and at the same face as this cluster. This sensor has multiple binding
sites for calcium ions and the kinetics of these bindings determine the probability of vesicle
release.

The resting calcium concentration of 100 nM corresponds to roughly 60 ions in our
computational domain with a volume of 1 μm3. Furthermore, as we will see below, the peak
concentration of calcium at the sensor following the opening of a small number of VDCCs is
of the order of 5 μM. These small numbers make it likely that calcium concentration
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fluctuations can become significant. It is important, however, to realize that these fluctuations
arise from different sources. First, the opening kinetics of the VDCCs is a stochastic process,
resulting in a fluctuating number of calcium ions introduced into the synapse. Second, the
PMCA pump kinetics is also described stochastically. Third, the binding of calcium ions to
the buffer molecules is a stochastic process. Fourth, the diffusion of calcium ions and buffering
molecules will lead to fluctuations. Fifth, the binding of calcium ions to the vesicle release
sensor is controlled through stochastic reactions.

A full evaluation of all five noise sources is computationally challenging. Fortunately, two of
the five can be safely neglected and we will focus here on the three noise sources which are
likely to be the largest: the VDCC opening kinetics, the diffusion process and the sensing
process. The fluctuations arising from the pumps can be neglected since the faces of our
computational domains are covered uniformly with a density of 180 μm−2. This high density
will render the calcium fluctuations far from the VDCC cluster, and thus at the location of the
sensor, independent of the pump kinetics. We have verified this through direct numerical
simulations in which we compared the fluctuations at different distances from the VDCC
cluster with and without PCMA pumps. For the physiological concentration of 100 nM, we
found that the signal-to-noise ratio (SNR), defined as the mean calcium concentration divided
by the standard deviation of the calcium concentration, in the presence of pumps and in the
absence of pumps were virtually indistinguishable (data not shown). We can also neglect the
fluctuation caused by the buffer-calcium kinetics since the off-rates for the unbinding of
calcium ions from the buffer molecules are such that multiple-binding events during the time
course of a vesicle release event are unlikely.

In the rest of the paper, we systematically investigate the effect of the three remaining noise
sources on the average vesicle release probability using MCell as our computational tool.
Throughout this paper, the release probabilities are computed as the average of 1000
independent simulations. We compare these probabilities to the results from a deterministic
finite-difference implementation of the model synapse. Details of this implementation are
given in the supplementary data.

3. Results
3.1. Global Ca2+ dynamics

As a first comparison between the deterministic and stochastic simulations, we calculated the
global Ca2+ concentrations, [Ca2+]global, as a function of time following the opening of two
different numbers of VDCCs. This result is a global measurement and, as such, should be least
susceptible to fluctuations. Indeed, as shown in figure 2, the time course of [Ca2+]global for the
deterministic model (symbols) is virtually indistinguishable from the one of the MCell
simulations (solid and dashed lines). In reference to what follows, we should note that the
deterministic results were obtained using a deterministic description for all involved processes
while the stochastic results were obtained using MCell in which each step is modeled
stochastically.

3.2. Local Ca2+ dynamics
Next we measured the local Ca2+ profiles following channel openings in the VDCC cluster.
This measurement is straightforward in the deterministic simulation while for the stochastic
simulations we used a built-in MCell algorithm. In this algorithm, the concentration is
determined by computing the number of molecules that pass through a ‘counting’ plane and
converted this into a concentration. We placed this 50 × 50 nm2 counting plane parallel to and
10 nm away from the membrane while the distance between the center of the VDCC cluster
and the center of the counting plane was varied. The results are shown in figure 3 where we
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have plotted the Ca2+ concentration as a function of time for two different number of VDCCs
at 50 nm (A) and 250 nm (B) from the VDCC cluster. The agreement between the deterministic
and stochastic results is very good for both curves although a small difference can be observed
at the peak value of the calcium concentration. This difference is most likely due to the larger
spatial extent of the counting plane in MCell than the box size of the deterministic model. To
avoid the possibility that this small error affects our further analysis, we will take from now
on the averaged calcium profile measured using MCell as our ‘deterministic’ signal. The
computed amplitudes of the calcium signal are consistent with experimental data [18,19].

3.3. Release model
Since it is currently unclear how the calcium sensor is coupled to the vesicle release machinery
in the synapse, we have considered two models to calculate the vesicle release probability. In
the first one, which we will call model A, one sensor controls only one vesicle. As a result,
once the vesicle is released the sensor is unable to release additional vesicles. In the second
model, termed model B and used in a recent study [18], sensor and vesicles are not coupled in
a one-to-one fashion and a single sensor can release more than one vesicle. For both models,
we consider a sensor–VDCC distance between 10 nm and 250 nm, consistent with experimental
observations [20–22].

To investigate the difference between the two release models, we have calculated for both
models the release probability as a function of the peak calcium concentration, [Ca2+]peak. The
results are shown in figure 4(A) for a sensor–VDCC cluster distance of 10 nm. These curves
were obtained using the deterministic model and show clearly that, for the same peak [Ca2+],
the release probability in model B is higher than the release probability in model A. In other
words, model B is more sensitive than model A. For the remainder of this paper, we will
compare the results from the stochastic simulations with this deterministic release probability
Pr,det.

The release probability Pr,det for larger VDCC–sensor distances increases slightly for the same
peak calcium concentration. For example, for a distance of 250 nm, Pr,det is approximately 5%
larger at [Ca2+]peak = 20 μM than for a distance of 10 nm. This can be understood by realizing
that to obtain Pr,det, one integrates over the entire calcium profile. For larger distances, this
profile become broader for the same peak calcium concentration, leading to a slightly large
Pr,det. Of course, to obtain the same release probability at a larger distance requires a larger
influx of calcium. This is shown in figure 4(B) where we plot the required number of channels
in the VDCC cluster to obtain Pr,det = 0.2 as a function of the distance between the VDCC
cluster and the sensor for model A. For distances larger than 150 nm, the required number of
channels scales linearly with the distance, as shown by the dashed straight line.

3.4. Fluctuations from the diffusion process
To study the effect of [Ca2+] fluctuations from the diffusion process, we eliminated the
fluctuations in the calcium concentration caused by the stochasticity of the VDCCs by
modeling the VDCC cluster in MCell deterministically. This is accomplished by using an
identical flux pattern of calcium ions for each simulation in MCell. The resulting calcium
profiles within our presynaptic terminal will then contain fluctuations that are due purely to
diffusive noise. These calcium profiles were used as an input for a deterministic description of
the release kinetics of our two models. The deterministic sensor is placed at different distances
from the VDCC cluster and the release probability Pr,diff is obtained. This release probability
differs from the deterministic release probability Pr,det only because of the calcium
concentration fluctuations and we can define a diffusion error as Δdiff = |Pr,diff − Pr,det|/Pr,det.
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In figures 5(A) and (B), we plot Δdiff as a function of the peak value of the calcium concentration
at the sensor location and as a function of Pr,det for model A while in (C) and (D) we do the
same for model B. Figure 5 shows that for large values of [Ca2+]peak, and thus high values of
Pr,det, the error approaches a small value and only for low [Ca2+]peak and small Pr,det does the
error become appreciable. We can also see from figure 5 that the error is largely independent
of distances between the VDCC cluster and the sensor and that the error in model B is slightly
smaller than the error in model A.

These errors are caused by the fluctuations in the calcium concentration which can be quantified
by computing the signal-to-noise ratio (SNR). For this, we have calculated the variance σ 2 of
the calcium profiles in a 1 ms time window containing [Ca2+]peak. This time scale is
representative of the fast experimental time scale of vesicle release [23]. The resulting signal-

to-noise ratio  is plotted in figure 5(E) as a function of [Ca2+]peak. Not
surprisingly, the SNR decreases as the peak calcium concentration decreases, leading to a larger
error between the release probability obtained using a deterministic calcium profile and
obtained using a stochastic profile. Furthermore, fluctuations are roughly independent of the
distance between the VDCC cluster and the sensor. The solid line in the figure has

approximately the same slope as the experimental data and represents a  scaling. We
have verified that this scaling is largely unchanged when choosing a time window which is ten
times smaller or two times larger.

3.5. Fluctuations from the VDCCs
Next, we considered the release probability Pr,diff+VDCC using stochastic calcium profiles
obtained with stochastically modeled VDCCs. Thus, in addition to diffusion fluctuations there
are fluctuations caused by the non-synchronous opening and non-identical flux profiles of the
VDCCs. The results of these calculations are shown in figure 6 where we have again defined
an error as Δdiff+VDCC = |Pr,diff+VDCC − Pr,det|/Pr,det and have plotted this error for two values
of the VDCC–sensor distance. Now, the relative error is strongly dependent on the distance
between the VDCC cluster and the sensor and is much larger if the sensor is close to the VDCC
cluster. Furthermore, we can see that for the same value of Pr,det the error is significantly higher
than that for the case where only the diffusion was treated stochastically (compare with figure
5). In figure 6(E) we plot the corresponding SNR which now depends on the position of the
sensor and is much smaller for a small value of the VDCC cluster–sensor distance.
Furthermore, a comparison with figure 5(E) reveals that the SNR for stochastic VDCCs
becomes comparable to the SNR for deterministic VDCCs only for large distances.

3.6. Comparison between fully stochastic and fully deterministic simulations
Finally, we considered the results of simulations in which the calcium profiles are generated
from stochastic VDCCs using MCell and are used as input into a stochastic description of
model A for the sensor. In figure 7 we plot Δall = |Pr,stoch − Pr,det|/Pr,det as a function of the
peak value of the calcium concentration at the sensor location and as a function of Pr,det. Again
the maximum error occurs when the number of VDCCs is small, corresponding to a small
distance between the sensor and the VDCC cluster. However, by comparing figures 6 and 7
we can conclude that the stochastic kinetics of the sensors do not add significantly to the release
probability error.

4. Discussion
The release of a synaptic vesicle is a stochastic process, controlled largely by the local calcium
concentration. This concentration exhibits considerable fluctuations coming from several
different sources. To investigate the relative contribution of these different sources, we
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compared the outcome from deterministic simulations to the results from stochastic
calculations in which the concentration profiles were obtained using MCell, a numerical
algorithm that describes individual molecules.

We find that the fluctuations arising from the diffusion process only play a significant role
when the concentration at the sensor is small (figure 5). Equivalently, the diffusive fluctuations
only play a role when the release probability is very small (<0.1). This result is not surprising
since for large concentrations the fluctuations become less important. After all, for a purely
diffusive process, the fluctuations in a small volume lead to a SNR that is proportional to

 (see figure 5(E)). Thus, these fluctuations become less and less important as the
concentration becomes higher. This also explains why the error is roughly independent of the
distance between the sensor and the VDCC cluster. The release probability is determined in
large part by the peak [Ca2+]. Thus, no matter how far the sensor is removed from the VDCC
cluster, it will experience approximately the same fluctuations for the same [Ca2+], resulting
in the same error in release probability.

We also find that the inclusion of fluctuations due to the stochastic openings of the VDCCs
increases the error in release probability significantly. Indeed, as can be seen from figure 6,
we find that the error at the same peak value of calcium increases roughly 3- to 5-fold when
the fluctuations from the VDCCs are taken into account. Furthermore, we find that the inclusion
of VDCC fluctuations renders the error dependent on the location of the sensor: a sensor close
to the VDCC cluster will exhibit a larger error than a sensor further away for the same calcium
peak concentration or release probability (figures 6(A)–(D)). Consistent with this observation
is the spatial dependence on the SNR with a larger SNR further away from the VDCC cluster
(figure 6(E)). This result can be explained by noting that the stochastic openings of the VDCC
channels within the cluster will have a large effect close to the cluster while diffusion will
‘smear out’ these fluctuations further away from the cluster. We also conclude from figure 7
that the stochasticity of the sensor kinetics changes the error only slightly. Finally, we should
note that a description of stochastic VDCCs can be easily included into a model that treats the
diffusion deterministically.

Taken together, we can conclude that the major source of difference between the deterministic
and stochastic simulations is coming from the stochastic opening kinetics of the VDCC
channels. To determine when a stochastic treatment of these channels is necessary, we can
examine the error of a physiologically relevant probability release of Pr = 0.2 [24]. Taking
20% as the maximum allowable error, we conclude that fully deterministic simulations are
viable for sensor–VDCC distances larger than 50 nm and that a stochastic treatment of the
VDCCs is needed for sensor–VDCC distances smaller than this critical value. Interestingly,
this critical distance is identical to the value used in the literature to distinguish nanodomains
from microdomains in neuronal calcium signaling [25]. We should note that the error caused
by diffusive noise is always smaller than 20%. Using again a 20% error as our cut-off criterion,
we can conclude that it is sufficient to implement a stochastic treatment of the calcium flux
through the VDCC cluster while solving the diffusion and release problem deterministically.

Finally, our calculations did not investigate the effect of local depletion on the release
probability. This depletion is caused by the binding of calcium ions to the sensor, which changes
the local calcium concentration. To understand when this effect is important we have carried
out an analysis of a simplified single sensor model of size R0 that binds ligands at a rate kon.
In the supplementary data, we show that for this model one can analytically obtain the steady-
state solution. This solution shows that the depletion effect can be neglected as long as kon/
(2π DR0) ≪ 1, where D is the diffusion constant of the ligands. A similar condition was found
numerically in [16]. This analysis shows that for small diffusion constants, small sensor sizes
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or large on rates, removing a ligand molecule can have a significant effect on the number of
binding events to the sensor. However, the removal of ligands upon binding is not a process
that requires a stochastic simulation algorithm as it can be incorporated into a deterministic
approach through the inclusion of appropriate boundary conditions (see the supplementary
information). For our time-dependent problem we have verified that depletion in the
deterministic calculation changes the release probability at most 7% for the smallest values of
Pr,det considered. Furthermore, we also compared the release probability in an MCell
calculation using fixed VDCC fluxes to the release probability of a deterministic calculation
that incorporated calcium removal. We found that the results differed by less than 15% for all
release probabilities considered here (data not shown). Since this difference is of the same
order as the diffusive error (see figure 5) we do not expect that local removal of ions contributes
to a significant difference between deterministic and stochastic calculations.

In summary, our main conclusion is that stochastic effects can be important in calcium signaling
within nanodomains while signaling in microdomains can be safely simulated by deterministic
algorithms. Of course, this conclusion is reached using two release models with specific
parameter values. However, these models, along with their parameter values, are based on
multiple experimental studies and should be representative for vesicle release. Finally, we
should reiterate that we only examined averaged quantities and that knowledge about the
variance of the release probability requires a stochastic approach.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) The geometry considered in this paper. A cluster of VDCCs emits calcium molecules into
the pre-synaptic space where they can bind to mobile buffers. A calcium sensor, indicated in
green, controls the release of vesicles and is located at a variable distance from the VDCC
cluster. (B) The computational geometry, representing the synaptic space in the simulations,
has a dimension of 4 μm × 0.5 μm × 0.5 μm. The faces of the space are covered uniformly by
PCMA pumps. (C) Average time-dependent calcium concentration of a single voltage-gated
channel. The concentration was measured in a 25 nm3 voxel adjacent to the channel.
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Figure 2.
Comparison between the deterministic (solid and dashed lines) and stochastic (symbols) global
Ca2+ concentration, following an influx through the VDCCs.
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Figure 3.
Comparison between deterministic and stochastic local Ca2+ concentration at 50 nm (A) and
250 nm (B) from the center of the VDCC cluster and 10 nm from the membrane. The solid and
dashed lines correspond to deterministic results while the symbols are the results of the
stochastic (MCell) simulations. The stochastic [Ca2+] was obtained by averaging over 1000
runs.
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Figure 4.
(A) The deterministic release probability as a function of the peak calcium concentration for
both release models used in this paper. The distance between the VDCC cluster and the calcium
sensor is 10 nm. (B) The minimum number of VDCCs required to have a release probability
of 0.2 as a function of the distance between the VDCC cluster and the calcium sensor. The
dashed line is a straight line with slope 0.32.
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Figure 5.
The error in the release probability due to diffusion as a function of the peak calcium
concentration and the release probability for model A (A and B) and model B (C and D). The
signal-to-noise of the local calcium concentration is plotted as a function of the peak calcium

concentration for two different sensor locations in (E). This SNR scales as , which is
the scaling of the solid line.
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Figure 6.
The diffusive and VDCC error introduced in the release probability as a function of the peak
calcium concentration and the release probability for model A (A and B) and model B (C and
D). The signal-to-noise ratio of the local calcium concentration is plotted as a function of the
peak calcium concentration for two different sensor locations in (E), along with a solid line

representing a  dependence.
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Figure 7.
The error in a fully stochastic simulation in model A as a function of the peak calcium
concentration (A) and release probability (B).
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