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Abstract: The emergence of new platforms for the discovery of innovative therapeutics has provided a means for 

diagnosing cardiac disease in its early stages. Taking into consideration the global health burden of cardiac disease, 

clinicians require innovations in medical diagnostics that can be used for risk stratification. Proteomic based studies offer 

an avenue for the discovery of proteins that are differentially regulated during disease; such proteins could serve as novel 

biomarkers of the disease state. For instance, in clinical practice, the abundance of such biomarkers in blood could be 

correlated with the severity of the disease state. As such, early detection of biomarkers would enable an improvement in 

patient prognosis. In this review, we outline advancements in various proteomic platforms used to study the disease 

proteome and their applications to the field of clinical medicine. Specifically, we highlight the contributions of proteomic-

based profiling experiments to the analysis of cardiovascular diseases.  

1. INTRODUCTION 

 In clinical practice, diagnosis in the earliest stages of 
disease progression can prevent further complications and 
improve patient prognosis. To address this issue, new and 
innovative means of diagnosing various disease states are 
essential to ensure that patients are diagnosed early, and trea-
ted correctly, in a timely manner. Proteomic-based studies 
may fill this gap, and discoveries made in the laboratory 
setting could improve the delivery of healthcare to various 
patient populations. Generally, proteomic platforms involve 
the analysis of global expression and function of the entire 
protein complement [1]. Indeed, the discovery and identifi-
cation of certain proteins in the disease state may be used as 
a stepping stone for the assessment of such proteins as 
potential biomarkers of disease.  

 Cardiac diseases have been studied through numerous 
proteomic-based studies. For example, these platforms have 
been used to analyze myocardial ischemia [2-4], dilated 
cardiomyopathy [5, 6], hypertrophic cardiomyopathy [7], 
and heart failure [8-10]. In some cases these strategies may 
even have aided in the discovery of additional biomarkers of 
these disease states. Here, we outline progress that has been 
made in this field and will detail innovative techniques that 
now potentially could be used to even improve patient 
prognosis and therapies.  

2. CLINICAL PROTEOMICS AT THE BEDSIDE 

 Clinically-based proteomics has a large potential for the 
development of strategies which aim to alleviate risk 
associated with cardiac disease. Biomarkers that are used in 
clinical practice are highly useful in that they support  
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medical decision making, by complementing other diagnos-
tic tests, such as the medical history, physical examination, 
and various other special tests. Theoretically, there are three 
criteria that, if satisfied, would provide an optimal biomarker 
of the disease state. First, the potential biomarkers must be 
easily measurable in a short time period at a cost that is 
practical. Second, elevation of this protein would offer 
diagnostic information that was not previously present in the 
absence of the protein. Third, the information obtained 
would aid in the medical decision making process performed 
by the clinician [11]. Fulfillment of such criteria encourages 
follow-up of such a biomarker in other model systems or 
patient cohort samples. For instance, cardiac troponin I has 
been previously shown to fulfill such criteria, and further 
follow-up in patient cohorts is underway. Recently, this 
approach was utilized to ascertain whether Cardiac Troponin 
I (CTN I) or Creatine Kinase-Myoglobin (CK-MB) could be 
used as short-term or long-term markers of risk associated 
with cardiac surgery [12]. In this study, a patient cohort of 
252 individuals who had undergone cardiac surgery was 
used to analyze levels of these two proteins in blood. Not 
only was CTN-I shown to be a strong predictor of mortality, 
but increases in the levels of this protein also correlated well 
with increases in mortality. Findings from this study support 
the utilization of patient cohorts as a means to ease the 
transition from bench to bedside.  

3. PROTEOMICS: THE NEW FRONTIER 

 One of the major goals of proteomic studies is to identify 
and quantify the entire protein complement of a sample, 
whether that is a purified protein complex, a cellular orga-
nelle component, or an entire tissue. A particular interest is 
the analysis of global protein expression patterns during a 
pathological state. Obviously, near-complete protein cove-
rage is vital for the elucidation of disease pathways and for 
the identification of novel proteins involved in the progres-
sion of disease. Traditionally, the most common technique 
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used to analyze the protein complement involved gel-based 
separation, a tool that has proven pivotal in studies focused 
on protein ‘discovery’, yet has limits to its protein coverage. 
More recently, improved protein coverage has been obtained 
through gel-free methods. Here, we outline both of these 
approaches and their contribution to the field of proteomics 
of the heart. 

Gel-Based Separation 

 The first set of ‘large scale’ studies were the gene 
expression studies examining mRNA levels through arrays 
with the underlying assumption that there was a correlation 
between mRNA levels and protein function [13]. This 
assumption, however, does not always hold true. 

 Two-dimensional polyacrylamide gel electrophoresis 
(2DE) was developed as protein levels could be studied in 
the absence of mRNA or gene expression analysis [14]. Gel-
based separation is powerful in that it can also provide 
insight onto differential protein regulation in the disease 
state. In 2DE, a current is applied to a complex sample in a 
2D gel to separate proteins on the basis of charge and mass. 
This effectively resolves proteins on the basis of isoelectric 
point (pI) followed by separation by mass [15]. Groups have 
employed 2DE with due success in the proteomic analysis of 
biomarkers of cardiomyopathy [4] and in the investigation of 
mechanisms underlying cardiomyopathy [16-18] and 
diabetic cardiomyopathy [19]. 

 2DE-based proteomic studies are highly useful in that 
they are capable of quantifying expression of complex 
protein samples which can contain up to 1000’s of proteins 
[20]. Furthermore, this technique is advantageous in that in 
provides information regarding the presence of isoforms or 
post-translational modifications in addition to protein expres-

sion levels [21]. One of the limits to this approach is the 
dynamic range of 2DE which is roughly only ~10

4
; accor-

dingly, there is a pressing need to improve this detection 
capability [22]. Several strategies are employed to address 
this problem. One is the depletion of highly abundant 
proteins prior to gel-based separation. A second strategy is to 
selectively enrich low-abundance proteins using immuno-
affinity ligands, while diluting high-abundance proteins, 
prior to resolution of proteins [23]. A third method deals 
with optimizing sample solubility so as to ensure maximum 
protein coverage [24]. Indeed, the choice of detergent combi-
nation that is used during tissue homogenization has a large 
effect on protein coverage in 2DE experiments, and must be 
considered [25]. Taking all of these factors into consi-
deration this proteomic technique is a powerful tool that can 
be utilized for various studies involving quantitative protein 
expression, isoform analysis, post-translational modification 
analysis, and biomarker discovery. 

 Recently, 2D-GE has been used to investigate several 
disease pathways in the heart [26]. One study examined a 
20-fold increase in plasma nitric oxide (NO), a marker of 
NO synthesis, using 2D-GE and mass spectrometry in rat 
hearts subjected to sepsis and endotoxemia. The utility of 
such an approach is confirmed by the study which revealed 
an increase in the abundance of proteins involved in cellular 
metabolism, most notably ATP-synthase, Ubiquinol cyto-
chrome-c reductase, and Elongation factor in a Phospholem-
man knockout (PLM KO) model of depressed contractile 
function (see Fig. 1) [27]. The utility of 2D gels has also 
been recognized in the analysis of hearts that had been 
preconditioned to ischemia. Arrel et al. recently subjected 
rabbit ventricular myocytes to drugs which mimicked the 
effect of ischemic preconditioning and performed protein 
analysis that revealed significant alterations in proteins that 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). 2D gel electrophoresis reveals proteins that were differentially expressed in PLM KO mice relative to wild-type controls. Spots of 

interest were excised and subjected to mass spectrometry analysis. Used with permission: Bell et al., Characterization of the phospholemman 

knockout mouse heart: depressed left ventricular function with increased Na-K-ATPase activity. Am J Physiol Heart Circ Physiol 2008; 294: 

H613-H621. 
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played a role in mitochondrial energetics, chaperoning, and 
stress-responses [28]. These findings provided an unbiased 
view of potential pathways involved in preconditioning. 

 Gel based proteomic methods have also benefitted from 
the development of 2D DIGE (Differential Gel Electro-
phoresis) whereby up to three protein samples are 
fluorescently labeled with different fluorochromes and then 
subjected to gel electrophoresis, followed by scanning and 
analysis of the gel [29]. Such an approach has been put to 
use in the analysis of a model of dilated cardiomyopathy 
[30]. This gel-based method allowed for the identification of 
a consistent decrease in the phosphorylation of Tropomyosin 
(Tm). Given that this enzyme is a core component of the 
actin filament, regulating the interaction of actin and myosin, 
down-regulation of this protein could have implications for 
myocardial contractility. This study was highly successful in 
identifying a potential causes for this type cardiac disease, 
warranting further investigation in patient cohorts.  

 Although gel-based methods can be used to separate 
thousands of proteins and produce easily interpretable visual 
data, they possess some limitations. Membrane proteins are 
usually under-represented due to their poor solubility in the 
sample buffer and resolution in 2DE [31]. In general, gel-
based techniques are biased towards the detection of highly 
abundant proteins and become less effective at detecting 
hydrophobic proteins and proteins with extreme pI and 
molecular weight [32]. Additionally, although significant 
progress has been in 2D gel methods, the lack of automation 
of extraction, digestion, and analysis of each spot still 

remains labour-intensive [31]. Alternatively, more groups 
are now shifting to a gel-free approach, which has been 
demonstrated to improve protein coverage.  

Gel-Free Separation 

 Gel-free systems are being increasingly utilized for 
proteomic-based experiments. A common gel-free technique 
is the Multidimensional Protein Identification Technology 
(MudPIT), pioneered by the Yates group, which utilizes 
multi-dimensional liquid chromatography as a separation 
method analogous to 2DE coupled with tandem mass spec-
trometry (MS/MS) [31, 33]. The technique uses biphasic 
capillary columns packed with strong cation exchange 
material (SCX) and reverse phase material (RP) allowing for 
the separation of protein samples by charge and hydro-
phobicity [33], (see Fig. 2).  

 The main advantages of this method over 2D gel 
approaches are that this approach involves reduced sample 
handling and thus less potential for sample loss since the 
column is placed in-line with a tandem mass spectrometer to 
allow analysis of peptides as they are eluted off the column. 
For example, this strategy has been applied to the charac-
terization of the yeast proteome [33], several major mouse 
organs [34-36], embryonic stem cells [37], cytosol [36, 38], 
mitochondria [39], nucleus [40], and nucleolus [41]. 

 Similarly, Gramolini et al. performed gel-free shotgun 
sequencing of proteolytic digests of ventricular tissue 
extracts from phospholamban (PLN-R9C) mutant mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). (A) Ventricular tissue taken from mice is subjected to trypsin digestion. Peptides are then separated on the basis of charge and 

hydrophobicity. (B) Eluted peptides are then electrosprayed into a Linear Ion-Trap Mass Spectrometer via electrospray ionization (ESI). The 

resultant mass spectra are matched to proteins using database algorithms. (C) Increasing salt concentrations, or “salt bumps”, elute peptides 

from the LC columns providing enhanced peptide separation. Used with Permission: Chugh et al., Large-scale studies to identify biomarkers 

for heart disease: a role for proteomics? Expert Opin Med Diagn 2009; 3(2): 133-141. 
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exhibiting dilated cardiomyopathy using high performance 
multidimensional liquid capillary-scale chromatography 
(HPLC) coupled to automated data-dependent tandem mass 
spectrometry (LTQ linear ion trap mass spectrometer) [5]. Of 
the 6190 proteins identified, 593 were revealed to be 
differentially expressed between wild-type and R9C hearts. 
Gel-free separation can now be coupled with sophisticated 
proteomic technology to allow for direct detection of pro-
teins from complex mixtures. Jullig et al. coupled LC-MS 
with iTRAQ (Isobaric Tag for Relative and Absolute 
Quanitification) technology in their identification of proteins 
involved in cardiac mitochondria from diabetic hearts [42]. 
In these experiments, proteins from samples are covalently 
tagged at the N-terminus and at amine sidechains with 
different tags allowing for detection, were pooled together 
and analyzed by LC-MS to determine which protein 
sequences are present. This analysis was useful in unco-
vering 65 differentially regulated proteins in the disease 
state, emphasizing the involvement of the mitochondria in 
the progression of diabetes. 

Ionization of the Proteome 

 In addition to the advances that have been made in gel-
based and gel-free systems, sophistication of additional 
platforms has revolutionized the field of clinical proteomics. 
MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization 
Time-Of-Flight) mass spectrometry has undergone rapid 
changes and improvements in recent years, making it a 
desirable tool for studying the cardiac proteome. This 
approach utilizes nanosecond laser pulses which vaporize 
specimens that have been dried and spotted on a target place 
with a light-absorbing matrix molecule [43]. This platform is 
advantageous over other MS ionization methods because of 
its high sensitivity to peptides and proteins of low molecular 
weight. In addition to the increased sensitivity and mass 
accuracy, MALDI MS allows for rapid analysis. Tissue 
sections and whole cells can be directly analyzed, whereas 
traditional analysis methods require the homogenization and 
purification of tissue [44]. SELDI (Surface-Enhanced Laser 
Desorption/Ionization) analysis is a refinement of MALDI in 
which the metal surface is coated with a specific chemical 
that takes advantage of antibodies, ionic interactions and 
hydrophobicity to preselect a subset proteins to be 
preselected before MS analysis [45]. This is especially useful 
when the proteome area of interest is already known. For 
example, immunoaffinity enrichment with different specific 
Tn monoclonal antibodies were used to validate elevated 
cTnI as a signature for myocardial infarction, by way of 
SELDI-TOF MS [45]. This approach has also been used 
successfully to identify predictive plasma biomarkers of left 
ventricular remodeling after acute myocardial infarction. 
This analysis revealed elevated levels of post-translational 
variants of Hp 1 ( 1-chain of haptoglobin) in plasma of 
patients with left ventricular remodeling [46].  

 MALDI-MS has evolved not only as a powerful disco-
very tool but more recently as an imaging system. MALDI-
IMS (MALDI Imaging Mass Spectrometry) involves the 
microspotting of tissue samples within a MALDI matrix 
followed by the acquisition of spectra by mass spectrometry 
at discrete locations on a predefined “grid” [47]. Each of 
these spots can be represented as a “pixel” representative of 

a two dimensional of a tissue sample. They can then be com-
bined to provide a spatial representation of the distribution of 
a particular protein or molecule [47]. Although this system 
has yet to be employed for the heart to our knowledge, it has 
the potential to become an extremely powerful tool for 
understanding protein expression in pathological states. 
Evidently, both gel-based and gel-free systems have 
contributed significantly to the field of clinical proteomics. 
A brief summary of recent proteomics studies is provided to 
emphasize the contributions of mass spectrometry based 
platforms to the investigation of cardiovascular disease (see 
Table 1).  

4. TOOLS FOR VALIDATION 

 Most biomarker discovery tools such as MS-based ana-
lysis still require validation of candidate markers in clinical 
samples. This calls for a highly specific, high throughput 
systems that can verify specific protein levels in a large 
number of samples. Conventional experimental tools, such 
as protein microarrays and ELISA, rely on antibodies and 
immunoassays designed to detect specific proteins or 
peptides. Forward phase protein arrays (FPAs) are widely 
used in research to quantify the relative abundance of anti-
gens in samples. Antibodies are immobilized on the surface 
of a chip, which then specifically bind protein antigens from 
serum samples, cellular lysate, or urine samples. The bound 
analytes are then detected by the application of a second 
labeled antibody, usually by means of immunofluorescence 
[48]. Alternatively, reverse protein arrays (RPAs) do not 
require immobilized antibodies. Instead, tissue samples are 
spotted onto a chip’s surface and probed with various 
antibodies to detect relative abundance [49]. Although RPAs 
are not commonly used in the assessment of cardiac disease, 
they have been successfully applied to analyze biomarkers of 
cancer [50]. Protein microarrays are advantageous in that 
they allow high-throughput screening in a time-effective 
manner. ELISA tests are another commonly employed 
technique used to validate biomarkers. Here, analytes from 
samples are captured by immobilized antibodies fixed to a 
plate surface. An enzyme-linked detecting antibody is added, 
which is then activated by the addition of a substrate that 
changes colour or fluoresces when catalyzed. Since detection 
of the analyte is based on the proportion of catalyzed 
substrate, this indirect method amplifies signal and is highly 
sensitive. Consequently, proteins in the picomolar to 
nanomolar range can be effectively quantified, making it 
suitable for clinical applications [48]. However, FPAs, 
RPAs, and ELISAs all rely on obtaining highly-specific 
antibodies against known target proteins. Currently, there are 
limited numbers of highly reliable antibodies available to a 
small proportion of the proteome. Also, antibody-based 
systems inevitably suffer from cross-reactivity of antibodies 
and interference of protein-antibody interactions [51].  

 Multiple reaction monitoring mass spectrometry (MRM-
MS) may have greater potential as a general scientific 
approach. Traditional MS runs acquire a full-scan of 
peptides within a defined mass range, and generally detect 
higher abundance peptides, resulting in a ‘parent ion’. These 
peptides can trigger a second MS scan where the peptides are 
fragmented and acquired (daughter ion). The combination of 
the specific parent mass and the unique fragment ion is used 
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Table 1. Recent Biomarker and Disease Pathway Elucidation with the Advancement in Various Proteomic Based Technologies 

Biology Discovery Proteomic 

Technique 

Species Reference 

Nitrite mediated cardioprotection Involvement of following mitochondrial proteins: PDIA3, 

COQ9, ALDH2, 

MALDI-TOF MS Rat [80] 

Hypertension induced 

cardiomyopathy 

Decrease in expression of metabolic proteins: adenylate 

kinase 1, creatine kinase-M, lactate dehydrogenase 

2DE, Orbitrap MS Mouse [81] 

Protein expression in the aging 

ventricle 

Elucidation of protein networks affected: carbohydrate 

metabolism, cell morphology, cell assembly 

Significant fluctuations in metabolic proteins 

iTRAQ Rat [82] 

Adrenaline and/or reactive oxygen 

species mediated cardiomyopathy 

Increase in expression of myosin regulatory light chain 2 

in both groups, decrease in proteins involved in energetic 

metabolism in both groups (electron transfer flavoprotein 

beta subunit) 

MALDI-TOF Rat [83] 

Differentiating protein expression in 

failing and non-failing hearts 

Identification of known and novel proteins involved in the 

progression to overt failure, with a corresponding 

correlation to expression patterns seen in the wild-type 

cardiac transcriptome, proteome, and phosphoproteome 

Reverse Phase Gel-

Free Liquid 

Chromatography 

Human [84] 

Proteomic analysis of chronic heart 

failure 

Discovery of heat shock proteins, endoplasmic reticulum 

stress proteins, oxidative stress proteins, and metabolic 

enzymes involved in progression to CHF 

2DE Rat [10] 

Proteomic alterations in cardiac 

disease in frataxin knockout mice 

Decreases in expression of iron dependent complexes in 

the mitochondrial apparatus, with an increase in citric acid 

cycle enzymes and catabolic enzymes 

2DE Mouse [85] 

Proteomic analysis of hyperdynamic 

mouse hearts 

Identification of differential regulation of myosin light 

chain isoforms, and post-translational modifications. 

2DE, MALDI TOF, 

LC-MS/MS 

Mouse [86] 

Differential expression of ferritin 

light chain in coronary 

atheroscelerosis 

Increased expression of ferritin light chain in diseased 

coronary arteries, confirming that there is an increase in 

iron during CAD 

2DE Human [79] 

Isolation of cardiac troponins from 

biological samples 

A unique method for the extraction of cardiac troponins 

from the left ventricle of patients with cardiovascular 

disease is described 

Affinity 

chromatography, 

MALDI-TOF 

Human [87] 

Proteomic profiling of chronic heart 

failure 

Discovery of upregulation in HSP70 in patients with 

arrhythmogenic right ventricular cardiomyopathy relative 

to control samples 

2DE, MS Human/Rat [9] 

Investigation of post-translational 

modifications of cardiac troponin I 

Proteomic approach used to understand the complex 

interplay between phosphorylation and proteolysis of 

cardiac troponin I, to strengthen its role as a biomarker 

ESI/FTMS Human [88] 

Proteomic analysis of diabetic 

myocardial proteome 

Profiling of the diseased cardiac proteome allowed for the 

analysis of free-radical production as well as antioxidant 

defense mechanisms. 

2DE, MALDI-TOF 

MS 

Rat [89] 

Proteomic analysis of 

ischemia/reperfusion model 

Validated isolated organ perfusion as a potential 

diagnostic tool for biomarker discovery 

2DE LC-MS/MS Rat [4] 

Proteomic analysis of 

ischemia/reperfusion model 

Identified 25 mitochondrial proteins involved in 

mitochondrial respiratory chain and energy metabolism 

differentially expressed in ischemia-reperfusion hearts 

2DE MALDI-TOF Rabbit [3] 

Proteomic analysis of myocardial 

infarction 

Gel-free analysis of cardiac troponin isoforms from blood 

samples of patients with acute myocardial infarctions 

SELDI-TOF Human [2] 
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(Table 1) Contd…. 

 

Biology Discovery Proteomic 

Technique 

Species Reference 

Clinical detection of BNP in patients 

with congestive heart failure 

Developed a surface affinity chip to enhance enrichment, 

separation, and detection of BNP in human plasma. 

MALDI-TOF Human [8] 

Innovative proteomic technique for 

the analysis of myocardial 

hibernation 

Demonstrated improvement of a label-free LC-Orbitrap 

method over a parallel study using 2DE for expression 

profiling of myocardial mitochondrial proteins 

LC-Orbitrap Pig [90] 

Proteomic analysis of rat model of 

heart failure 

Identified and quantified changes in cardiac mitochondrial 

proteins  

iTRAQ MuDPIT 

MS/MS 

Rat [42] 

Comparative proteomic profiling of a 

rat model of heart failure resulting 

from cardiac hypertrophy 

Changes in 33 left ventricular mitochondrial proteins in 

pre-hypertensive/hypertensive stages of cardiac 

hypertrophy  

2DE MALDI-

TOF/TOF (tandem 

MS) 

Rat [91] 

Identification of Hp 1 variants 

involved in the progression to heart 

failure 

Post-translational variants of Hp 1 as plasma biomarkers 

for left ventricular remodeling from patients with acute 

myocardial infarctions 

SELDI-TOF Human [46] 

Comparative proteomic profiling of a 

mouse model of dilated 

cardiomyopathy 

Large-scale shotgun analysis revealed 593 differentially 

regulated proteins in mice with dilated cardiomyopathy, 

including key apoptotic proteins 

LC-MS, MuDPIT Mouse [5] 

 

to selectively identify a protein or peptide. As an alternative 
to this ‘data-dependent’ platform, MRM-MS can be pro-
grammed to target a specific peptide subpopulation by 
monitoring for only selected precursors representative of a 
protein of interest. This provides high selectivity by 
monitoring several transitions for a particular peptide by 
chromatographic elution [52]. However, the most important 
advantage of this approach is that this method does not 
require an antibody, only knowledge of the parent/daughter 
ion signatures. As such, numerous quantitative assays can be 
developed and monitored for proteins where no reagents 
currently exist. MRM has been applied successfully to quan-
tify protein expression [53], to elucidate cellular signaling 
pathways in the EGFR network [52], and to discover serum 
biomarkers to assess severity of rheumatoid arthritis [54].  

 In addition to the advantages of proteomic-based studies, 
there are challenges which may stand in the way of achie-
ving optimal results. Sample complexity is a major concern 
that must be taken into account in all proteomic based 
studied. Cardiac tissue samples, for example, may contain a 
dynamic range in protein abundance, with sarcomeric 
proteins being present in much higher quantities than other 
cardiac resident tissue proteins. This complexity is proble-
matic for mass spectrometry analysis. Since peptides are 
selected for analysis at the collision cell of the mass 
spectrometer, peptides present in high amounts interfere with 
accurate identification of lower abundance peptides. Thus, 
there may be a misrepresentation of peptide sequences 
within a given sample. In their study, Kuster et al. reported 
that potentially hundreds of thousands of peptides may be 
present following digestion of a sample, which could lead to 
undersampling of peptide ions [55]. This overwhelming 
amount of peptide sequences arises predominantly from the 
large number of unique protein sequences owing to post-
transcriptional modifications, processing of proteolytic 

segments, and alternative splicing of peptide sequences, as 
well as genetic variation among individuals. To address this 
issue, techniques must be set in place to reduce sample 
complexity [56]. In cardiac samples, for example, pre-
fractionation is one such procedure that shows promise in 
minimizing sample complexity as it analyzes various cellular 
fractions independently, after which abundance levels can be 
compiled in each separate fraction [5, 57, 58]. The utility of 
this approach was confirmed by Havugimana et al. who 
performed a proteomic analysis of cardiac samples that were 
pre-fractionated and those that were not. They discovered a 
marked increase in protein coverage in samples that had been 
pre-fractionated versus those that had not [59]. Sample 
complexity is also an issue of concern in blood. Albumin and 
immunoglobins, namely IgG, represent 99% large portion of 
the proteome [60]. Because there are myriads of undis-
covered proteins in blood that could serve as biomarkers of 
disease, albumin and IgG must be depleted prior to in depth 
analysis. To date, various techniques have been described to 
achieve this goal [61, 62]. Another potential challenge of 
proteomic based experiments lay in sample selection. Many 
proteomic studies which analyze levels of proteins in blood 
make the assumption that there is a similar expression pat-
tern in the diseased tissue. This hypothesis does not always 
hold true, since a protein biomarker has been significantly 
diluted from its journey from diseased tissue to body fluids 
such as blood [63]. However, as technological improvements 
in mass spectrometry and pre-fractionation continue to im-
prove sensitivity and specificity and overcome these chal-
lenges novel biomarkers of disease will be identified with 
greater confidence.  

5. MYOCARDIAL ISCHEMIA 

 Proteomic platforms have also been exploited in order to 
gain insight on to disease pathways involved in the pro-
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gression of myocardial ischemia. During myocardial 
ischemia the normal balance between oxygen supply and 
demand is compromised, with the latter dominating. Taking 
into consideration the fact that the heart requires a conti-
nuous supply of oxygen to carry out normal function, a 
decrease in the oxygen available could lead to myocardial 
tissue damage.  

 Patients who have myocardial ischemia often present 
with angina, dyspnea, or diaphoresis which would lead a 
clinician to pursue further diagnostic tests. Investigations 
may be performed at rest or upon exertion, to ascertain the 
severity of the disease. Traditionally, exercise testing in 
conjunction with electrocardiography has been a standard 
test for the initial assessment of patients suspected of having 
some degree of ischemia. However, new clinical diagnostics 
are needed to complement these tests to improve the 
prognosis of this disease state.  

 Proteins used as markers can be part of a signaling 
pathway activated during disease progression, or simply an 
unrelated protein that is overexpressed in the disease state. 
Nevertheless, both groups of proteins serve an important 
purpose in the diagnosis of ischemia. Eugene Braunwald 
pointed out that biomarkers can be classified into six groups: 
inflammation, oxidative stress, extracellular-matrix remo-
deling, neurohormones, myocyte injury, and myocyte stress. 
Markers of myocardial ischemia generally fall into the group 
of myocyte injury, such as ischemia-modified albumin [64, 
65], unbound free fatty acid [66], NT-proBNP/BNP [67-69], 
and IL-6 [70]. Exploration into various other categories, such 
as inflammatory markers or proteins involved in remodeling, 
could offer a new and innovative means to diagnose this 
disease process in the early stages. Proteomic strategies are 
now being used to uncover proteins that would have not been 
identifiable in the past. 

 During myocardial ischemia, myocyte stress leads to 
mitochondrial damage. This hallmark feature is beginning to 
be exploited to determine additional markers of this disease 
state. Weiss et al. describe the phenomenon of Mitochondrial 
Permeability Transition (MPT), occurring during ischemia/ 
reperfusion, during which there is irreversible injury to the 
mitochondria [71]. Here, an increase in the permeability of 
specialized mitochondrial pores leads to swelling of the 
mitochondrial matrix and subsequent rupture of the outer 
membrane with a corresponding release of apoptotic pro-
teins. However, there is much to be discovered in relation to 
activated protein pathways and other key post-translational 
modifications that occur during this disease state. In an 
attempt to fill this gap, Chen et al. used a proteomic approa-
ch to determine which proteins were differentially regulated 
in ischemic hearts [72]. Specifically, proteins were first 
tagged with fluorescent dyes and then resolved on a 2D gel, 
allowing for visual detection of alterations in protein expres-
sion. Spots of interest were then excised from the gel and 
underwent subsequent analysis using liquid chromatography 
mass spectrometry. This approach allowed for the discovery 
of the mitochondrial protein, aldehyde dehydrogenase type 2 
(ALDH2), a cardioprotective protein. In a similar endeavor, 
Jacquet et al. used a similar approach to improve clinical 
diagnosis of Acute Myocardial Infarctions (AMI) [73]. Here, 
gel electrophoresis was used to determine which proteins 

were abundant in cardiac samples taken from mice exposed 
to ischemic conditions. In addition to previously established 
biomarkers, this group showed cardiac myosin binding 
protein C as a potential biomarker of AMI. Of interest, the 
expression of this protein far exceeded that of certain 
previously established biomarkers of AMI, emphasizing the 
utility of this protein for clinical diagnosis. Indeed, this study 
has set the stage for further analysis of this protein in patient 
cohort samples as well as its involvement in pathways 
following myocardial infarction. 

 Blood contains a repository of unexplored biomarkers 
which, if identified, have the potential to revolutionize the 
treatment of various disease forms [74]. When subjected to 
stress, as in myocardial ischemia, cells often secrete specific 
proteins into the blood which reflect the physiological state. 
Highly impactful are proteomic experiments performed 
directly on blood samples taken from human patients who 
suffer from ischemia. Those proteins that would be found to 
be differentially expressed in diseased blood would be 
further pursued as potential biomarkers. This approach has 
been applied effectively to samples taken from patients with 
inducible ischemia [75]. Following resolution by liquid 
chromatography, mass spectrometry was performed to 
determine which proteins had altered expression in this 
disease state. Six metabolites were found to possess signi-
ficant alteration during myocardial ischemia. Of these, 193 
and MET 121 to be increased during myocardial ischemia, 
whereas MET 200, gamma aminobutyric acid, uric acid, and 
citric acid were decreased in the diseased state. As discussed 
previously, examination of proteins in blood presents many 
technical challenges that need to be overcome to arrive at 
accurate results. Furthermore, the assumption that protein 
expression patterns in tissue and blood are always concor-
dant, has been a point of contention [76]. Nevertheless, 
Zhang et al. demonstrated that, in fact, expression patterns in 
both samples are similar. [77]. Here, they show that there 
may not be a linear relationship between changes in protein 
expression in tissue and alterations in blood [76]. By 
examining glycosylation patterns of peptides, using mass 
spectrometric analysis, they were able to confirm that many 
proteins detected in tissue were also present in blood. 
However, biomarkers showing promise of being used in a 
clinical setting should be analyzed in tissue samples to 
ensure concordant expression patterns, thereby providing a 
powerful marker of the disease state. 

 Well established as a major cause of myocardial ischemia 
is an increase in oxygen demand in the presence of fixed 
coronary vessel narrowing. Physical obstruction can be 
attributed to the formation of atherosclerotic plaques within 
these arteries. As low-density lipoproteins (LDL) and other 
inflammatory molecules accumulate in the coronary arteries, 
plaques will often destabilize which can lead to a rupture and 
thrombosis. Given that atherosclerosis is the leading cause of 
myocardial ischemia, various proteomic-based studies have 
analyzed atherosclerotic plaques. Specifically, proteins that 
have significant alterations in expression in such tissue 
samples could be further studied as potential markers in 
patients who have ischemia. For instance, a proteomic stra-
tegy was utilized in the determination of proteins that were 
differentially expressed in atherosclerotic tissue samples, 
relative to controls [78]. Notably, actin, tropomyosin-like 
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proteins, and two glycoproteins were identified in this study. 
A subsequent analysis of patients who had coronary artery 
disease was performed whereby coronary arteries from 
diseased patients and matched controls were used [79]. Their 
proteomic platform, involving 2D-gel electrophoresis follo-
wed by mass spectrometric analysis, revealed ferritin light 
chain to be overexpressed. This result was highly significant 
as this protein likely contributes to the progression of 
myocardial ischemia. Within atherosclerotic plaques, the 
generation of reactive oxygen species has been studied in 
depth as such radicals modify the lipids and proteins of Low 
Density Lipoproteins. Ferritin light chain may act by altering 
the generation of reactive oxygen species, thereby regulating 
the growth of atherosclerotic plaques. This promising bio-
marker would benefit from validation in additional clinical 
studies which include patients with signs and symptoms of 
early stage myocardial ischemia.  

6. CONCLUSION 

 Given the overall health burden felt by cardiomyopathy 
on a global scale, there still remains an urgent need for new 
and innovative therapies for these diseases. Proteomic-based 
studies may be able to provide these markers of disease and 
new therapeutic avenues that may one day be translated into 
the clinical setting where they will be used regularly in the 
diagnosis and treatment of cardiac disease. Obviously, the 
transition from bench to bedside is not an easy one, and must 
be facilitated by subsequent, carefully designed, clinical 
trials.  
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ABBREVIATIONS 

CTN I = Cardiac Troponin I 

CK-MB = Creatine Kinase-Myoglobin 

2D-GE = Two Dimensional-Gel Electrophoresis 

pI = Isoelectric Point 

DIGE = Differential Gel Electrophoresis 

Tm = Tropomyosin 

PEDF = Pigment-Epithelium Derived Factor 

MudPIT = Multidimensional Protein Identification 
Technology 

MS = Mass Spectrometry 

SCX = Strong Cation Exchange 

RP = Reverse Phase 

PLN-R9C = Phospholamban- Arginine to Cysteine 
Mutation 

HPLC = High Performance Liquid 
Chromatography 

iTRAQ = Isobaric Tag for Relative and Absolute 
Quanitification 

LC-MS = Liquid Chromatography-Mass 
Spectrometry 

MALDI-TOF = Matrix-Assisted Laser Desorption-
Ionization Time-Of-Flight 

SELDI = Surface-Enhanced Laser Desorption/ 
Ionization 

TOF = Time of Flight Surface-Enhanced Laser 
Desorption/Ionization 

Hp 1 = 1-chain of haptoglobin 

IMS = Imaging Mass Spectrometry 

PDIA3 = Protein Disulfide Isomerase family A, 
member 3 

COQ9 = Coenzyme Q9 

ALDH2 = Aldehyde Dehydrogenase 2 

HSP70 = Heat Shock Protein 70 

ELISA = Enzyme Linked Immunosorbent Assay 

FPA = Forward Protein Assay 

RPA = Reverse Protein Assay 

MRM-MS = Multiple reaction monitoring mass 
spectrometry 

EGFR = Epidermal Growth Factor Receptor 

BNP = Brain Naturietic Peptide 

IL-6 = Interleukin-6 

MPT = Mitochondrial Permeability Transition 

AMI = Acute Myocardial Infarction 

LDL = Low Density Lipoprotein 

NO = Nitric Oxide 

PLM-KO = Phospholemman-Knockout 
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