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Microbes are the most abundant and diverse organisms on Earth. In contrast to macroscopic organisms, their environ-
mental preferences and ecological interdependencies remain difficult to assess, requiring laborious molecular surveys at
diverse sampling sites. Here, we present a global meta-analysis of previously sampled microbial lineages in the environ-
ment. We grouped publicly available 16S ribosomal RNA sequences into operational taxonomic units at various levels of
resolution and systematically searched these for co-occurrence across environments. Naturally occurring microbes, in-
deed, exhibited numerous, significant interlineage associations. These ranged from relatively specific groupings encom-
passing only a few lineages, to larger assemblages of microbes with shared habitat preferences. Many of the coexisting
lineages were phylogenetically closely related, but a significant number of distant associations were observed as well. The
increased availability of completely sequenced genomes allowed us, for the first time, to search for genomic correlates of
such ecological associations. Genomes from coexisting microbes tended to be more similar than expected by chance, both
with respect to pathway content and genome size, and outliers from these trends are discussed. We hypothesize that
groupings of lineages are often ancient, and that they may have significantly impacted on genome evolution.

[Supplemental material is available online at http://www.genome.org.]

Symbiosis—as defined in its broadest sense (de Bary 1879; Saffo

1993)—is widespread in nature, ranging from obligatory mutual-

istic partnerships to commensalism to clearly detrimental, para-

sitic interactions (Paracer and Ahmadjian 2000). The phenome-

non is not restricted to a particular domain of life, but can occur,

for instance, between bacteria, archaea, and protists, which, in

turn, can live together inside a specific animal host (Brauman et al.

1992; Tokura et al. 2000). Many instances of symbiosis are known,

but they are not always understood mechanistically. The situation

may not always be stable either: Symbionts may ‘‘cheat,’’ and/or

compete among each other for a third partner (Palmer et al. 2003;

Ferriere et al. 2007; Johnstone and Bshary 2008).

Leaving aside macroscopic organisms, symbiosis and local

coexistence among single-celled microbes are even less well char-

acterized. The extent, specificity, and stability of microbial asso-

ciations are difficult to assess systematically in the environment,

since elaborate staining procedures and/or molecular sequencing

are needed in order to detect and differentiate between microbial

lineages in situ. Nevertheless, several close partnerships between

microbial species have already been identified. These include con-

sortia of methane-oxidizing archaea and sulfate-reducing bacteria

(AOM, ‘‘anaerobic oxidation of methane’’) (Boetius et al. 2000;

Caldwell et al. 2008; Knittel and Boetius 2009); consortia of photo-

trophic green sulfur bacteria surrounding motile beta-proteobacteria

(Overmann and Schubert 2002; Wanner et al. 2008); consortia of

sulfate reducers, sulfate oxidizers, and other lineages inside marine,

gutless oligochaete worms (Dubilier et al. 2001; Woyke et al. 2006;

Ruehland et al. 2008); and consortia of extremophilic lineages

conducting ferrous iron oxidation in acidic pyrite mine run-offs

(Tyson et al. 2004). Such groupings probably do not constitute

‘‘symbiosis’’ in a classical sense (Saffo 1993), but they are typically

interpreted as syntrophic associations in which one partner con-

sumes metabolites produced by the other. In addition, predatory

and parasitic relationships are also known. An example for the

latter is Nanoarchaeum equitans, a small archaeon that appears to be

an obligate parasite of another archaeal species (Huber et al. 2002;

Forterre et al. 2009). Despite such specific findings, the discovery

of microbial associations has so far been largely interest-driven (or

even fortuitous), meaning that a comprehensive picture of mi-

crobial coexistence has yet to emerge.

The notion that microbes in the environment perhaps exist

in a less solitary manner than commonly assumed is also sup-

ported by the rapidly accumulating knowledge on intra- and in-

terspecies microbial communication (Ryan and Dow 2008; Shank

and Kolter 2009). Essential activities of single species such as nu-

trient uptake, biofilm formation, or cellular differentiation can be

organized and synchronized by communication and cooperation

(Parsek and Greenberg 2005; Waters and Bassler 2005; Kolter and

Greenberg 2006; Gibbs et al. 2008; Ng and Bassler 2009). While it

is less clear whether and to what extent microbes may interact

with other species via specific communication, some bacteria are

known to ‘‘eavesdrop’’ and to even respond to signals that they

cannot themselves generate (Visick and Fuqua 2005). In addi-

tion, an interspecies relationship has been shown to evolve and

quickly deepen in a laboratory evolution experiment (Hansen

et al. 2007; Harcombe 2010).

Apart from the few cases of well-described, specific inter-

actions, relatively little is known about how natural microbial as-

semblages form and how they are structured, if at all (Ruan et al.

2006; Horner-Devine et al. 2007; Fuhrman and Steele 2008; Raes

and Bork 2008; Fuhrman 2009). They are often taxonomically

highly complex and can encompass hundreds of different species,

and at least some aspects of the composition of any given commu-

nity are thought to be based on historical contingency (Martiny

et al. 2006). Moreover, naturally occurring communities are difficult
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to reassemble and/or study under controlled conditions in the lab-

oratory, since most of the constituting lineages are not available in

pure cultures (typically more than 95% of species present in a given

sample cannot be cultivated) (Staley and Konopka 1985). The diffi-

culties in cultivating microbes have often been linked to slow

growth and unknown nutritional requirements, but might also be

partly attributed to their synecology—for example, reflecting a need

to coexist within a biofilm or to aggregate together with partner

species in order to ameliorate adhesion (Min and Rickard 2009) or to

dispose of otherwise inhibitory metabolic products.

Since the establishment of the first comprehensive microbial

phylogeny using the 16S rRNA gene (Fox et al. 1980) and the in-

vention of techniques for rapidly generating large blocks of 16S

rRNA sequence data (Lane et al. 1985; Giovannoni et al. 1990;

Ward et al. 1990), a great variety of environments have been sam-

pled to study microbial diversity in situ. Today, the 16S rRNA gene

remains the marker of choice for identifying microbes in their

environments, and the size of databases dedicated to this gene is

growing exponentially (Desantis et al. 2006; Pruesse et al. 2007;

Cole et al. 2009). In addition, environmental sequences are in-

creasingly being annotated with contextual information (e.g., geo-

graphic position, temperature). An important effort to define and

standardize such sequence meta-data has been initiated within

the Genomic Standards Consortium (Field et al. 2008a,b), specifi-

cally by developing the MIENS standard (minimum information

about an environmental sequence). However, the existing anno-

tations of many of the legacy sequences in the databases will have

to be migrated to such standards, which requires considerable ef-

fort. The results of such efforts are increasingly being made avail-

able in integrated resources such as CAMERA (Seshadri et al. 2007),

IMG/M (Markowitz et al. 2008), and megDB (Kottmann et al.

2010), but at present only a small minority of 16S rRNA sequences

have geo-referencing or other contextual information.

Using 16S rRNA sequences in combination with other data,

classical ecological questions including species (co)-occurrence and

diversity have also been addressed extensively in microbes (Bell

et al. 2005; Langenheder et al. 2006; Ruan et al. 2006; Horner-

Devine et al. 2007; Smith 2007; Langenheder and Prosser 2008).

In doing so, many of the concepts that have originally been de-

veloped for macroscopic organisms have been adapted and applied

to microbes. However, these studies have mostly focused on one

specific environment, or one specific lineage, at a time (e.g., Alonso

et al. 2007; Newton et al. 2007; Fuhrman and Steele 2008) (this

way, ecological questions can be studied in a more defined setup).

What has not been addressed much, so far, is the global parti-

tioning of microbial lineages among all sampled environments.

Here, we take a first step in this direction, by systematically study-

ing a current snapshot of the complete data set of full-length 16S

rRNA sequences. We search for groups of lineages that occur to-

gether more often than expected by chance, and we connect this

information to genomic data, as well as to the limited metadata

that are available regarding the sampling sites (the latter infor-

mation stems mostly from free-text annotations provided at the

time of database submission). We find that the assortment of lin-

eages and environments is clearly nonrandom, and that specific

and recurring associations among lineages can be described, at

various levels of detail and phylogenetic resolution.

Results and Discussion
In order to comprehensively characterize the occurrence of mi-

crobial lineages in the environment, we first grouped publicly

available, full-length 16S rRNA sequences at various levels of se-

quence identity, thereby creating unsupervised sets of ‘‘operational

taxonomic units’’ (OTUs; see Methods for details). Each OTU was

assigned a taxonomic annotation that reflected the consensus of

its member sequences, and a single sequence was chosen to rep-

resent each OTU in subsequent sequence comparisons. Next, we

comprehensively compiled environmental ‘‘sampling events’’ of

16S sequences; such an event is defined here as a unique combi-

nation of submitting authors, project title, and isolation source, as

annotated in the respective database records. We assumed that

sequence entries for which all three fields are exactly identical were

sampled together, at a given site. Our procedure (Fig. 1) thus re-

sulted in a large matrix that connects OTUs to environmental

sampling events (Table 1). Depending on the OTU definition, this

matrix contained roughly between 700 and 5000 distinct OTUs,

which were mapped to roughly 3000 distinct sampling events (we

only retained sampling events that encompassed at least two

OTUs, and conversely, only OTUs that were observed in at least

three sampling events).

Next, we examined this matrix for any non-random assort-

ment of OTUs to environments, which would manifest itself as

groups of OTUs observed together more often than expected by

chance. Our underlying null model is that of global, random dis-

persal of lineages across environments (Harvey et al. 1983; Finlay

2002; Kunin et al. 2008a; Hubert et al. 2009), and essentially cor-

responds to the first part of Baas Becking’s enigmatic statement,

‘‘Everything is everywhere, but, the environment selects’’ (de Wit

and Bouvier 2006). While this null model is clearly not applicable

for macroscopic organisms with distinct biogeographic distribu-

tion patterns, it does represent the simplest default assumption

for microbes, and it is appropriate for the very large geographical

and temporal scales that we consider here. By computing the hy-

pergeometric probability of pairwise co-occurrences and correct-

ing for multiple testing, we found that, indeed, a large number

of statistically significant associations between OTUs can be ob-

served, irrespective of the precise choice of OTU definition cutoff

(Fig. 2; Supplemental Fig. S1; Table 1). A concrete example for such

an association is shown in Figure 1B (data from Sorensen et al.

2005; Baati et al. 2008; Isenbarger et al. 2008; Sahl et al. 2008;

R Amdouni, E Ammar, H Baati, N Gharsallah, and A Sghir, unpubl.):

a well-characterized lineage of Cyanobacteria (belonging to the

halophilic Euhalothece) (Garcia-Pichel et al. 1998) was observed to

be associated with an uncharacterized lineage having no cultivated

or named representatives (a monophyletic sister group of the

Psychroflexus lineage [Bacteroidetes]). This particular association is

based on three independent sampling events in which both line-

ages had been observed together, by three distinct laboratories in

three distinct countries. Considering that the OTU definition in

this case is relatively narrow (97%) and that this association occurs

against a backdrop of about 2800 sampling events covering more

than 5000 OTUs, the observation becomes highly significant

(P < 3 3 10�06; after multiple testing adjustment). Overall, several

thousand of such associations could be identified. To assess the

effects of potential biases in the sampling data, and in order to

estimate our false discovery rate (FDR) empirically, we performed

a conservative randomization of our data—by keeping constant

the size distributions of both sampling events and OTUs, but

shuffling the connections between OTUs and sampling sites. This

resulted in a reduction of the number of reported associations by

>99% for most of the OTU definition cutoffs (Table 1), which

translates to FDRs of ;1%, except at very broad OTU definitions

(i.e., when setting the OTU clustering cutoff to 85% sequence
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identity or less) (see Table 1). The few remaining false-positive

associations were observed mainly among widely sampled line-

ages known to occur inside the mammalian digestive tract; this

likely reflects the strong study bias toward 16S gene sequences of

this habitat (Ley et al. 2008; Hamady and Knight 2009).

In addition to assessing the statistical significance, we also

computed a ‘‘specificity’’ value (or ‘‘association strength’’) for all

OTU pairs. This value corresponds to the Jaccard similarity; it is

1.0 if a pair of OTUs is always observed together (but never sepa-

rately), and zero for a pair of OTUs that is always observed in dis-

tinct environments, but never together. Remarkably, we found

associations at both extremes of specificity (i.e., close to 1.0 or close

to zero) (see Supplemental Fig. S3 for the overall distribution). An

example for the former is shown in Supplemental Figure S1A:

a previously undescribed bacterial OTU (a sublineage of the can-

didate division JS1) was observed together with a specific Meth-

anosarcinales lineage in marine sediments, again by three distinct

laboratories (once in the Mediterranean, twice in the Gulf of

Mexico at distinct sites). However, in this case, the two lineages

were never found separately, in any of the 2800 environment

samplings we studied. The likelihood of observing such a specific

association by chance is again very low (P = 1.1 3 10�7 after cor-

rection for multiple testing). An example for a less specific but

nevertheless highly significant association is shown in Supple-

mental Figure S1B: A lineage of gamma-Proteobacteria (nosoco-

mial pathogens from the genus Stenotrophomonas) was frequently

observed together with a lineage of Bacilli (genus Staphylococcus).

The two lineages were sampled together 10 times—by seven dis-

tinct laboratories—in various air samples, skin samples, dust, and

on Chinese cabbage. The association is highly significant (P < 10�9

after correction for multiple testing), but less specific: Both lineages

have also been observed separately (in 32 and 17 sampling sites,

respectively). Not all of the latter observations were related to skin

samples. Stenotrophomonas, for example, may also form distinct

blooms in shallow coastal lagoons (Piccini et al. 2006). While co-

occurrence alone cannot offer any mechanistic explanation for

lineage associations, the additional information in the specificity

of an association does provide a constraint when discussing pos-

sible scenarios (obligatory mutualism, for example, would be ex-

pected to result in a high association specificity). Barring any ad-

ditional information, we did choose to interpret our observed

associations conservatively, by assuming that they for the most

part simply reflect shared or overlapping niche preferences. In-

stances of undescribed, specific mutualisms and parasitisms are

presumably contained within our findings, but additional experi-

mental follow-ups will be required for a detailed characterization of

such interactions (Orphan 2009). That notwithstanding, this first

part of our analysis already provides an empirical base for discovery

and allows us to explore more specific hypotheses about the rea-

sons for the coexistence of sets of uncultured genotypes.

Next, we searched our observed co-occurrence relations for

previously known microbial associations (Supplemental Fig. S1).

Figure 1. Detection of coexisting microbial lineages. (A) Schematic description of the analysis procedure. Publicly available 16S ribosomal RNA se-
quences are first grouped into operational taxonomic units (OTUs), then annotated according to unique environmental sampling events, and finally
searched for statistically significant co-occurrences. Where available, completely sequenced genomes are mapped onto the resulting network, which is
then clustered and annotated. (B) Example for a specific lineage association. The two lineages (defined at a 97% 16S sequence identity cutoff) have been
sampled overall relatively rarely, but they occurred together three times, at three distinct sites. (or) Odds ratio. Under ‘‘Sampling sites,’’ the investigative
work of ‘‘Baati H. et al., 2009’’ refers to R Amdouni, E Ammar, H Baati, N Gharsallah, and A Sghir (unpubl.).
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While we did not recover the known association between the

Nanoarchaeum and Ignecoccus lineages, nor the Chlorochromaticum

consortium, we did find strong evidence for AOM consortia (Sup-

plemental Fig. S1D). We also observed the known association

between the lineages Leptospirillum (phylum Nitrospira) and Acid-

othibacillus (phylum Proteobacteria), both of which are known to

thrive in acidic bioleaching environments. In this case, the asso-

ciation we found was remarkably strong and specific: Out of 21

independent observations of Leptospirillum (by 18 distinct author

teams in various settings), all but a single one also included ob-

servations of Acidothiobacillus (i.e., 20 out of 21; P < 10�35) (Sup-

plemental Fig. S1C) (in this case, the OTU clustering distance was

90%). Remarkably, this association appeared to be somewhat

asymmetric: Acidothiobacillus did occur occasionally without its

partner (in an additional 18 sampling events), suggesting that

the mutual dependencies might not be equally strong in both di-

rections. As a further test of our associations, we conducted an

independent co-occurrence search of microbial lineages in the

published literature (Supplemental Fig. S5). The frequencies of co-

mentions of species names in PubMed can, indeed, reveal eco-

logical associations (Freilich et al. 2010), albeit limited to those

lineages that are already validly named and for which cultivated

type strains typically exist. We find that more than 70 of our

pairwise associations (counting nonredundantly at the genus level)

can, indeed, be confirmed by the published literature, that is, their

co-mention counts rise above a conservative randomization of

species names and PubMed entries (Supplemental Fig. S5). Apart

from the known associations, we also observed a large number

of previously undescribed interactions, many of which involved

unclassified lineages without any cultured or named representa-

tive (discussed below; the full set of associations is also available for

browsing online). It should be noted that our data set likely misses

some aspects of microbial coexistences, due to experimental biases

in the generation of 16S rRNA sequences. In particular, the fre-

quent choice of primers that will not target archaeal sequence

types (Muyzer et al. 1995) in environmental studies may lead to an

underestimation of the association between bacteria and archaea

(but see Supplemental Fig. S1 and Fig. 5, below, for examples).

The observed associations were not limited to pairwise co-

occurrences. When plotting the associations as a graph, a densely

connected network of OTUs emerged (Fig. 2A). The topology of

that network is clearly nonrandom; it exhibits a high clustering

coefficient, short average minimum path length, and a connec-

tivity degree distribution that has no characteristic maximum (i.e.,

the network is roughly matching the ‘‘scale free, small-world’’

criteria) (Barabasi and Oltvai 2004). This topology suggests that

the network can be meaningfully partitioned, and that doing so

should reveal modules of densely connected microbial lineages;

these might be regarded as the microbial equivalents of the ‘‘syn-

taxa’’ of vegetation analysis. One such possible partitioning is

shown in Figure 2C; it conveys more information than a simple list

of pairwise co-occurrences because it groups specific lineages, at

the exclusion of others. Module formation can occur even if the

various pairwise correlations are not all highly significant (e.g., due

to undersampling); this is because a certain fraction of missing or

poorly scoring associations can be tolerated as long as the overall

topology remains that of a tightly linked module. Furthermore,

partitioning allows the annotation of keywords that describe the

commonalities among the associated sampling sites of the various

modules (Fig. 2C; see Methods). Among the modules, we observed

intriguing cases where all or the majority of lineages have not been

characterized before. An example is shown in Figure 3 (data from

Heijs et al. 2005; Inagaki et al. 2006; Ley et al. 2006; Lloyd et al.

2006; Isenbarger et al. 2008; Li and Wang 2008; Li et al. 2008; Zhang

et al. 2008; Harrison et al. 2009; Takeuchi et al. 2009; Ghosh et al.

2010)—five lineages that are co-occurring very specifically in certain

marine sediments; they are from three distinct phyla, and each

lineage is entirely uncharacterized. (A closer phylogenetic analysis

revealed that the two Planctomycetes OTUs are related to each other, to

the exclusion of other Planctomycetes lineages; they have been found

also in other marine and freshwater environments, and our co-

occurrence thus defines a more restricted home context for this line-

age.) Specific modules such as this example are striking and likely

provide a first glimpse onto hitherto undescribed microbial consortia.

While our 16S-based OTUs provide fairly objective coverage

of phylogenetic lineage space, they do not, in themselves, contain

any information about molecular and ecological functions. We

therefore attempted to represent each OTU by its best match

among completely sequenced genomes, to the extent that the

latter are available (see Methods). Strains for which complete ge-

nomes have been sequenced do not usually originate from the

environmental samplings described here. However, as long as they

are closely related to the OTU in question, they may suffice to re-

veal broad genomic trends related to coexistence. The validity of

this approach is based on two observations/assumptions. First, our

co-occurrence analysis is already enriching for lineages that are

Table 1. Overview of sampled microbial lineages at various levels of OTU definitions

OTU definition (%) 80 85 90 95 97 98 99

No. of OTUs 1059 3142 9018 25,142 38,186 48,144 65,807
No. of OTUs after filtering 713 1627 3286 5001 5006 4697 4228
No. of sampling sites after filtering 2698 2826 2918 2931 2801 2633 2312
No. of co-occurrence tests 25,3828 1,322,751 5,397,255 12,502,500 12,527,515 11,028,556 8,935,878
No. of coexisting OTU pairs

(FDR = 0.001)
14,421 32,908 67,219 78,529 83,614 88,636 104,876

Random data: no. of coexisting
OTU pairs (FDR = 0.001)

5618 3515 1006 693 503 834 433

FDR (estimated by permutations) 0.3896 0.1068 0.0150 0.0088 0.0060 0.0094 0.0041
No. of OTUs with mapped genome NC NC NC 350 499 598 663
Coexisting genome pairs (FDR = 0.001) NC NC NC 410 303 232 200

The table provides numerical details on the raw data and the results, and also illustrates the effects of changing the phylogenetic resolution at which the
analysis is performed. For very narrowly defined OTUs, many lineages have to be discarded because they do not occur in a sufficiently large number of
samples. Conversely, for very broadly defined OTUs, the statistical false discovery rate becomes too high, since many of the more abundant OTUs are seen
to co-occur even after conservative randomization of sampling sites. NC, Not computed.
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likely abundant (Pedros-Alio 2006) and that can be widely found

and easily accessed (each OTU had to be sampled at least three

times to be included here). And, second, there seems to be a nota-

ble stability of environmental habitat preferences among micro-

bial lineages in general (Von Mering et al. 2007; see also below).

This suggests that a sequenced strain may represent other members

of its OTU in terms of its genomic content and aspects of its

ecology even if it has diverged from them to some degree. We were

able to map between 350 and 660 genomes to a subset of our OTUs

(this depends on the OTU resolution; notably it also means that

a significant fraction of sequenced genomes currently cannot be

connected to an OTU that has been repeatedly observed in the

environment). This mapping translates to between 200 and 410

significant partnerships for which genomic information is avail-

able for both partners, covering a small but significant fraction of

all the instances of co-occurrence we detected. To our knowledge,

this is the first time that a global, environmentally motivated as-

sociation network between genomes has been constructed.

We used this network to objectively assess potential con-

straints on genome evolution, which might be a consequence of

Figure 2. Global network of coexisting microbial lineages. (A) Overview of the network of lineage associations. Each node denotes a microbial lineage,
and each line a significant co-occurrence relationship. Node size is proportional to the number of sequences in the lineage, and node color indicates the
connectivity degree of a node (along a color gradient: blue, low connectivity; red, high connectivity). Throughout the figure, the OTU definition cutoff is at
97% sequence identity, and the P-value cutoff for an association is 0.001 (i.e., FDR after correction for multiple testing). (B) Connectivity degree distri-
bution plot for the network in A. The distribution is coarsely compatible with a power law distribution. (C ) Same network as in A, but partitioned using
unsupervised Markov clustering, to reveal modules (clusters) of co-occurring lineages. Here, node color denotes taxonomic classification at the phylum
level. Lineages suspected to contain potential laboratory contaminants (Tanner et al. 1998; Barton et al. 2006) are mainly observed in small clusters, and
are marked with a small black X (17 such lineages in total).
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the association of a genome to its preferred environment and to

other lineages in that environment. We observed four highly sig-

nificant trends among co-occurring genomes: They tend (1) to

have more similar genome sizes, (2) to be more similar in GC

content (i.e., the fraction of the genome consisting of guanine and

cytosine), (3) to be more similar with respect to relative coverage of

functional pathways, and (4) to be phylogenetically more closely

related than randomly selected pairs of genomes (Fig. 4). The latter

trend was also visible from 16S sequences alone (Supplemental

Fig. S2). The trend to phylogenetic relatedness is presumably the

easiest to rationalize: Pairs of ecologically associated lineages, which

are also closely related phylogenetically, would arise naturally as-

suming that neither lineage had changed their habitat preferences

since they split from their last common ancestor. We indeed ob-

serve this signal and detect that it extends surprisingly far back in

time: Lineages that have diverged up to 10% at the 16S sequence

identity level are still clearly enriched among environmentally

associated pairs (Fig. 4A; the peak seen at

15% sequence divergence is largely due to

a single, well-covered cluster; see Supple-

mental Figs. S6, S8). In principle, this re-

latedness signal could also explain our

three other observations: Phylogeneti-

cally related genomes are known to ex-

hibit similar GC contents, genome sizes,

and functional composition. To assess

this possibility, we tested these three sig-

nals for independence from the phylo-

genetic signal, by correcting for the

underlying correlations as learned from

randomly selected genome pairs (Fig. 4).

In the case of GC content similarity, we

find that the signal can, indeed, be largely

explained by phylogenetic relatedness

alone—it is not an independent observa-

tion. This would argue against environ-

mental selection on GC content, at least

at longer time scales, and it gives further

support to algorithms that partition en-

vironmental sequences based on geno-

mic signatures (McHardy and Rigoutsos

2007; Mrazek 2009). In contrast, impor-

tantly, we observed that both genome

size similarity and functional similarity

could not be explained solely by phylo-

genetic relatedness. For example, while

randomly selected pairs of genomes have

genome sizes that can vary considerably,

environmentally associated genome pairs

tend to level off at ;20%–30% genome

size difference, on average (Fig. 4F, P <

10�13). This is remarkable because it sug-

gests that a given environment tends to

select for a particular optimal genome size

range, even across distinct lineages; fur-

thermore, it suggests that lineages spend

sufficient time in their preferred envi-

ronments to allow for these optimal ge-

nome sizes to be selected for and main-

tained (against a mutational spectrum

that is thought to be largely biased toward

deletions in bacteria) (Mira et al. 2001;

Nilsson et al. 2005). Our observation confirms what has been known

anecdotally from a number of environments: Planktonic marine

environments, for example, persistently select for small to very

small genome sizes (Giovannoni et al. 2005; Ting et al. 2009),

whereas soil microbes are often among those with the largest ge-

nomes. Our results are also in line with observations indicating

different average genome sizes in distinct environments (Raes et al.

2007; Angly et al. 2009). Regarding the functional similarity of

genomes, we likewise observe that it is much stronger than what

would be expected based on relatedness alone (Fig. 4G). Here

again, lineage-environment associations appear to be stable

enough to allow selection for similar functional repertoires even in

unrelated lineages.

However, apart from a phylogenetic signal, functional sim-

ilarities can also arise due to similarities in genome size (van

Nimwegen 2003; Konstantinidis and Tiedje 2004; Ranea et al.

2004). When correcting for the dependency between genome size

Figure 3. Example of a novel, previously undescribed module of coexisting lineages. (A) Five distinct
microbial lineages are shown; they belong to three different phyla and are defined at an OTU-clustering
distance of 90% sequence identity at the 16S rRNA gene. The five lineages have been exclusively ob-
served through environmentally sampled sequences and have not been named. (B) The table shows all
occurrence counts of these lineages among our sampling data; the P-values indicated have been cor-
rected for multiple testing, against the background of all lineages defined at 90%. Adjusted P-values
(FDR; p) and odds ratios (or) are indicated. (*) The samples by Li et al.(2008) have been collected
at distinct sites, covering a distance of more than 600 miles; collection was at different water depths
and sampling dates. Investigators involved in unpublished work are as follows: E Julies, V Bruechert,
and BM Fuchs; B Orcutt, SB Joye, S Kleindienst, K Knittel, A Ramette, A Rietz, V Samarkin, T Treude, and
A Boetius; A Postec, R Warthmann, C Vaconcelos, K Hanselmann, and J McKenzie; Z Zhang, H Xiao, and
X Tang.
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and functional content, we again find that co-occurring genomes

of identical size are much more similar in functional terms than

expected (Fig. 5). In Figure 5, we not only plotted genome size

and functional similarity, but also phylogenetic relatedness (by

means of a color code). This reveals the expected, combined trends:

Environmentally associated lineages that tend to be most similar in

functional terms also tend to be those that are both, phylogenetically

the most related and also the most similar in terms of genome

size. Outliers from these trends should reveal interesting excep-

tions, inviting speculations on distinct ecological scenarios. We

highlight a few of such extremes in Figure 5. The first example

represents an outlier case because the two lineages are very closely

Figure 4. Coexisting lineages display similarities in genomic features. Here, we exclusively focus on co-occurring lineages for which completely se-
quenced genomes could be mapped to both partners (this genome mapping is globally visualized in Supplemental Fig. S6). Properties of such co-
occurring genomes are compared, and contrasted against randomly paired genomes. (A) The distribution of 16S sequence divergence scores; shifted to
the left for co-occurring genome pairs (i.e. they tend to be related phylogenetically). In panels E, F, and G, we test for independence between phylogenetic
relatedness, and observations as shown in panels B, C, and D, respectively. Here, each dot denotes a pairwise genome comparison, and lines correspond to
running medians.
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related phylogenetically (both are Bacilli), yet they currently hold

the record in terms of functional divergence. Note that the various

species of Bacilli are very closely related phylogenetically and

cannot easily be distinguished based on 16S alone (Vilas-Boas et al.

2007; Kolsto et al. 2009) (our algorithm thus assigned the two

genomes arbitrarily among the two lineages, well within 98% se-

quence identity). Nevertheless, this reflects on the known, large

phenotypic and genomic diversification within the so-called Ba-

cillus cereus ‘‘group’’ (Vilas-Boas et al. 2007; Kolsto et al. 2009) (e.g.,

Bacillus anthracis is usually nonmotile and produces a capsule and

toxins, whereas B. cereus tends to be motile and to make no cap-

sule). Importantly, our data show that such a high level of phe-

notypic and genomic plasticity among co-occurring lineages is

exceptional, especially when they are so closely related phyloge-

netically. Perhaps the unusual life cycle of Bacilli (involving a re-

silient endospore stage) is conducive to unusually large changes in

lifestyle and phenotypes, over short time periods. In contrast, the

second example describes two lineages that are very distant phy-

logenetically (one is an Archaeon and the other a Bacterium), and

yet they co-occur quite specifically. In our data, these two (Salini-

bacter and Haloquadratum) are outliers because, despite their dis-

tance, they have very similar genome sizes and very similar func-

tional pathway coverage, marking the current record at such a large

phylogenetic distance. Perhaps, both lineages have independently

entered the same niche (i.e., warm, fully oxygenated brines) (see

also Kunin et al. 2008b), and have thus converged toward coarsely

similar overall genomic features. The next example again presents

two fairly unrelated lineages (related only at the phylum level),

which are even more closely matched in terms of genome size and

functional genome composition. They occur together very spe-

cifically, on acidic human skin, dust, and in filtered air (seven ob-

servations by five distinct laboratories; P = 6 3 10�13; note that

dust and air samples are related to skin since they may contain

small skin-derived particles). Despite apparently occupying the

same niche, it is notable that only one of them (Finegoldia) has

a tendency for opportunistic pathogenesis (Goto et al. 2008). The

last example concerns two lineages that occur together in the open

ocean (Prochlorococcus and Alteromonas). They are unrelated phy-

logenetically, and they were chosen as outliers here because their

genomes are unusually distinct in size (Alteromonas is more than

twice as large as Prochlorococcus) (Rocap et al. 2003) (note that our

analysis has insufficient resolution to specify the exact ‘‘ecotype’’

for either lineage). Since both were sampled in the open water, it

is difficult to envisage any mechanism of their association, but

this particular pair has been noted before—Alteromonas has been

enriched as a co-contaminant in Prochlorococcus cultures, facili-

tating the growth of the latter (Morris et al. 2008) (perhaps by al-

leviating oxidative stress). In the ocean, the association is probably

rather unspecific, although it is conceivable that Alteromonas, as

an opportunistically growing heterotroph, may profit from bio-

mass accumulated by the primary producer Prochlorococcus. These

lifestyles are quite distinct and might explain the unusually large

differences in genome size.

Overall, however, we find that co-occurring genomes tend to

closely match each other’s genome sizes and broad functional

composition. These results seem to be compatible with a picture

of competition (Hibbing et al. 2010), rather than cooperation,

among most of the distinct microbial lineages found at any given

site: If the majority of lineages were to routinely cooperate by

specialization and division of tasks, this would presumably result

in genomic features that might become more distinct from each

other over time. Of course, the broad view that we take here could

easily make us miss cooperation among a subset of lineages, such

as syntrophy and other mutual benefits from the juxtaposition of

Figure 5. Functional similarities among co-occurring genomes. Each dot denotes a pair of genomes, which are either co-occurring in the environment
(red to orange dots) or randomly paired (blue dots). The plot shows differences in functional genome content (y-axis), and in genome size (x-axis). Lines
denote running medians. Note that, in general, the more divergent two genomes are in size, the more they are functionally distinct (blue line). In co-
occurring genomes, this trend is strongly shifted toward similar functions, at all levels of phylogenetic relatedness (color-coded from red to orange).
Examples of genome pairs that are discussed in the text are indicated.
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distinct molecular capabilities. But such interactions are perhaps

anyway more fleeting encounters rather than stable mutualisms.

Indeed, long-term obligatory mutualism usually requires stable

and specific physical contact between the organisms in question

(Boucher 1985), a requirement that makes it perhaps less feasible

for microbes that are generally dispersed easily (except, of course,

when vertically inherited together within a eukaryote) (Vautrin

and Vavre 2009).

In the future, statistical approaches like ours stand to benefit

greatly from the projected further increases in both microbial ge-

nome sequencing (Ahmed 2009; Chain et al. 2009; The NIH HMP

Working Group 2009) and 16S rRNA sampling (Tringe and

Hugenholtz 2008; Costello et al. 2009). Both types of data will

prove particularly valuable when augmented with standardized

information about the environments sampled, for example, by

following the recommendations of the MIENS standard (http://

gensc.org/gc_wiki/index.php/MIENS). Novel and specific micro-

bial assemblages can already be identified using the current data

(see Fig. 3; Supplemental material), and more such discoveries can

be expected with higher data coverage. Note that our approach

does not require prior information about environmental ontologies

or hierarchies of sampling sites; instead, groups of biologically re-

lated sampling sites are defined by the data themselves (Fig. 2;

Supplemental Fig. S11). In general, approaches that integrate se-

quence data from both strain sequencing and from environmental

marker gene sequencing hold great potential, since they connect

the molecular information contained in the (pan-)genome of

each lineage to the quantitative occurrence pattern of that lineage

around the globe.

Methods

Definition of taxonomic units and sampling events
All 298,591 available 16S rRNA sequence records were downloaded
from the Greengenes database (Desantis et al. 2006) on January
2009. At Greengenes, these sequences had already been cleaned
of potential chimera by the program Bellerophon (Huber et al.
2004). We filtered sequences according to their lengths ($900 nt
for Archaea and $1200 for Bacteria) and additionally flagged se-
quences predicted to be chimeric by the program ChimeraSlayer
(http://microbiomeutil.sourceforge.net/). We also removed from
the analysis all sequences lacking annotations in any of the fields
‘‘author,’’ ‘‘title,’’ or ‘‘isolation_source.’’ This was done in order to
be able to define a sampling event for each record. In our study,
a ‘‘sampling event’’ is defined as the unique concatenation of these
three annotation fields (author + title + isolation_source).

Archaeal and bacterial sequences were aligned separately,
using the secondary-structure aware aligner ‘‘Infernal’’ (Nawrocki
et al. 2009), together with the corresponding 16S rRNA covariance
models of the RDP database (Cole et al. 2009). Before defining
OTUs, we removed sequences for which the alignment had not
been successful (i.e., Infernal bit-score < 0). OTUs were built for
both Archaea and Bacteria by hierarchical clustering (complete
linkage), at various distances (from 0.2 to 0.01), using the cluster-
ing tool of the RDP pyrosequencing pipeline (Cole et al. 2009;
http://pyro.cme.msu.edu/). Because not all 16S sequences reported
in databases are necessarily genuine environmental sequences
(Tanner et al. 1998; Barton et al. 2006), we assembled a database of
potential laboratory contaminants, containing 38 distinct se-
quences (Tanner et al. 1998; Barton et al. 2006). Homology
searches revealed that between 47 and 309 of our OTUs contained
such sequences (matching at 97% sequence identity or better).

However, these OTUs are rarely involved in significant co-occur-
rences; for example, in Figure 2 only 17 of the OTUs shown contain
potential contaminants, and these are scattered over various
smaller clusters (they are flagged in Fig. 2 and in the detailed
Supplemental material).

In order to compute sequence divergence values for pairs of
OTUs, we first selected a single sequence to represent each OTU.
(We chose the sequence that had the minimum sum of squares of
distances to all other sequences within that cluster; note that this
does not favor short sequences since the distances we used are
length-normalized.) We then aligned these representative se-
quences pairwise (using the program ‘‘water’’ from the EMBOSS
package) (Rice et al. 2000) and determined their sequence identity.

Classification of taxonomic units

In order to assign taxonomic classifications to entire OTUs, we first
assessed the pre-annotated taxonomies of all individual 16S rRNA
sequences in Greengenes (sensu RDP taxonomy). Where these were
still annotated as ‘‘unclassified,’’ we re-ran the taxonomy classifi-
cation using the RDP classifier (Cole et al. 2009). Taxonomy pre-
dictions reported there were considered reliable, if supported by
a minimum bootstrap value of 80%. To assign taxonomy classifi-
cations to OTUs, we then used a simple majority vote: If more than
half of the sequences present within a cluster agreed upon a clas-
sification, the OTU was annotated as belonging to this taxon. In
case of conflicts, we assigned consensus classifications at in-
creasingly higher levels of taxonomy until the majority vote con-
dition was again met.

Co-occurrence analysis

In order to reduce the search space for co-occurrence testing
(which encompasses potentially more than 2 billion pairs, for ex-
ample, in the case of OTUs defined at 99% sequence identity), we
limited our analysis to OTUs occurring in at least three distinct
sampling sites. Conversely, we only considered sampling events
encompassing at least two distinct OTUs. For these ‘‘filtered’’ OTUs
and samplings (see also Table 1), we tested the co-occurrence sig-
nificance for all possible pairs using the Fisher’s exact test. For each
test, the four cells in the contingency table denoted the number
of samples containing both OTUs, one of the two OTUs only, or
none of the two, respectively. Subsequently, we adjusted all
P-values for multiple testing using the Benjamini and Hochberg
FDR controlling procedure (Benjamini and Hochberg 1995), as
implemented in the ‘‘multtest’’ library of the statistical software
package R (http://www.r-project.org). We also verified our FDR
empirically, by re-computing the associations using randomized
input data. For this, we randomly reassigned the various OTUs
to the various sampling events, under the constraint that each
OTU kept the overall number of samples it mapped to, and each
sample kept the overall number of OTUs. This maintained the size
distributions of both, samples and OTUs (results are provided in
Table 1). To compute the necessary large number of tests in a
reasonable time, we used a C-implementation of the test in the
Apophenia library for scientific computing (http://apophenia.
sourceforge.net), using the python SWIG interface as a wrapper.
For selected examples of co-occurring lineages discussed in the
text (Figs. 1, 3; Supplemental Fig. S1), we also computed the odds-
ratio (‘‘or,’’ a statistical measure of effect size), in order to assess
the strength of the reported associations. Note that our input data,
and thus also our predicted associations, likely suffer from under-
sampling and probably also from systematic biases in the sam-
pling. Both effects are difficult to quantify, but are likely present
due to variable choices of PCR primers (information about primers
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is often not available in the sequence records), and also due to
experimental biases in DNA extraction protocols. However, while
such biases can likely suppress the detection of certain lineages, it
is less likely that they generate false-positive associations at the
level of specificity that we observe here (see Supplemental Fig. S3,
and see also the randomizations described above). We also noted
that, overall, larger samples contribute more co-occurrence asso-
ciations than smaller samples, as expected. We quantified this in
two ways: by stratifying the input data by sample size, and by
randomly down-sampling the larger environmental samples (these
often focus on the mammalian gut). The results of both tests are
summarized in Supplemental Figure S7; reassuringly, we observe
that entirely removing gut-related samples through keyword
searches, while lowering the number of association clusters, still
supports the quantitative conclusion that we report in Figures 4
and 5 (see Supplemental Fig. S10).

Network inference

Based on the co-occurrence analysis results, we constructed net-
works of coexisting microbes for different levels of OTU defini-
tions. For this, the FDR cutoff for each individual edge in the
network was 0.001. In order to obtain a simplified view on the
results and to identify cohesive modules of coexisting microbial
lineages, we clustered our networks using the Markov cluster al-
gorithm (MCL algorithm; http://micans.org/mcl) (Enright et al.
2002). This clustering was performed using as the similarity metric
(i.e., edge weights) the normalized co-occurrence similarity be-
tween OTUs, defined here as the Jaccard similarity coefficient (i.e.,
cooc_count/[(otu1_count + otu2_count) � cooc_count]). We set
MCL’s ‘‘inflation’’ parameter to 2.0 when running the algorithm.
All network images were generated using custom Python scripting
and the Python module ‘‘NetworkX’’ (http://networkx.lanl.gov),
which provides an interface to the ‘‘Graphviz’’ graph visualization
software (http://www.graphviz.org).

Cluster annotation

To annotate clusters in the co-occurrence network with environ-
mental information, we relied on the controlled vocabulary main-
tained by the Environment Ontology project (EnvO, version 1.51;
http://environmentontology.org). In a first step, we assigned EnvO
keywords to each OTU in the network; to do so, we scanned all
words in the ‘‘isolation_source’’ field from each OTU and assigned
ontology terms to that OTU based on exact matches. For many of
its terms, EnvO also provides ‘‘synonyms’’; for cases in which
a term could not be matched directly, we also allowed matches
via these synonyms, but only for synonyms of the categories
‘‘EXACT’’ or ‘‘NARROW’’ (omitting the categories ‘‘RELATED’’ and
‘‘BROAD’’). The Fisher’s exact test then allowed us to assign sig-
nificantly over-represented keywords (FDR = 0.01; P-value adjusted
for multiple testing using the Benjamini and Hochberg procedure)
for each given cluster or subnetwork, compared to the background
frequency of these terms in the entire network.

Comparative genomics

First, we mapped available, completely sequenced genomes to our
OTUs, for various levels of OTU definitions. For this, we extracted
the 16S rRNA genes predicted for 881 complete genomes con-
tained in the RefSeq database (RefSeq 35, 05-13-2009), requiring
a minimum length of 700 bp. We then compared these sequences
against representative 16S sequences from each OTU, using BLAST
with the following parameters: ‘‘-a 2 -m 8 -p blastn -v 1000 -b 1000
-r 2 -q -3 -G 5 -E 2 -e 0.01.’’ For genomes that are annotated with

more than one predicted 16S rRNA gene, we retained the longest
copy. For the mapping, we then ranked all sequence matches by
bit-score (best score first) and, parsing through the list, assigned
each genome to the best-matching OTU (skipping those that were
already previously assigned to another genome). In addition, we
required that the alignment length for the BLAST hit was at least
800 bp and that the sequence identity of the match was 97% or
greater.

We then analyzed co-occurring OTUs by comparing their
mapped genomes, using several characteristics: genome size, GC
content, and relative coverage of KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathways (Kanehisa et al. 2008). To compute
genome size ratios, we used the total DNA length of the non-re-
dundant chromosomes and plasmids, expressed in nucleotides; to
compute GC content ratios, we used the predetermined values for
the complete genomes available at http://www.ncbi.nlm.nih.gov/
genomes/lproks.cgi. In order to compare genomes in terms of their
encoded functions, we assessed the relative coverage of pathways
as annotated at KEGG, using the KEGG API (http://www.genome.
jp/kegg/soap). We computed normalized vectors describing the
relative pathway coverage among all annotated genes of a given
genome and then compared these vectors by computing their
Euclidean distance. In order to exclude potential artifacts arising
from occasional annotation errors in KEGG, we repeated this
analysis with two additional, independent systems of functional
genome annotation, retrieving essentially the same results (Sup-
plemental Fig. S4).

To test for the statistical independence of our observations
made for a given distance measure, against another measure (usu-
ally against phylogenetic distance) (Fig. 4E–G), we first learned the
dependency between the two measures based on randomly se-
lected pairs of genomes (blue dots). This dependency was then
described using a running median (blue lines in Fig. 4). Next, we
assessed the data of interest (i.e., pairs of co-occurring genomes) by
computing for each data point its vertical distance to the (blue)
running median, divided by that median itself. This measure has
been termed ‘‘relative distance to median’’ (‘‘dm’’; see, for example,
Newman et al. 2006); it permits us to compare data at a given, fixed
setting of a second, potentially confounding variable. From this,
we generated a distribution of normalized distance values, which
we compared to the corresponding random background distribu-
tions, using the non-parametric Kolmogorov-Smirnov test.

Data availability

Raw input data, as well as all computed results of this study (in-
cluding sequence data, operational taxonomic units, co-occurrence
statistics, network clustering, and genome mapping) are available
online at http://mblnx-kallisto.uzh.ch:8888/microbial_coexistence/.
In addition, a zoomable and clickable version of the network in
Figure 2C is available as Supplemental Figure S12, which can be
downloaded from the Supplemental materials.
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