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Recent metagenomics studies have begun to sample the genomic diversity among disparate habitats and relate this var-
iation to features of the environment. Membrane proteins are an intuitive, but thus far overlooked, choice in this type of
analysis as they directly interact with the environment, receiving signals from the outside and transporting nutrients.
Using global ocean sampling (GOS) data, we found nearly ~900,000 membrane proteins in large-scale metagenomic
sequence, approximately a fifth of which are completely novel, suggesting a large space of hitherto unexplored protein
diversity. Using GPS coordinates for the GOS sites, we extracted additional environmental features via interpolation from
the World Ocean Database, the National Center for Ecological Analysis and Synthesis, and empirical models of dust
occurrence. This allowed us to study membrane protein variation in terms of natural features, such as phosphate and
nitrate concentrations, and also in terms of human impacts, such as pollution and climate change. We show that there is
widespread variation in membrane protein content across marine sites, which is correlated with changes in both
oceanographic variables and human factors. Furthermore, using these data, we developed an approach, protein families
and environment features network (PEN), to quantify and visualize the correlations. PEN identifies small groups of
covarying environmental features and membrane protein families, which we call ‘‘bimodules.’’ Using this approach, we
find that the affinity of phosphate transporters is related to the concentration of phosphate and that the occurrence of
iron transporters is connected to the amount of shipping, pollution, and iron-containing dust.

[Supplemental material is available online at http://www.genome.org.]

Integral membrane proteins play a fundamental role in sensing and

interacting with the environment, allowing the influx and efflux of

ions and molecules and relaying information about environmental

conditions to the cell. Thus, the abundance and types of membrane

protein families in a microbial community may give information

about functional capabilities and nutritional requirements. In ma-

rine microorganisms, especially those inhabiting the oligotrophic

(nutrient-poor) surface waters of the oceans, membrane protein

content might provide insight into types of nutrients and condi-

tions in the waters in which the organisms were isolated. For ex-

ample, the recent discovery of spectral tuning of the light-driven

proton pump proteorhodopsin reveals a relationship between a

single amino acid mutation and dominant light wavelengths in the

microbe’s surroundings (Rusch et al. 2007).

Several recent studies have begun to relate functional attri-

butes of microbial communities, such as central metabolism or broad

functional classes (e.g., protein synthesis), to specific habitats (Tringe

et al. 2005; Dinsdale et al. 2008) or environmental features (DeLong

et al. 2006; Kunin et al. 2008; Gianoulis et al. 2009). In addition, new

methods are allowing the integration of quantitative features of the

environment alongside microbial function (DeLong et al. 2006;

Gianoulis et al. 2009).

Given their important role in environmental sensing and

transport, membrane proteins may serve as an even more sensitive

barometer of environmental conditions than broad functional

classes or central metabolism. In addition, integration of many

different environmental conditions is needed to develop a com-

prehensive understanding of the complex interplay between en-

vironmental conditions and microbial communities. In particular,

new techniques are needed to investigate the relationship between

natural processes such as nutrient fluxes and the impact of humans

on the environment (anthropogenic effects), such as pollution.

Given the nutrient fluctuations and anthropogenic effects ob-

served in the world’s oceans, understanding the relationship be-

tween such factors and microbial adaptations is particularly timely.

Indeed, Halpern et al. (2008) estimated that 40% of the world’s

oceans are substantially affected by human activity by computing

indices for pollution, shipping, ultraviolet radiation, and climate

change, among others.

To gain a better understanding of the relationship between en-

vironmental conditions and membrane protein content and abun-

dance, we used 29 samples from the Global Ocean Sampling (GOS)

Expedition (Rusch et al. 2007). This survey provided metagenomic

sequence and environmental data (chlorophyll, water depth, sam-

ple depth, salinity, temperature), as well as GPS coordinates of the

sampled sites. We used the GPS coordinates to extract additional
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environmental features from several disparate sources, providing

both natural features, such as nutrient concentrations, and anthro-

pogenic features, such as pollution. Integration of these quantitative

measurements allowed us to investigate the relationship between

microbial communities, nutrient dynamics, and anthropogenic ef-

fects, and in particular the relative importance of the various classes

of membrane proteins in microbial adaptations.

Results

Integration of environmental features

The GPS coordinates provided for the sampled sites were essential

to cross-reference different sources of information, mainly pro-

vided as annotated maps of the ocean. We integrated these data

by interpolation of the map projections onto the GOS geographic

coordinates (latitude and longitude information). To select the

sites for further analysis, we used Google Earth to compare loca-

tions of GOS sites to locations of available data (some maps were

sparse). We were able to extract an additional 11 environmental

features for 29 sites: phosphate, nitrate, silicate, dissolved oxygen,

and apparent oxygen utilization information from the World

Ocean Database (Antonov et al. 2006; Garcia et al. 2006; Locarnini

et al. 2006); pollution, shipping routes, ultraviolet radiation, ocean

acidification, and climate change information from the National

Center for Ecological Analysis and Synthesis (NCEAS) (Halpern

et al. 2008); and dust levels, which serve as a proxy for oceanic

iron concentrations, from Jickells et al. (2005) (see Supplemental

material for additional information on environmental features).

We have placed the features data for each of the sites on an inter-

active Google Earth map at http://metagenomics.gersteinlab.org/

membrane/.

Membrane protein prediction/variation

Using PRODIV-TMHMM (Viklund and Elofsson 2004), we identified

;1.3 million proteins of the 6 million proteins in the GOS protein

data set (Yooseph et al. 2007) as having at least one membrane-

spanning region. We filtered this set to include only high confidence

peptides (see Supplemental material and Methods for more details

on protein filtering), which resulted in 873,718 predicted membrane

proteins. Due to the nature of the prediction, there is likely a bias

against membrane proteins with a small number of transmembrane

helices. Furthermore, as our selection method is quite stringent,

we are likely underestimating total membrane protein content;

however, the relative proportions between the sites should remain

consistent. Membrane protein content ranged from 12.2% (Gulf

of Maine) to 15.0% (Off Key West, FL and Roca Redonda) with an

average of 14.2% (Supplemental Table 1). For comparison, in the

known heterotrophic/photosynthetic microbial genomes, the pre-

dicted transmembrane helical protein content ranges from 21%

(Acinetobacter baumannii) to 33% (Chloroflexus aurantiacus), with a

median of 28%.

Toexamine functionaldifferencesacross thesites,wehomology-

mapped 237,870 of the predicted membrane proteins to known

annotation using clusters of orthologous groups (COG) (Tatusov

et al. 2000). We filtered this set to the 151 membrane families in-

volved in transport processes (transporters, channels, permeases) as

these families should be particularly sensitive to environmental

perturbations and, additionally, to strengthen the signal in our

further analysis and prevent overfitting the data (Supplemental

Table 4).

Standard methods

For the 29 sites, we computed the fraction of peptides belonging to

each of the 151 families and created a membrane protein families

matrix (the rows are the 29 sites, and the columns are the families)

and, similarly, an environmental features matrix (the rows are the

29 sites, and the columns are the 15 environmental features) (Fig.

1A). Using these matrices, there are numerous straightforward

correlations we can perform to investigate the relationship be-

tween and within the features and families across the sites (Fig. 1B).

For example, one can compute the pairwise correlation across sites

between different families, environmental features, or even be-

tween families and environmental features. In addition, one can

transpose the above and correlate the sites on the basis of either

environmental features or membrane protein families (resulting in

a site-site correlation or similarity matrix) (see Supplemental Fig.

5). For simplicity, we refer to these site-site correlations (SS) as ‘‘SS-

Env’’ or ‘‘SS-Fam,’’ for the environmental and membrane protein-

based site-site correlations, respectively.

In particular, when calculating SS-Env, we observed signifi-

cant variation between the sites as shown in Figure 2A, where site

pairs are color-coded according to their similarity. Additionally,

clustering the sites based on the similarity of the environmental

features (see Methods) revealed a distinct latitudinal influence in

the data, separating the sites into three groups (Fig. 2A,B): the

North Atlantic, the Mid-Atlantic, and the Pacific. Such a finding is

perhaps expected as the sites are not physically isolated from each

other, and they were sampled from the North Atlantic through the

Pacific over the course of 12 mo. Thus, adjacent samples were likely

subjected to similar seasonal (temporal) effects, such as phyto-

plankton blooms, nutrient-carrying currents, and temperature;

and similar spatial effects, such as nutrient gradients. In addition,

specific environmental features appeared to have distinct patterns

among the clusters. For example, phosphate concentrations were

generally lower in the mid-Atlantic than the other two regions,

while acidity was high, and pollution/shipping/climate changes

were all relatively low in the Pacific.

The SS-Fam matrix also showed variation across the sites

(Fig. 3A; color bar reference Fig. 2A). Thus, even across these quali-

tatively similar ocean habitats, we are able to see differences in the

abundance and types of membrane protein families in the genomes

present. Interestingly, upon visual comparison with the site-site

correlations of the environmental features matrix, we observe some

concordance between regions of high and low correlations (cf. Figs.

2A and 3A; sites are ordered similarly). This suggests there is a re-

lationship between sites such that sites with similar environmental

features have similar membrane protein content and vice versa.

Environmental versus phylogenetic variation

A factor that could explain the observed variation across the sites is

differences in species composition. The environmental differences

would affect the types of species preferentially inhabiting these

sites, and, in turn, this could explain the observed genomic vari-

ation. Thus, for comparison, we calculated the GOS SS-16S (20%

16S divergence groups) (Biers et al. 2009) to determine phyloge-

netic similarity of the sites (Fig. 3B). However, we were unable to

find a significant relationship between the phylogenetic-based and

environmental-based site-site similarity (for methods, see Supple-

mental Fig. 6). The average correlation between SS-16S and SS-Env

was 0.2 (Fig. 3D); whereas, the average correlation between SS-Env

and SS-Fam was 0.5 (Fig. 3D). This suggests that the observed

membrane protein variation is more a function of the measured
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Figure 1. (A) Environmental and membrane family matrix construction. (B) Pairwise correlations. Types of correlations that can be performed: (1)
between either environmental features (Env-Env) or membrane protein families (Fam-Fam); (2) between an environmental feature and a membrane
protein family (Env-Fam); or (3) between two sites (Site-Site) defined either through their membrane protein families (SS-FAM) or their environmental
features (SS-Env) (see Fig. 2 for larger resulting heatmap and labels). (C ) Membrane protein families and environmental features network (PEN) con-
struction. Quantification of relationships between environmental features and membrane protein families by construction of Env-Fam networks from
structural correlation coefficient plots.
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environmental features than of phylogenetic diversity. It is im-

portant to note, however, that we only had enough statistical

power to look at the 20% divergence level of the 16S profiles, and

we cannot rule out the possibility that a lower divergence level

could result in a greater concordance between environmental site

similarity and 16S profile similarity.

Variation in membrane protein families corresponds to environmentally
distinct regions

Above, we show that the variation in membrane proteins is reflected

in the variation in the environmental features; however, which

families and features are contributing to the association remains

unanswered. There are a host of multivariate statistical techniques

for understanding these types of complex (many-to-many) rela-

tionships between data sets. Thus, we began our analysis by using a

variety of standard and published techniques: (1) principal com-

ponent analysis (PCA); (2) discriminative partition matching (DPM)

(Gianoulis et al. 2009); and (3) regularized canonical correlation

analysis (CCA) (Gonzalez et al. 2008). Furthermore, we developed

a technique that we call ‘‘protein families and environmental fea-

tures network’’ (PEN) to address limita-

tions in the quantification of associations

and visualization of the results of CCA.

Principal components analysis
and discriminative partition matching

As demonstrated above, hierarchical clus-

tering of the sites based on their environ-

mental features revealed three distinct

geographical regions (Fig. 2A,B). A similar

pattern emerged after using a data reduc-

tion technique, PCA, of the sites and the

proportion of membrane proteins at each

site. In brief, each principal component is

a weighted linear combination of features.

These weights or scores can be used as new

axes allowing the projection of the sites

into a new lower dimensional space. We

observed that sites deemed more similar

in the environmental clustering also had

a greater tendency to be closer together

based on their membrane proteins. For

example, in Figure 4A, the first component

scores show that the occurrence of mem-

brane proteins in the North Atlantic envi-

ronmental cluster can be distinguished

from the Mid-Atlantic and Pacific envi-

ronmental clusters. As the clustering of the

environmental features is done separately

from finding variation in the membrane

protein families, we independently show

that the grouping of the sites based on

environmental features is partially reflec-

ted in the membrane protein content.

As the PCA showed the Mid-Atlantic

and Pacific to be similar, we grouped

these sites into a ‘‘Mid-Atlantic/Pacific’’

cluster and used DPM to determine which

specific families were discriminating be-

tween them and the North-Atlantic clus-

ter. Briefly, DPM assesses whether the

distribution of a specific protein family is significantly different

and ‘‘discriminates’’ between the two partitions. Thirty families

showed significant discrimination (q-value < 0.05) between the

two site sets, and interestingly most were enriched in the North

Atlantic (28/30) (Fig. 4B,C; Supplemental Table 5).

In the North Atlantic environmental cluster, there is enrich-

ment in several proteins involved in inorganic ion transport. One

such protein is a magnesium transporter, which is likely related to

the higher chlorophyll content (P-value < 0.01) and thus bacterial

abundance (Bird and Kalff 1984) in these regions. The North At-

lantic sites also have higher pollution rates (P-value < 0.01) and

possible nutrient availability due to coastal proximity; such fea-

tures are also indicative of regions with increased cell growth and

proliferation (Kirchman 2008). Magnesium is not only contained

in the center of the chlorin ring, it is also a central player in the

stabilization of DNA and RNA; thus one can presume that in

dividing cells larger quantities of the ion would be required.

Most interestingly, however, there is an increase in many families

involved in efflux/secretion/antimicrobial processes. The en-

richment in these proteins may reflect the microbes’ need to

expel antimicrobials, by-products of metabolism, or environmental

Figure 2. (A) Environmental features (Env) site correlations and clustering. Clustering of site-site
correlations, where each site is defined by a vector of 15 environmental features (Site-Site Env heatmap).
(B) Sites color-coded by environmental clustering; shows strong concordance with geographic location:
North-Atlantic (blue), Mid-Atlantic (red), and Pacific (orange).
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toxins (Neyfakh 1997). In addition, there are a set of proteins

related to protection from osmotic shock (glycine/betaine, K+,

mechanosensitive channel), which may be acting to buffer against

shifts in ocean solute concentrations (Poolman et al. 2002), again

alluding to the increased pollutants, and possibly nutrient fluxes

from land and rivers.

One interesting protein observed to increase in the North At-

lantic is the ATP/ADP translocase. This protein is found in mito-

chondria, as well as obligate intracellular parasites of Chlamydiae

and Rickettsiae, where they function to exchange host ATP for ADP,

thereby sequestering host nutrients (Winkler and Neuhaus 1999). It

is uncertain in what capacity they function. One intriguing possi-

bility is that they originate from marine parasites, although a recent

survey showed that several putative ATP/ADP translocases should

have been annotated as more general nucleotide/H+ transporters

(Tjaden et al. 1999); thus, simple misannotation of the class cannot

be ruled out.

Canonical correlation analysis

Although the previous analysis is useful in finding discriminating

families between environmentally distinct groups, it does not cap-

italize on the natural gradients in the environmental features we

were able to extract. Consequently, we performed regularized CCA,

which maximizes the correlation between linear combinations of

the two sets of variables, to reveal a finer-grained picture of the re-

lationship between environmental features and membrane protein

families (Wichern and Johnson 2003). As our analysis of site-site

correlations revealed concordance of the environmental features

and membrane protein families in assessing the similarity of the

sites, this analysis is justified and may be able to reveal more specific

correlated features.

Similar to PCA, CCA gives us several principal directions that

describe the greatest degree of covariation between features (Borga

1998). Interpretation of CCA is commonly performed by plotting

Figure 3. Site-site correlations, where each site is defined by 151 membrane protein families (Site-Site-Fam, [SS-FAM]) (A) and 16S genes at the 20%
divergence level (SS-16S) (B) (sites ordered as in Fig. 2A). (C ) Method description: For each row of SS-FAM, we sort the correlation coefficients and convert
them to rank-order. We then repeat this procedure for SS-16S and SS-Env (Fig. 2A); then, we compare the ranks of SS-FAM and SS-Env, as well as SS-16S
and SS-Env. If the rank vectors are similar to one another, this implies that differences in one set of features are reflected in differences in a second set of
features. For the FAM/Env, this is, indeed, the case; however, the low rank correlation between 16S/Env implies that 16S is not reflective of changes in
environment as seen by the boxplot in D.

Patel et al.
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the first two of these structural correlates, schematized in Figure

1C, left (Gonzalez et al. 2008). Those families and environmental

features that are close in this structural correlation space are re-

ferred to as covarying.

From the structural correlation plot (Fig. 5A), we observed all

15 environmental features and 107 out of 151 membrane protein

families varying across the 29 sites. These points are outside the 0.3

circle and can thus be considered covarying with respect to the

other set of features (Supplemental Tables 6, 7; Borga 1998; Wichern

and Johnson 2003; Guo et al. 2006) (44/151 families were invariant,

points inside the 0.3 circle). No single COG functional category was

over-represented in either the variant or invariant set (P-value >

0.05). However, notably, 34 out of the 41 ABC transporters in the

data set were shown to covary with the environmental features.

Between the environmental features, we observe many intu-

itive relationships. As an example, ocean-based pollution and ship-

ping lanes are highly correlated as expected due to the overlap in

measurement (same direction on plot) (Halpern et al. 2008). In

addition, shipping itself is a contributor to ocean pollution given

emissions from fuel burning and ballast water (which can bring

invasive species) (Satir 2008). Predictably,

dissolved oxygen shows a negative rela-

tionship with water temperature (as oxy-

gen more readily dissolves in colder wa-

ters, opposite direction on plot) and also,

as it is a by-product of primary production,

a positive relationship with chlorophyll.

In addition, the positive relationship be-

tween nitrate, phosphate, and silicate re-

flect similarities in the gradients of nutri-

ents across the sites.

PEN

Solely using the structural correlations

plot to analyze the results is problematical

for several reasons. First, it is difficult

to draw conclusions on the strength and

directionality of a relationship between

variables, especially negative relationships

as they are not close in space, although

such relationships can be identified by

looking at the tabular form of the data.

Second, the relative weight of the features’

relationships can be difficult to visualize

and compare. Third, there is no real means

of quantifying covariation between spe-

cific sets of features, nor do standard vi-

sualization methods allow for compari-

sons in more than three dimensions. To

better quantify and visualize the results of

CCA, we developed a new approach we

call ‘‘protein families and environmental

features network’’ (PEN).

In brief, PEN creates a network from

the CCA results, where each environmen-

tal feature and membrane protein is a node

and the edges are weighted by taking the

dot product between the structural corre-

lations in the first and second dimensions

(the procedure easily generalizes for the

case of more than two dimensions).

We then use a simplified version of connected components

analysis and prune all the edges with absolute value weights below

0.5 (see Methods). This simple metric provides an intuitive means

of visualizing environmental/membrane protein clusters as it gives

greater weight to features closer to the correlation circle (outer

circle in Fig. 1C), as well as to features that have a small angle be-

tween them relative to the x-axis. Such features represent strongly

covarying pairs or sets of features. We can use the topology of the

network to identify these sets of tightly (negatively, red edges;

positively, green edges) correlated environmental features and

membrane proteins families that we term ‘‘bimodules’’ (Fig. 1C).

In the pruned network derived from the structural correlates,

we observe two distinct bimodules (Fig. 5B), comprising families and

environmental features that have both negative and positive rela-

tionships (see Supplemental Table 9 for edge weights). The first bi-

module contains temperature, salinity, and chlorophyll with many

shared connections between membrane families, and the second

contains phosphate, nitrate, and silicate (which are themselves in-

versely related to acidity, shipping, and pollution). UV, dissolved

oxygen, apparent oxygen utilization, sample depth, and water

Figure 4. (A) Boxplot of PCA first component scores on the membrane protein family matrix. Sep-
arating sites by environmental clusters from Figure 2A shows that the North Atlantic scores are distin-
guishable from the Mid-Atlantic/Pacific. (B,C ) Discriminate partition matching. Membrane protein
families discriminating between site groups. Membrane protein families enriched in the North Atlantic
(B) and Mid-Atlantic/Pacific (C ).

Analysis of membrane proteins in metagenomics

Genome Research 965
www.genome.org



depth, although showing variation across the sites (outside the 0.3

circle in Fig. 5A), are not related to any specific membrane protein

family and are thus not included in the graph. It is unlikely that

these features are not affecting microbial diversity; it may be the

case that limiting our genomic data to membrane proteins is not

allowing us to highlight these influences.

From the network, we see both intuitive and nonintuitive

relationships between the features and membrane protein fami-

lies. For example, chlorophyll concentration and a magnesium

ABC transporter (COG0598) are positively related likely due to

the relationship between chlorophyll and bacterial abundance

(and thus proliferation) (Bird and Kalff 1984) and to the fact that

Figure 5. (A) CCA structural correlations. Plot of first and second dimension of CCA with labeled environmental features (blue) and membrane protein
families (gray). Within inner circle (0.3 circumference) features are invariant across the sites. (B) Membrane protein families and environmental features
network. PEN construction from CCA structural correlations in the first and second dimension using a distance cutoff > |0.05| between all nodes (envi-
ronmental features and membrane protein families). (Red edges) Negative associations; (green edges) positive associations. (C ) Phosphate subnetwork.
(D) Iron/polyamine subnetwork.

Patel et al.
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chlorophyll molecules contain a magnesium ion at the center

of the ring structure. This was inferred from the DPM analysis as

these transporters were enriched in the North Atlantic (area of high

chlorophyll), but here we are able to explicitly see the relationship

between the two variables.

A less intuitive relationship, but nonetheless interesting, is a

negative relationship between an ABC transporter involved in poly-

amine (putrescine/spermidine) transport (COG1176) and ocean-

based pollution/shipping (Fig. 5D). Polyamines are nitrogen-rich

compounds found in all living matter, and they play an important

role in the stabilization of DNA structure (Flink and Pettijohn 1975).

Although their exact role is unknown, during cell growth in response

to proliferative stimuli, both their uptake and biosynthesis are in-

creased (Igarashi and Kashiwagi 2000). Possible sources of poly-

amines in ocean water are from the degradation of organic matter,

amino acids, and proteins, where they are quickly taken up by bac-

teria (Lee and Jorgensen 1995). The negative relationship we observe

might reflect the increased amount of polyamines in the environ-

ment in polluted, nutrient-rich waters, where fewer transporters

would be needed for uptake. In these nutrient-rich areas, cell growth

and death rates may be higher, leading to increased concentrations of

polyamines.

Phosphate

The most pronounced negative relationship observed is that of

phosphate concentrations and ABC-type phosphate transport-

ers (COG0573 and COG0581) and phosphonate transporters

(COG3639). These ABC transporters comprise pstA, pstC, and phnE

of the phosphate (pho) regulon in Escherichia coli that have pre-

viously been shown to be involved in the active uptake of phos-

phate from the environment during phosphate limitation (Karp

et al. 2002). Interestingly, we also observed the converse with the

phosphate/sulfate permease pitB in E. coli (COG0306) (Fig. 5C). The

relationship between pstA/C and phosphate starvation conditions

has been well-characterized (Martiny et al. 2006, 2009); however,

the positive relationship between the lower-affinity PitB and

phosphate concentration suggests a more subtle influence of envi-

ronmental parameters on modulating membrane content. That is,

when phosphate concentration in the environment is low, more

genes encoding high-affinity phosphate transporters (pstA/pstC/

phnE) are present, and when phosphate concentration is high, more

genes encoding a low-affinity transporter (pitB) are present.

Furthermore, we observe a positive relationship between an

ABC transporter predicted to be involved in Lipophospholipase L1

biosynthesis (COG3127) and phosphate levels, suggesting increased

cellular activities related to phospholipids with increased phosphate

concentrations. Phosphate concentrations have been shown to

modulate lipid content in marine bacteria, where organisms in low

phosphate regions replace phospholipids with non-phosphorous-

containing lipids (Van Mooy et al. 2009).

Iron

We observe a striking network of relationships between protein

families involved in the active uptake of iron (COG0609: ABC Fe3+

siderophore transporter, COG1178: ABC Fe3+ transporter, and

COG4558: ABC hemin transporter) and areas of high ocean-based

pollution and shipping (Fig. 5D). Iron is a critical resource essential

to microorganisms for a diverse array of enzymatic reactions and

cellular processes such as respiration, photosynthesis, and nitro-

gen fixation. As such, its depletion has been shown to limit mi-

crobial growth even in the presence of other essential nutrients,

such as phosphates and nitrates. Regions with such a limitation

have been termed high nitrate/low chlorophyll (N/C) regions,

an example of which is the Equatorial Pacific (Pacific) (Kirchman

2008). We hypothesize that the increase in gene content related to

iron acquisition observed in low-pollution/shipping areas may

reflect a greater difficulty in attaining this nutrient. Indeed, side-

rophores in particular are known to be produced by bacteria under

iron-limited conditions and to actively sequester iron from the

environment (Guan et al. 2001).

The main sources of iron in the ocean are aeolian dust from

land (Fig. 6A), as well as terrestrial input near coastal regions, fluvial

input, and upwelling from the ocean floor, all of which are lacking

in these low-shipping/pollution sites. Interestingly, we observed

that the areas of high ocean-based pollution/shipping (North At-

lantic and Mid-Atlantic) parallel areas that may have higher iron

concentration. Presently, there are no means to directly measure

iron concentrations; however, oceanographers have shown that

models of iron-containing dust (Fig. 6B; Jickells et al. 2005) can

approximate iron concentrations. We found that iron values ap-

proximated from these dust models show significant negative

correlation between COG4558 (P-value < 0.01) and COG0609

(P-value < 0. 01), as well as the N/C ratio across the sites (Fig. 6C).

Such a trend is similar to our observation using shipping and pollu-

tion. In addition, searching the BRENDA database (Schomburg et al.

2002) for enzymes using iron as a cofactor revealed that an increase

in these two families is negatively correlated to the amounts of en-

zyme present that require iron. Thus, similar to phosphate, it may be

that in these low-pollution/shipping areas (open ocean, low aeolian

dust input), microorganisms increase the production of siderophore

and iron transporters to enable survival in a low iron environment.

Unknown fraction

Intriguingly, of the 1.2 million unique proteins with at least one

predicted membrane-spanning region, 15% had no homology

with any protein currently in GenBank (E-value > 1310�10),

suggesting a large and hitherto unexplored space of membrane

protein diversity. To further characterize this unknown fraction,

we searched for known binding motifs by running each predicted

membrane protein against PROSITE (Hulo et al. 2008), resulting in

the functional characterization of 29,384 (15%) of this unknown

fraction including previously unannotated ABC transporters, beta

lactamases, G protein receptors, and lipocalins among others (data

not shown).

Discussion
We presented the protein families and environmental features net-

work (PEN) as a means of describing, quantifying, and exploring the

relationships between and among sets of environmental features and

occurrence of membrane protein families. Such graph theoretical

approaches have been shown to be useful in the study of biological

systems, particularly for understanding the complexity and global

topology of relationships mediating protein and many other types of

interactions (Barabasi and Oltvai 2004). PEN provides a simple flex-

ible framework for exploring these complex relationships in the con-

text of metagenomics data sets. Although complete characterization

of an environment as complex and dynamic as the ocean is highly

unlikely, through careful examination of the resulting bimodules, we

demonstrate the usefulness of such studies even within these limi-

tations. We are able to identify pertinent conditions affecting protein
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diversity and recapitulate potential explanations for the observed

variation, illustrating the robustness of this type of analysis.

To date, most metagenomics studies integrating environment

features have focused on the comparison of metabolic pathways or

phylogenetic content among disparate habitats (Tringe et al. 2005;

DeLong et al. 2006; Dinsdale et al. 2008; Gianoulis et al. 2009). Here,

we focus on a specific set of membrane proteins sampled from sites

with a high degree of environmental similarity (by removing out-

lying samples from the GOS data set, such as estuaries and lakes),

and use quantitative environmental features to differentiate factors

that are affecting the genomic content. By selecting only membrane

proteins, we are able to see relationships between a microorganism’s

(or in this case, superorganism’s) external barrier, mediating the

transport of molecules in and out of the cell, and features of its en-

vironment. We show that, indeed, there is widespread variation in

most membrane protein families, and these can be explicitly cor-

related to both nutrient availability and anthropogenic influences.

In fact, the median structural correlation coefficient for the mem-

brane proteins is 0.3, whereas for metabolic pathways it is 0.17

(Gianoulis et al. 2009), suggesting that membrane protein covari-

ation is stronger with this set of environmental features (see Sup-

plemental material).

Our results comparing membrane protein content to envi-

ronmental features and species diversity add to the growing body

of evidence suggesting that genome plasticity may be largely

driven by environmental factors and less a result of species speci-

ficity. Given the large amount of horizontal gene transfer, observed

intraribotype diversity, and the growing appreciation of the impact

and prevalence of ocean viruses in surface waters (Williamson et al.

2008; Sharon et al. 2009), it might be expected that phylogenetic

composition could play less of an role in determining membrane

protein functions present in an organism. There are several instances

in the literature suggesting that genome content differences even

within species (‘‘ecotypes’’) reflect the environmental conditions in

which they were extracted (Thompson et al. 2005; Martiny et al.

2006; Van Mooy et al. 2009). As an example, two ecotypes of the

ocean-dominating Prochlorococcus, high-light (HL) and low-light

(LL), are adapted to inhabit different levels of the water column,

reflecting genomic adaptation to environmental characteristics

(West and Scanlan 1999). In addition, in the GOS analysis of whole

genomic content (Rusch et al. 2007), it was observed that there was

a clear distinction between sites, and this was still evident upon

limiting to or removing reads from dominant species, suggesting

more global niche differences.

Figure 6. (A) Image of dust storm off Sahara desert (NASA). (B) Model of dust concentrations (color-coded) across GOS sites, adapted from Jickells et al.
(2005). (C ) Pollution levels (*, impact value; see Halpern et al. 2008), dust concentrations, percent of ABC-type hemin transport system proteins ([number
of COG4558 proteins]/[number of total proteins at site]), and nitrate/chlorophyll ratio values across the 29 GOS sites. The black line shows separation of
sites into two sets, one with high pollution and dust and low N/C and iron transporters and vice versa.
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An advantage to our analysis is that it reveals not only the

environmentally influenced fraction of the membrane proteins,

but also provides a window into those membrane proteins that

appear insensitive to this set of environmental features. For ex-

ample, in our CCA analysis, we find 44 out of the 151 families to be

invariant across the sites, including the ubiquitous chloride

channel and type III secretion proteins involved in virulence, as

noted previously to be abundant in marine bacteria (Persson et al.

2009). Within these invariant proteins there is a suggestion of

functional importance, whether for essential cellular processes or

processes intrinsic to their ocean habitats.

Across the variant set, we observed a significant proportion of

ABC-type transporters (34/41) covarying with the environment,

illustrating a possible case of streamlining for optimization and

energy conservation. Responsible for the high-affinity transport of

a wide array of substrates, and in some cases having broad speci-

ficity, these proteins provide an efficient means of transport in

oligotrophic surface waters. As noted, these proteins had a strong

tendency to be inversely correlated with the prevalence of their

substrate, as in the case of phosphate, showing possible adaptation

to phosphate-rich/poor conditions. Recently, Martiny et al. (2009)

showed that the proteins surrounding the PhoB gene (the phos-

phate response regulator) in Prochlorococcus are enriched in GOS

samples found in waters with low phosphate content. They limited

sites selection to those sites with high Prochlorococcus hit counts

(2.5 hits per 1000 bp), thus focusing on nutrient adaptation in this

species (only 11 sites overlapped between studies). We observed

the same trend in our results; however, we did not address any

particular species, instead treating the environmental sites as a

‘‘superorganism.’’

Through the GPS coordinates provided by the GOS project,

we were able to tap into a wealth of available geospatial data from

those measuring natural fluxes to those assessing human impact. It

is important to note that due to the nature of collection, only five

out of the 15 environmental features used in this study were col-

lected at the same time as the metagenomics sampling was per-

formed. The remainder of the environmental features were derived

from historical information resulting in sometimes large differ-

ences in time and space resolution between the environmental

feature data and the metagenomics survey (Supplemental Fig. 1).

However, the characteristics of microbial communities are affected

not just by the features at the time of sample collection but the

history and flux of the features. We have only begun to skim the

surface of the question of how much environmental history these

communities carry, how much of a microbial footprint the envi-

ronment reflects, and how much of our own footprint is reflected

in both of them. The true test of these questions can only come

through detailed examination of both microbial and environ-

mental dynamics.

In addition, the analysis presented here is of the linear in-

teractions between the environment and membrane proteins.

Capturing the nonlinear interactions will require some modifica-

tions to existing techniques (e.g., kernel CCA), making it a partic-

ularly promising avenue for future research. We chose to first ex-

plore the linear interactions for the ease of their interpretability.

We hope this work serves as a motivation for collecting additional

oceanographic and metagenomics data sets and exploring higher-

order relationships.

We have used metagenomics data to quantitatively inves-

tigate the relationship between gene content and abundance in

differing habitats. The questions we have addressed here are cer-

tainly not new; however, metagenomics studies are beginning to

reveal these relationships on much larger scales. Thus, the strength

of metagenomics studies is not only in their ability to study un-

cultivable organisms, but also in their ability to integrate layers of

data in the study of whole community dynamics, and to untangle

the intricate web of dependencies within habitats.

Methods

Preprocessing GOS data
Sequences and metadata (salinity, chlorophyll, sample depth,
water depth, temperature) from the GOS Expedition (Rusch et al.
2007) were downloaded from CAMERA (Seshadri et al. 2007). Sites
were initially selected as in Gianoulis et al. (2009). All sites used
a filter size of 0.1–0.8 mm. Peptides were mapped to sites as in
Gianoulis et al. (2009). Briefly, each peptide was mapped to its
open reading frame (ORF) and back to its read (which mapped to
a site) through the scaffolds. If a peptide originated from two reads
from different sites combined in a scaffold, they were placed in
both sites. Cluster annotation in CAMERA was used to remove
clusters of peptides that were labeled as spurious and that con-
tained fewer than four sequences.

Environmental data integration

UV, shipping, pollution, climate change, and ocean acidification
impact values for each of the sites were extracted using ArcGIS
from maps from the National Center for Ecological Analysis
and Synthesis (NCEAS) (Halpern et al. 2008). Each value represents
the impact of the particular factor at the site based on the type of
ecosystems present. The resolution of the data is 1 km2, and thus
the value for the kilometer-square in which the site was contained
was used. The other factors analyzed were not used due to the
sparsity of the data at the GOS sites.

Phosphate, silicate, nitrate, dissolved oxygen, and apparent
oxygen utilization annual values of the objectively analyzed mean
for each site at surface levels were extracted from maps provided by
the World Ocean Atlas 2005 (Antonov et al. 2006; Garcia et al.
2006; Locarnini et al. 2006). These environmental features are
based on historical data regardless of year of observation, from
various sources, with a resolution of 1° latitude/longitude.

Site selection

Sites were filtered for three main reasons: insufficient sample cov-
erage, missing or nonrepresentative metadata, and metagenome
composition outliers (see Supplemental Table 3 for a site-by-site
breakdown; Supplemental Figs. 2–4). We selected the 29 sites based
on availability of the environmental data as well as to measure
subtle differences in genomic content across habitats. For example,
Lake Gatan, a freshwater lake, and Punta Cormorant, a hypersaline
lagoon, were removed as they were extreme environmental outliers
with very different membrane protein (Supplemental Fig. 2) and
genomic content (Rusch et al. 2007) with no representative meta-
data. While these features of the outlier sites in themselves are in-
teresting, we wanted continuous differences in terms of environ-
mental data and sequence data for further analysis.

Prediction of membrane proteins/mapping to COG

Each non-redundant sequence was run through PRODIV-TMHMM
(Eddy 1998) to predict membrane-spanning regions and sub-
sequently mapped to a clusters of orthologous group (COG) using
BLASTP (E-value threshold 1e-10) (Altschul et al. 1990). Only for
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0.2% of the sequences were the top two COG hits inconsistent; thus
the top hit for each sequence was used. If >80% of the sequences
in a COG were annotated as a membrane protein by PRODIV-
TMHMM, the COG was labeled as a membrane COG (high-confi-
dence membrane proteins). This threshold was chosen arbitrarily
given the number of partial protein sequences in GOS and the error
rate of PRODOV-TMHMM, and upon manual inspection of the
COG descriptions. Membrane proteins that were not transporters,
permeases, and channels (e.g., oxidative phosphorylation proteins)
were manually removed to focus on transport and efflux processes.
In addition, COGs that mapped to <1% of all sequences in the
resulting sequence data set were removed. (Peptides mapping to
viral sequences, 0.01% [Williamson et al. 2008], were included due
to the insignificant number and prevalence of horizontal gene
transfer.)

16S gene data

16S data were taken from Biers et al. (2009) at the 20% divergence
level. Each site had an 18-element vector of counts for each
‘‘phylum’’ (as referred to in Biers et al. 2009).

Pairwise correlations/clustering

Matrices (rows are sites; columns are either percentage of membrane
protein families, 16S diversity, or environmental features) were
standardized prior to performing pairwise correlations (Pearson) of
the sites (rows) and hierarchical clustering.

PEN

The membrane protein families and environmental features net-
work was constructed using the structural correlations from regu-
larized CCA. The dot product of the structural correlations in the
first and second dimension between and within the membrane
protein families and environmental features was calculated. The
distance (dot product) threshold was set to >|0.5|, and between
every satisfying pair (nodes) an edge was placed.
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