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Abstract
Sepsis is defined as the systemic inflammatory response of the human host that is triggered by an
invading pathogen. Despite tremendous advances in both our knowledge of and treatment strategies
for this syndrome, sepsis remains among the major causes of morbidity and mortality in children
worldwide. Thus, we hypothesize that an improved mechanistic understanding obtained via basic
and translational science will continue to identify novel therapeutic targets and approaches. As a
result, given the central importance of the alterations in gene expression in regulating the human
host’s physiologic response to a pathogen, we review those complex factors: genetics, transcriptional
expression and epigenetics, which regulate unique gene expression patterns in pediatric sepsis and
septic shock. We anticipate that emerging data from genetic, genomic and other translation studies
in pediatric sepsis will advance our biologic understanding of this response and undoubtedly identify
targets for newer therapies.

Platforms for studying gene expression response to sepsis
Sepsis reflects an extraordinarily complex response of the host to an invading pathogen.
Historically, pre-clinical and clinical studies in sepsis have generally examined only one to a
few genes and also typically focused analyses only on increased expression levels in affected
hosts as compared to healthy cohorts. The development of high throughput sequencing
capability has afforded the ability to determine genetic influences on disease phenotypes.
Further, evolution of microarray technology provided an unprecedented opportunity to
examine thousands of gene products simultaneously by measuring genome-wide mRNA
expression—both increased and equally important, decreased levels--in clinical samples from
affected individuals to be compared to expression levels in unaffected individuals. As a result,
investigators have leveraged this approach to more comprehensively understand the
pathobiology of pediatric septic shock as a means of both discovery and novel hypothesis
generation. The overall approach to conducting array based studies is outlined in Figure 1 using
RNA-based arrays as an example. While the technical details of this approach are beyond the
scope of this article, in general, microarray technology utilizes a solid support (often glass or
silicone) “chip” upon which large numbers (up to thousands) of nucleic acid sequences are
immobilized at known locations 1. These sequences can represent any number of targets of
inquiry, including specific gene sequences, so-called expressed sequence tags which represent
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genes of unknown function, or sequences representing gene polymorphisms (reviewed below).
Robotic technology can apply the sequences to the solid support by a process termed “spotting,”
or an array of shorter, oligonucleotide probes (usually 20 to 80 nucleotide base pairs long) can
be synthesized directly on the solid support to create a “chip” containing a high density array
of sequences that can be used for large-scale analyses of the targeted genome 2. Together these
technologies are affording pediatric investigators the opportunity to examine genetic influences
on outcomes from sepsis, as well as gene expression profiles that may provide novel
mechanistic insight into functional pathways involved in the pathobiology of sepsis.

Genetic Factors Influencing the Host Response
Susceptibility to sepsis and the clinical course of patients with sepsis are both highly
heterogeneous, raising the strong possibility that the host response to infection is, at least in
part, influenced by heritable factors (i.e. genetics) 3. A landmark study by Sorensen et al,
published more than 20 years ago, provides strong evidence linking genetics and susceptibility
to infection 4. A longitudinal cohort of more than 900 adopted children born between 1924 and
1926 and both their biologic and adoptive parents were followed through 1982. If a biologic
parent died of infection before the age of 50 years, the relative risk of death from infectious
causes in the child was 5.8 (95% C.I. 2.5 to 13.7), which was higher than for all other causes
studied. In contrast, the death of an adoptive parent from infectious causes did not confer a
greater relative risk of death in the adopted child leading these investigators to hypothesize
that there exists a strong link between genetics and susceptibility to infection.

As a result, recent investigations have attempted to identify a link between genetics and
predisposition to sepsis by largely focusing on genome-wide association studies (GWAS) and
gene polymorphisms. A gene polymorphism is defined as the regular occurrence (>1%), in a
population, of two or more alleles at a particular chromosome location. The most frequent type
of polymorphism is called a single nucleotide polymorphism (SNP): a substitution, deletion,
or insertion of a single nucleotide that occurs in approximately 1 per every 1,000 base pairs of
human DNA. SNPs can result in an absolute deficiency in protein, an altered protein, a change
in the level of normal protein expression, or no discernible change in protein function or
expression. As these studies have proceeded, a number of SNPs in several genes responsible
for regulating the inflammatory, coagulation, and other key immune responses to sepsis have
been identified to be associated with variable outcomes in the setting of infections (Reviewed:
5-9). Here, we highlight some key examples of this genetic regulation of the host responses in
sepsis.

The signaling mechanisms involved in pathogen recognition, the immune response, and
inflammation have been reviewed extensively 10-15 and SNPs have been identified in many of
the genes involved in these signaling mechanisms. For example, mutations in TLR-4, a key
pathogen recognition receptor, have been shown to increase susceptibility to infections
secondary to gram-negative organisms 16. While several SNPs in the TLR-4 receptor gene
have been described, few have been found to be associated with an increased risk of septic
shock or septic shock-related mortality in children. For example, an adenine for guanine
substitution 896 base pairs downstream of the transcription start site for TLR-4 (+896) results
in replacement of aspartic acid with glycine at amino acid 299 (Asp299Gly). The Asp299Gly
polymorphism has been associated with reduced expression and function of the TLR-4 receptor
in vitro 16, 17. Furthermore, adults who carry the Asp299Gly polymorphism appear to be at
increased risk for septic shock and poor outcome in several cohort studies 9, 18, 19. While
children who carry the Asp299Gly polymorphism appear to be at increased risk of urinary tract
infection, this SNP does not appear to influence either the susceptibility or severity of
meningococcal septic shock in children 20, 21. These results were further corroborated in a
cohort study involving over 500 Gambian children 22.
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SNPs related to other members of this LPS-receptor complex (e.g. CD14, MD-2, and MyD88)
have been studied in adult populations, but no such studies have yet to be performed in children
19, 23-26. SNPs in other classes of Toll-like receptors have also been studied. For example, gene
polymorphisms of TLR-2, the primary pattern recognition receptor for gram-positive bacteria,
have been associated with increased risk of infection in both children and adults 27-29.

Several SNPs affecting cytokine expression have been described, though gene association
studies in critically ill adults with septic shock have been conflicting 7, 8, 30. For example, two
allelic variants of the TNF-α gene have been described: the wild-type allele TNF1 (guanine at
−308A), and TNF2 (adenosine at −308A). The TNF2 allele has been associated with higher
expression of TNF-α and increased susceptibility to septic shock and mortality in at least one
study involving critically ill adults 31. Nadel and colleagues found an increased risk of death
in critically ill children with meningococcal septic shock who carried this TNF2 allelic variant
32. Several additional SNPs in TNF-β, IL-1, IL-6, IL-8, and IL-10 have also been shown to
influence susceptibility and severity of septic shock in children 33-39. Thus, there are
genetically-based influences on the expression of many cytokines established to play key roles
in the response to sepsis which may profoundly influence clinical outcomes in this setting.

Dysregulation of the coagulation cascade also plays an important role in the pathophysiology
of septic shock and several studies have examined polymorphisms of key genes involved in
coagulation. The 4G allele of a deletion/insertion (4G/5G) SNP in the promoter region of the
plasminogen-activator inhibitor type-1 (PAI-1) gene has been associated with higher plasma
concentrations of PAI-1. The 4G allele increases susceptibility to and severity of septic shock,
as well as increasing the risk of mortality in children with meningococcal septic shock 40-43.
In addition a SNP in the protein C promoter has been associated with susceptibility to
meningococcemia and illness severity in children 44.

SNPs in genes involved in phagocytosis and the complement cascade have also been studied
in the context of septic shock. SNPs that affect function have been described in virtually all
family members of the Fcγ receptor, and several of these SNPs have been associated with
susceptibility to meningococcal sepsis, severity of meningococcemia, and poor outcome from
meningococcal septic shock 45-51. Finally, an SNP of the bactericidal permeability increasing
protein (BPI) gene has also been associated with increased the mortality from septic shock in
children 52.

Together, these specific examples demonstrate how variations in an individual’s genetic
sequences can profoundly influence the expression of the encoded gene. This genetic influence
on expression may have causal effects on the outcomes of individuals infected by a given
pathogen. As more studies aim to prove such links between SNPs, gene expression and
susceptibility and/or outcome of pediatric septic shock, the studies need to be carefully
considered and evaluated. With respect to evaluating the validity of these studies, the ideal
genome-wide association study requires several important qualities that have been emphasized
in the genetics literature 53, 54. Important factors to evaluate include: matching by ethnic-
geographic origin and other potentially confounding variables, validation by replicate studies,
analysis limited to the primary hypothesis and avoidance of post-hoc analyses and multiple
comparisons, reporting of associations as odds ratios with confidence limits all complemented
by a commitment to publish both positive as well as sound, negative genetic association studies
in order to avoid publication bias. By following these and other established principles, teams
of investigators executing replicate studies should succeed in identifying important genetic
influences on gene expression that ultimately alters the outcome—favorably as well an
unfavorably—in the setting of sepsis.
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Genome-wide Expression Profiling in Children with Septic Shock
The first publication involving genome-wide expression patterns in pediatric septic shock
consisted of 42 children with septic shock that were compared to 15 normal controls 55. RNA
samples were derived from whole blood samples obtained within 24 hours of admission to the
pediatric intensive care unit with septic shock. As would be predicted, this comparison between
two biological extremes (i.e. normal vs. septic shock), demonstrated a large number of genes
(>2,000) that were differentially expressed / repressed in patients with septic shock, relative
to normal controls. Also as would be expected, the upregulated genes in the patients with septic
shock corresponded significantly with functional annotations related to immunity and
inflammation.

The most novel finding of this initial genome-wide expression profiling study surrounded the
genes that were significantly repressed in the patients with septic shock, relative to controls
(>1,000 genes). Surprisingly, a large number of these repressed genes corresponded to
functional annotations related to zinc biology. Thus, this initial approximation of the genomic
response of pediatric septic shock was characterized by repression of a large number of genes
that either directly participate in zinc homeostasis, or directly depend on zinc homeostasis for
normal functioning. Consistent with this observation, the patients with septic shock that did
not survive had significantly lower serum zinc levels compared to the patients who survived.
These data have generated the hypothesis that altered zinc homeostasis may play a role in the
pathobiology of septic shock, and is consistent with the known links between zinc and immune
function 56. Recently, Knoell and colleagues independently corroborated this hypothesis by
demonstrating that zinc depletion led to increased death in a murine model of sepsis and that
zinc supplementation partially reversed this phenotype 57.

The second microarray-based study in pediatric septic shock focused on longitudinal
expression profiles 58 from RNA samples on 30 children with septic shock obtained within 24
hours of admission to the PICU (“day 1”) and 48 hours later (“day 3”) compared to those from
15 normal controls. The upregulated genes in the patients with septic shock again corresponded
to multiple signaling pathways and gene networks associated with inflammation and immunity.
One of the most notable signaling pathways represented by the upregulated gene lists was the
canonical anti-inflammatory cytokine, IL-10 with a large number of genes being persistently
upregulated in children with septic shock on both days 1 and 3.

The downregulated gene expression patterns in this longitudinal study again demonstrated
large scale repression of genes corresponding to zinc-related biology. This pattern of repression
persisted, to a similar degree, from day 1 to day 3. Another notable gene repression pattern
involved T-cell receptor signaling and the antigen presentation pathway. Again, this pattern of
gene repression was evident on day 1, and persisted well into day 3. In summary, this study
demonstrated persistent repression of genes corresponding to the adaptive immune system.
This observation suggests that the pathobiology of pediatric septic shock may represent a
failure of the adaptive immune system and is well in line with recent experimental and clinical
data 59-67.

The translational approaches reviewed above continue to provide unique opportunities for
advancing the diagnostics, prognostics and therapies in pediatric and neonatal septic shock. To
that end, the third microarray-based study in pediatric septic shock focused on validation of
previous observations by way of formal class prediction modeling and by the application of
alternative filtering and statistical approaches 68. This study made use of the original data as
the “training data set” and a new cohort of patients with septic shock enrolled through on-going
accrual as the “test” or “validation” data set. Using two distinct class prediction algorithms,
the gene list derived from the training data set was able to identify the separate cohort of patients
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in the validation data set with 100% accuracy. In addition, the application of alternative gene
filtering and statistical approaches to the validation cohort of patients yielded similar
observations to that derived from the original data. Namely, the validation data cohort of
children with septic shock was also characterized by large scale repression of genes
corresponding to zinc-related biology and adaptive immunity. These data strengthen the
validity of previous observations regarding the genome-level response of pediatric septic
shock.

Genome-wide expression studies in adults with sepsis and septic shock have also demonstrated
wide spread and early repression of adaptive immunity-related genes, but the observations
regarding repression of zinc biology-related gene programs have not been reported in these
adult-centered studies 69-72. While it is tempting to conclude that repression of zinc biology-
related gene programs is a unique feature of pediatric septic shock, this assertion needs to be
directly tested by conducting direct comparisons of adult and pediatric expression data based
on similar microarray platforms, RNA sources, and bioinformatic approaches.

The most recent microarray-based studies in pediatric septic shock have begun to refine our
understanding of two distinct questions: 1) are the reported gene expression profiles discussed
above specific to patients with septic shock, or are they more generic manifestations of critical
illness?; and 2) can gene expression profiling be leveraged to identify subsets or sub-
classifications of children with septic shock?

The question of specificity was addressed by comparing the gene expression profiles between
children with the systemic inflammatory response syndrome (SIRS) versus sepsis versus septic
shock 73. These comparisons identified patterns of conserved gene expression across the
pediatric SIRS, sepsis, and septic shock spectrum, particularly with regard to upregulation of
genes corresponding to innate immunity. There were also several notable gene expression
patterns that were unique and persistent in the patients with septic shock, relative to the patients
with SIRS or sepsis. Specifically, patients with septic shock had the most prominent and
persistent upregulation of genes within the IL-10 signaling pathway. In addition, repression of
zinc biology- and adaptive immunity-related genes was most prominent and persistent in the
patients with septic shock. These data indicate that the previous observations surrounding zinc
biology and adaptive immunity are relatively specific to pediatric septic shock, rather than
being generic manifestations of critical illness.

The more challenging question of sub-classification and prognostication was addressed by
using microarray data from 98 children with septic shock 74. Through a discovery-oriented
filtering approach and unsupervised hierarchical gene clustering, 3 putative subclasses of
children with septic shock were identified based solely on their gene expression profiles. One
subgroup was characterized by significantly greater repression of genes corresponding to zinc
biology and adaptive immunity. Notably, patients in this subgroup were significantly younger,
more severely ill, and had a significantly higher mortality rate compared to the other 2
subgroups. These data suggested that clinically relevant, molecular sub-classification may be
possible through gene expression profiling.

Contribution of Epigenetics to the Regulation of the Host Response in Sepsis
As reviewed in the prior section, the successful application of a genomic approach in pediatric
sepsis has provided novel insight as to the gene expression patterns that characterize the
complex biological human response to a pathogen. In the process of interrogating the entire
genome through microarray and complex bioinformatic approaches, we have shown pediatric
septic shock is characterized by early repression of a large number of genes—notably those
related to T-cell receptor signaling and antigen presentation 55, 58, and significant upregulation
of other sets of genes—notably components of the IL-10 signaling pathway. As a result, it is
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now incumbent on investigators to further understand the molecular mechanisms that either
drive or repress the expression of these genes. Clearly, receptor activation, signal transduction
pathways, and transcriptional activators, all affected by genetic polymorphisms will influence
this expression. Importantly, more recent investigations—notably in developmental and cancer
biology--have elucidated an additional mechanism that is capable of regulating the activation
or inactivation of gene expression, termed epigenetics. Scientists have grappled with a specific
definition for “epigenetics” since it incorporates a number of mechanisms. Perhaps the most
accepted current operational definition of epigenetics is “a stably inherited phenotype resulting
from changes in a chromosome without alterations in the DNA sequence” that was proposed
by Berger and colleagues 75. At the most basic level, epigenetics refers to mechanisms by which
expression of a gene encoded by a specific DNA sequence can be altered by changes on the
chromatin induced by a variety of signals such as environmental exposures including
infections.

This “epigenetic regulation” of gene expression is dependent upon modifications in the manner
by which specific genes are packaged in chromatin and how the chromatin may subsequently
be remodeled by post-translational modifications of the amino acids that make up histone
proteins 76. This post-translational modification of the chromatin structure can give rise to
heritable transcription state known as an “epigenetic” alteration, which in some cases appears
capable of conferring long-term stabilization of a particular gene expression pattern 77. These
epigenetic regulatory mechanisms can be related to post-translational modifications of histones
with subsequent effects on transcriptional silencing/repression or activation 78. Though not
specifically covered in this review, another epigenetic mechanism influencing gene expression
is direct methlyation of DNA which can alter the binding of transcriptional activating factors.
Finally, many investigators include the expression of microRNA, small segments of RNA that
can bind to DNA to alter transcriptional activation of genes as an additional epigenetic
mechanism.

At the foundation of the maintenance of a particular gene expression “phenotype” that is
potentially maintained over a long period of time is our understanding that DNA is
incompletely stripped of its nucleosomes after replication. This mechanism allows post-
translational modification of histones to serve as replicative templates to initiate identical
modifications of new histones and results in the transfer of modified histones to daughter cells
during replication to transfer the new “histone code”. This process is shown in Figure 2, in
which nucleosomes are composed of DNA associated with 8 histones that can be targeted for
a variety of post-translational modifications (PTMs). Post-translational modifications of
histones include acetylation, methylation, and phosphorylation which are regulated by complex
enzymatic machinery. Examples of this epigenetic regulation relevant to gene expression in
sepsis include the finding that di- or trimethylation of lysine 27 (K27) of histone 3 (H3) keeps
the chromatin in a conformation such that the promoter for a specific gene is not available to
transcription factors and thus the gene is silenced (a.k.a. “gene-off”) 79. In contrast, methylation
of lysine 4 on histone 3 is known to “open up” the conformation of the chromatin and allow
transcription factors access to the promoter and initiation of gene expression (a.k.a. “gene-on”)
80. These epigenetic alterations are important as they can “stamp history” into the gene
expression repertoire of cells in a heritable manner.

As reviewed above, IL-10 is a canonical signaling molecule for adaptive immunity that
represses Th1 cytokine production, antigen presentation, and co-stimulatory molecules. Recent
data have demonstrated that IL-10 is epigenetically regulated in the context of polarized Th1
versus Th2 helper cells 81. Specifically, association of the IL-10 promoter with “gene-on”
histone modifications (H3K4me3 and AcH4) correlates with increased IL-10 production in
Th2 cells, whereas association of the IL-10 promoter with the “gene-off” histone modification
(histone deacetylase 1) correlates with decreased IL-10 production in Th1 cells.
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IL-12 is also a canonical signaling molecule for the adaptive immune system that induces Th1
cytokine production and differentiation. Kunkel et al., recently demonstrated that dendritic
cells of mice who survive an model of experimental sepsis possess a blunted adaptive immune
response and acquire a phenotype consisting of decreased IL-12 production and increased
IL-10 production 82. They further showed that the epigenetic signature on the promoters for
the p35 and p40 subunits of IL-12 are consistent with an increased “gene-off” signal and a
concomitant decreased “gene-on” signal 83, 84. Preliminary data as yet unpublished suggests
that similar epigenetic regulation of IL-12 repression and IL-10 expression occurs in the
circulating monocytes of patients with septic shock. Thus, it is very likely that substantial
changes in epigenetic signatures occur across a broad spectrum of genes. These resulting
signatures are likely to be pathogen-dependent, tissue specific and importantly, influenced by
age and have long term effects on subsequent gene expression patterns. Therefore, it will be
imperative that neonatal and pediatric clinician-scientists examine these changes in their cohort
of patients with sepsis to fully understand how this regulation of gene expression influences
both long and short-term clinical outcomes.

Utilizing Expression Data to Drive Stratification of Pediatric Septic Shock
While a certain gene expression pattern appears to predict a subclass of patients with worse
outcomes from septic shock, it is also clear that substantial heterogeneity in gene expression
occurs across a broad spectrum of clinical presentations fulfilling septic shock criteria. We
hypothesize that the failure of the vast majority of interventional clinical trials in septic shock
is not related to a fundamental flaw of the biological or physiological principle being tested,
but rather, lies in the inability to effectively address the substantial heterogeneity that
characterizes this syndrome. Septic shock is a heterogeneous syndrome with the potential to
negatively and directly affect all organ systems. This heterogeneity consistently challenges
investigators attempting to evaluate the efficacy of various experimental interventions. As
astutely stated by Marshall, a key challenge in the field is to reduce and manage this
heterogeneity by more effectively stratifying patients for the purposes of more rational and
effective clinical research and clinical management 85. The concept of pre-intervention
stratification in sepsis, and its positive impact on the efficacy of an experimental therapy, was
very recently corroborated by Remick et al using a murine model of polymicrobial sepsis 86.
In their study, mice subjected to cecal ligation and puncture were stratified to likelihood of
dying based on serum IL-6 levels six hours after CLP and those with the highest predicted
mortality were provided immune modulating therapy which had a significant impact on
survival 86.

These pre-clinical studies support the concept of trying to stratify children with septic shock
based upon early identification of septic shock sub-classes using genome-wide expression
patterns. As described above, sub-classes of children with septic shock have been identified
based exclusively on gene expression profiling conducted within 24 hours of admission and
these sub-classes have highly relevant differences in illness severity and mortality 74. A similar
strategy was recently demonstrated in adult patients suffering from trauma 87. As high
throughput technologies evolve and validation studies are rigorously performed, the ability to
conduct “real time” expression-based, sub-classification and stratification could very well
become a clinical reality.

A further potential strategy for stratifying children with septic shock (and perhaps more
technologically feasible in real-time at present) is to base such an approach on the ultimate
proteins expressed as a result of the complex genetic and transcriptional machinery reviewed
above. These proteins usually referred to as “biomarkers” can be readily measured in the blood
compartment, thus providing a clinically feasible strategy for early stratification of patients.
For example, interleukin-8 (IL-8) can be readily and rapidly measured in small volume blood
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samples. Recently, IL-8 was found to be a robust outcome biomarker in children with septic
shock 88. Specifically, an IL-8 level, measured within 24 hours of admission to the PICU, was
found to have a 95% negative predictive value for mortality in a derivation cohort of patients.
Thus, this particular IL-8 level was able to predict survival in pediatric septic shock, with
standard care, with 95% probability. The reliability of this assertion was supported by
prospective, formal validation in an independent cohort which demonstrated an identically
robust negative predictive value 88. A similar observation (98% negative predictive value for
mortality) was found by measuring chemokine ligand 4 (CCL4) serum levels upon admission
to the PICU with septic shock 89.

It has been proposed that these types of sepsis outcome biomarkers (i.e. biomarkers having
high negative predictive values for mortality) could be used to stratify patients eligible for
interventional septic shock trials 88, 89. Patients having a high likelihood of survival but
otherwise meeting entry criteria for a given interventional trial could be excluded from the trial
based on these biomarkers. Such a stratification strategy would serve to derive a study
population with a more optimal risk-to-benefit ratio, thus improving the ability to demonstrate
efficacy for a given test agent. This type of strategy would be particularly useful for a test agent
carrying more than minimal risk.

While single biomarker-based patient stratification is clinically appealing, it may not be
sufficiently robust to meet all clinical and research needs. Indeed, the aforementioned studies
involving IL-8 and CCL4 had clinically unacceptable specificities, sensitivities, and positive
predictive values, relative to the very high negative predictive values. In order to serve a wide
range of clinical and research needs, the ideal biomarker-based stratification tool would
simultaneously have high specificity, high sensitivity, high positive predictive value, and high
negative predictive value.

Given the biological complexity of pediatric septic shock, a stratification strategy based on a
panel of multiple biomarkers has more potential to meet the needs of an ideal biomarker-based
stratification tool. We have recently launched a multi-institutional study to derive and validate
a multi-biomarker-based stratification tool for pediatric septic shock. The foundation of this
study is a panel of 15 biomarkers (Table 1) derived from a genome-wide expression database
that identified differences in outcomes among nearly 100 children with septic shock
(unpublished data). The database focused on the gene expression patterns representing the first
24 hours of admission to the PICU, which is an ideal time-frame for clinically useful
stratification. An initial working list of candidate biomarkers was systematically and
objectively derived using two complementary statistical tools to determine genes differentially
regulated between survivors and non-survivors, and then class prediction modeling targeted at
identification of “survivor” and “non-survivor” classes. The final panel of 15 biomarkers was
refined from the initial working list based on biological plausibility in the context of sepsis,
and the ability to readily measure the biomarkers (proteins) in blood samples. The resulting
list will be used to derive the pediatric sepsis biomarker risk model (PERSEVERE: PEdiatRic
SEpsis biomarkEr Risk modEl) that is intended to predict outcome and illness severity for
patients with septic shock. This recently launched, multi-institutional study, PERSEVERE
provides the unprecedented opportunity to test the hypothesis that biomarker determination,
informed by prior gene expression studies, can provide a real-time decision and stratification
tool that will impact the care of children with septic shock.

Conclusion
Clinicians and investigators have enabled improved observational and interventional studies
by defining consensus definitions that help identify the pediatric cohort affected by sepsis.
Through these observations, it is clear that the neonate’s and child’s host response to an
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invading pathogen is an extraordinarily complex biologic process. This process will be
influenced by both genetic as well as epigenetic mechanisms that ultimately impact on the gene
expression patterns observed among affected hosts. It is hoped that understanding how these
patterns vary by outcome inform clinical-investigators identify complementary stratification
strategies (e.g. real-time biomarker determination) as well as novel pathways for therapeutic
targeting. Only through successful collaboration among multiple centers will mechanistic,
diagnostic and therapeutic studies be executed thereby affording our ability to substantially
impact the outcomes of children affected by this complex clinical entity.
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Figure 1.
Following exposure to an acute infectious insult, the pediatric patient mounts an immune
response to defend against microbial invasion. Pathogen recognition receptors on local and
peripheral leukocytes are activated by the presence of microbial products. Leukocyte activation
results in transcription of genomic DNA to messenger RNA that leads to protein production
(e.g. interleukins, acute phase reactants). Isolation of nucleic acids permits high throughput
sequencing of DNA and expression profiling of mRNA via array-based analyses. The presence
of altered DNA sequences (e.g. polymorphisms) and patterns of mRNA production can then
be correlated with a clinical outcome such as mortality to gain insight into genetic influences
on and involved pathways in this complex pathobiology.
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Figure 2.
Cartoon depiction of the relationship between DNA (chromatin) and interacting nucleosomes
containing histone proteins. Histones can undergo post-translational modifications (e.g.
methylation patterns) that alter the ability of transcriptional activation factors to access
promoter regions. Depending on the pattern, these “methylation signatures” can result in either
increased (e.g. me2H3K27) or repressed (e.g. me3H3K4) gene expression.
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Table 1

Proposed gene list of biomarkers for sepsis/septic shock derived from array-based determination of gene
expression patterns

Genbank # Official gene symbol Description / Gene Name

NM_002983 CCL3 chemokine (C-C motif) ligand 3, MIP1alpha

NM_005564 LCN2 lipocalin 2 (oncogene 24p3), NGAL

NM_002424 MMP8 matrix metallopeptidase 8 (neutrophil collagenase)

NM_020415 RETN resistin

AV726673 THBS1 thrombospondin 1

J03189 GZMB granzyme B (cytotoxic T-lymphocyte-associated serine esterase 1)

NM_005346 HSPA1B heat shock 70kDa protein 1B

NM_000607 ORM1 orosomucoid 1 /// orosomucoid 2

NM_002343 LTF lactotransferrin /// similar to lactotransferrin

NM_001972 ELA2 elastase 2, neutrophil

NM_000575 IL1A interleukin 1, alpha

AL133001 SULF2 sulfatase 2

NM_006682 FGL2 fibrinogen-like 2

NM_000584 IL8 interleukin 8

NM_002984 CCL4 chemokine (C-C motif) ligand 4, MIP1beta
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