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Abstract
Background—Chronic obstructive pulmonary disease (COPD) is an important cause of
mortality with marked geographic variations in Great Britain. Additional factors beyond cigarette
smoking are likely to influence these variations, but direct information on smoking by area is not
readily available. We compared methods of jointly modeling the spatial distribution of mortality
from COPD and lung cancer, using the latter as a proxy for smoking, to identify areas in which
risk factors other than smoking may be important.

Methods—We obtained district-level mortality and population data for men aged 45 years or
older in 1981–1999 in Great Britain. Three models were compared: Bayesian ecological
regression using observed (model 1) or spatially smoothed (model 2) lung cancer standardized
mortality ratio (SMR) as a smoking proxy, and bivariate regression (model 3) treating smoking as
a spatial latent variable common to both diseases.

Results—Model selection criteria favored models 2 and 3 over model 1. Between 9% (model 3)
and 25% (model 2) of spatial variation in COPD mortality was estimated to be unrelated to
smoking. After adjustment for lung cancer as a proxy for smoking, both models showed similar
geographic patterns of higher COPD mortality in conurbation and mining areas, historically
associated with heavy industry and higher air pollution levels.

Conclusions—Joint modeling of multiple diseases can be used to investigate geographic
variations in risk. These models reveal patterns that are adjusted for the effects of shared area-level
risk factors for which no direct data are available.

Chronic obstructive pulmonary disease (COPD) is the third-leading cause of death and
disability-adjusted life years in adults aged 60 years and older, and the 10th leading cause of
mortality worldwide in adults aged 15–59 years.1 Smoking is acknowledged to be a major
risk factor for both COPD and lung cancer.2 However, geographic and temporal variations
in smoking do not fully account for COPD mortality trends in the UK over the last
century,3–5 and urban–rural differences in bronchitis deaths were apparent even before the
start of the smoking epidemic.6

The importance of risk factors other than smoking are of increasing interest in COPD
research.7 In particular, environmental factors such as air pollution, which has been
implicated in COPD mortality trends,5 show strong spatial variations and are amenable to
control measures. Smoking is obviously a major confounder. However, there is limited
information on geographic variations in smoking, particularly on cumulative tobacco
exposure, which is likely to be the most important measure in the development of COPD.8
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Perhaps because of this, relatively few studies have examined possible reasons for spatial
variations in COPD.

Lung cancer mortality is strongly associated with cumulative smoking,9 and has been used
as an indirect indicator of community cumulative smoking exposure to estimate the global
burden of mortality associated with tobacco.10 The method was further refined by Ezzati
and Lopez.11

Our focus is the detection of geographic variations in COPD mortality in Great Britain, with
the aim of identifying areas in which risk factors other than smoking may play an important
role. Our hypothesis is that the spatial distribution of areas in which patterns of lung cancer
and COPD mortality are discordant reflects the distribution of risk factors other than
smoking that influence COPD development and mortality. We use Bayesian statistical
methods to model jointly the spatial distribution of mortality from COPD and lung cancer,
and compare 3 alternative model formulations. The first 2 are based on an ecologic
regression model using COPD mortality as the outcome and lung cancer mortality (either the
observed standardized mortality ratio [SMR] or a spatially smoothed estimate) as a covariate
representing a proxy for cumulative smoking. In the third model, COPD and lung cancer
mortality are treated as a bivariate outcome that depends on both shared and disease-specific
spatially correlated latent variables representing unobserved risk factors.

METHODS
Data

Numbers of deaths from COPD and allied conditions (ICD9 490–496) and lung cancer
(ICD9 162) between 1981 and 1999 for men 44 years or older were extracted from the
national postcoded mortality dataset held by the UK Small Area Health Statistics Unit
(SAHSU). Annual population estimates for men in the same age group and time period were
also obtained from the database.12 These were then aggregated according to the 459 county-
districts in Great Britain. Expected mortality counts for each disease and district were
calculated, standardized by 5-year age group using average rates for Great Britain over the
19-year study period.

Ecologic Regression Models
Model 1—Model 1 is a “centered” version of the small-area ecologic regression model
proposed by Besag et al13 which includes both spatial and unstructured random effects:

 (for areas j adjacent to area i).

y1i and e1i are the observed and expected COPD deaths in each area, respectively, and η1i is
an area-level random effect representing the log relative risk (RR) of COPD mortality in
area i compared with the national risk. To account for overdispersion, the η1i are assumed to

follow independently a normal distribution with variance  and mean equal to the linear
predictor of the ecologic regression. The logarithm of the observed lung cancer SMR in each
area, log(y2i/e2i), is included as a covariate to represent an indirect area-level measure of
cumulative smoking, with associated regression coefficient β. We also include a second
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spatially structured area-level random effect, ψ1i, representing the effects of unmeasured
spatially varying risk factors for COPD other than smoking. This is assigned an intrinsic
conditional autoregressive prior distribution, which smoothes the latent risk factors toward
the average value in neighboring areas, with variance inversely proportional to the number
of neighbors, ηi. Identifying the spatial pattern of ψ1i is the main focus of our analysis.

Model 2—Model 1 uses the observed lung cancer SMR as a proxy for cumulative smoking.
However, just as with COPD, there is likely to be overdispersion and spatial dependence in
the lung cancer data. To account for this, we follow Bernardinelli et al14 and extend the
previous ecologic regression model to allow for spatial smoothing and overdispersion of the
lung cancer SMRs:

 (for areas j adjacent to area i).

 (for areas j adjacent to area i).

The COPD model remains unchanged from model 1, with the important exception that the
spatially smoothed, rather than observed, lung cancer risks, φi, are now used in the
regression equation (with corresponding regression coefficient β*). This is similar to a
classic measurement error model in which lung cancer SMR is the observed covariate and φi
represents the true covariate, here interpreted as a measure of the underlying cumulative
smoking exposure in area i. The model relating observed lung cancer mortality to φi
parallels the model for COPD mortality except that no covariates are included in the
regression.

Bivariate Regression Model
Model 3—Knorr-Held and Best15 propose an alternative approach to the joint spatial
modeling of small-area risks of 2 related diseases. Rather than treating 1 disease as a proxy
for unmeasured risk factors affecting the other disease, their model treats the 2 diseases
symmetrically and assumes that the area-specific relative risks of each depend on a shared
latent component plus additional latent components specific to one or other disease. These
latent components act as surrogates for unmeasured risk factors that affect both or only one
of the diseases, respectively. Our model 3 is an adaptation of this model using conditional
autoregression priors for the latent components:
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COPD specific component:  (for areas j adjacent to area i).

Lung Cancer specific component:  (for areas j adjacent to area i)

Shared component:  (for areas j adjacent to area i).

Note that model 3 excluding the lung cancer specific component ψ2i is equivalent to model
2 with β* > 0,  and β* = δ2.16 In this case, the shared component, , is just a scaled
version of the true unknown area-level smoking proxy, and δ2 is equivalent to the regression
coefficient in the measurement error version of the ecologic regression model. The
advantage of model 3 over model 2 that it treats both diseases symmetrically, and the
addition a lung cancer–specific spatial residual allows for the possibility that not all of the
spatial variation in lung cancer mortality is shared with COPD. Thus, we can interpret the
shared component, , as a latent variable representing cumulative smoking (plus any other
shared spatial risk factors) in each area, and the 2 disease-specific components represent
unmeasured risk factors associated with only one of the diseases. As before, our main
interest is in the spatial pattern of the COPD-specific component, ψ1i.

Prior Distributions
Diffuse or weakly informative prior distributions were chosen for all variance parameters
and regression coefficients, and sensitivity of our inference to alternative choices of these
priors was assessed (Appendix).

Bayesian Analysis
Models were estimated using Markov chain Monte Carlo methods in WinBUGS.17
Convergence was checked by visually inspecting trace plots of sampled parameter values
against iterations for 2 chains per model. Quoted results were based on posterior sample
sizes sufficient to give Monte Carlo standard errors less than 5% of the posterior standard
deviation for parameters of interest. The eAppendix gives Win-BUGS code for models 2
and 3 (http://links.lww.com/A938).

Model fit was evaluated by comparing the posterior mean of the standardized deviance to a
χ2 distribution on 918 (total number of observations).18 Models were compared using the
deviance information criterion (DIC)18 which can be interpreted similarly to AIC (Akaike
information criteria)– that is, the model with the smallest AIC is preferred– but is
appropriate for use with Bayesian hierarchical models.
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RESULTS
Descriptive Analysis

A total of 361,194 COPD deaths and 483,637 lung cancer deaths were identified. Both
COPD and lung cancer showed a similar spread of SMRs across districts, with slightly more
variability for COPD, mainly due to some extreme SMRs based on small numbers (Table 1).
Lung cancer and COPD SMRs were highly correlated across districts (r = 0.76), reflecting
their similar geographic patterns, with higher SMRs in conurbation areas of central and
south-western Scotland, northeastern, northwestern and north-central England, west
Midlands, south Wales, London, and the Thames estuary (Fig. 1).

Bayesian Analysis
Results for all models were robust to different priors on the variance parameters, with
posterior mean estimates of interest for a given model being within 3 times Monte Carlo
sampling error under the different prior assumptions. For brevity, we only report results
using prior set 1.

Variance Components
A key difference between the models is the way in which the total between-district variation
in RR of death from COPD and lung cancer is partitioned between spatially varying, shared,
and disease-specific latent risk factors. To compare this, we calculated posterior
distributions of the empiric variances of the various latent variables in each model.

For each disease, the between-district variance of the overall log RRs was similar across all
3 models (Table 2, row 1), and comparable to the between-district variance in the log SMRs
(0.070 for COPD and 0.042 for lung cancer). Maps (not shown) of the posterior mean of the
overall RRs for each disease were virtually identical across models and were similar to the
maps of SMRs (Fig. 1). This indicates that the overall risk estimates for each district are
robust to the choice of model and that little overall smoothing is performed by the Bayesian
models. This is expected given the large mortality counts in most areas, which provide
strong information about the overall area-specific risks.

Our main interest, however, is in how the overall geographic variation in COPD and lung
cancer mortality is partitioned into shared and disease-specific components, and here the
models showed some differences. For all models, the between-area variances of the spatially
structured shared and specific latent components (Table 2, rows 3–4) were much larger than
the unstructured overdispersion variance (Table 2, row 2), suggesting strong spatial
dependence in mortality from both diseases, although there was more overdispersion in
COPD risk in model 1 than models 2 and 3 (Table 2, row 2).

About 67% and 75% of the spatial variation in COPD was captured by the shared term in
models 1 and 2, respectively (Table 2, row 5). The difference in these percentages is mainly
due to the smaller between-area variance of the shared term under model 1 (Table 2, row 3),
suggesting that not accounting for measurement error in the proxy smoking covariate masks
some of the shared pattern of variation in COPD and lung cancer mortality.

Unlike models 1 and 2, in model 3, discordant spatial patterns can be captured by the lung
cancer residual and the COPD residual. This resulted in a smaller between-area variance for
the latter (Table 2, row 4) and a slightly higher between-area variance for the shared term
(Table 2, row 3) compared with model 2, with about 91% of the spatial variation in COPD
now captured by latent spatial risk factors shared with lung cancer (although the credible
interval for this percentage is wider than for model 2, with which it overlaps; Table 2, row
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5). Slightly less (84%) of the spatial variation in lung cancer was also captured by these
shared risk factors under model 3.

Relative Risk of COPD Mortality Associated With the Smoking Proxy
In model 1, the lung cancer log SMR is used as a proxy for cumulative smoking in each
area. A difference of 1 between 2 areas corresponds to an exp (1) = 2.7-fold difference in
lung cancer SMR. The estimated relative risk of COPD mortality for 2 such areas was found
to be of similar magnitude (2.62; 95% credible interval [CI] = 2.44–2.80). Allowing for
measurement error in this proxy (model 2) led to the usual deattenuation of the regression
coefficient (RR = 3.33; 95% CI = 2.94–3.74). An even stronger association between COPD
mortality and the shared latent risk factor was found in model 3 (3.74; 3.05–4.41). This trend
in the relative risk estimates reflects the increase in percentage of spatial variation in COPD
mortality explained by the shared latent risk factors (smoking proxy) across models 1–3.

Model Fit
All 3 models provided an adequate fit based on the deviance (P > 0.05; Table 2, row 7).
Models 2 and 3 were more parsimonious, however, with virtually identical DIC values that
were substantially smaller than for model 1 (Table 2, row 8).

Geographic Pattern of COPD Risk
Geographic variations in COPD mortality not explained by the latent smoking covariate are
captured by the spatially smoothed residual relative risk, exp(ψ1i). The posterior means of
this term estimated using model 2 are shown in Figure 2A. To assess statistical significance
of these estimates, the posterior probability that the residual relative risk in each area
exceeds 1 is also mapped (Fig. 2B). Areas highlighted in dark (light) gray have at least 80%
probability of an excess (reduced) risk of COPD mortality compared with the national
average attributed to the presence (absence) of risk factors other than the shared component,
the smoking proxy) in that area. The 80% cut-off has been found to give reasonable
sensitivity and specificity in simulation studies.19

Figure 2C shows a map of the posterior mean of exp(βφi) from model 2, interpreted as the
relative risk of COPD mortality (relative to the national age-standardized average)
associated with the smoking proxy (lung cancer risk) in area i. Figure 2D shows the
posterior probability that these smoking proxy–related relative risks in each area exceed 1.

Maps of the corresponding quantities estimated using model 3 are shown in Figure 3. The
geographic patterns in models 2 and 3 are similar, but (comparing Fig. 2B with 3B) model 2
produced a larger number of areas for which there was greater than 80% probability of an
excess or reduced risk of COPD due to factors not shared with lung cancer.

DISCUSSION
These analyses present an extension of standard disease mapping techniques that allows a
more detailed investigation of spatial patterns of disease and their potential causes. Marked
spatial variations were seen in COPD mortality risks in the UK after adjustment for lung
cancer risks, which were used as a proxy for smoking because of limited spatial information
on cumulative smoking rates. A standard ecologic regression model used lung cancer SMRs
directly as a proxy for smoking, but additional benefit—in terms of both improved model fit
and interpretation—was demonstrated by modeling this covariate using 2 alternative latent
variable formulations. Both the latter models gave similar overall fit and geographic
patterns, and so the final choice of model must also be guided by other considerations.
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Model Selection
The fraction of spatial variance unrelated to the smoking proxy was higher with model 2
than with model 3 (25% vs. 9%), along with greater confidence that the relative risks for
COPD deaths related to factors other than smoking were above or below 1 in many areas.
The latter indicates that model 2 estimated the area-specific risks more precisely than model
3. However, model 2 makes the strong assumption that all of the spatial variation in the
second disease (proxy covariate) is shared with the disease under primary investigation. This
is probably reasonable here, because the literature would support an interpretation that risk
factors for lung cancer could be considered a subset of those for COPD.

Model 3 fits separate spatial residuals for both diseases and so estimates 3 spatial latent
variables per area. With only 2 observations (diseases) per area, a strong signal is needed
about all 3 components to fully identify the model. However, for our data, we found that
most of the risk was partitioned into the shared component, suggesting a relatively weak
residual signal. This may explain more uncertain risk estimates from this model, suggesting
model 2 is more appropriate here. Application of these models to other disease pairs may
lead to stronger residuals in both diseases, in which case model 3 may be preferable–for
example, in mapping COPD and cardiovascular disease, because the relative risks associated
with smoking are higher for COPD than cardiovascular disease.20 Model 3 also extends
more naturally to situations in which more than 2 diseases are hypothesized to share
common spatially varying risk factors or confounders.16

Methodologic Issues
The choice of comparison disease in this situation is crucial and needs to consider both
spatial and temporal factors and, when interpreting results, what risk factors may be shared.
Many, if not most, respiratory physicians would regard lung cancer rates as a suitable proxy
for community cumulative tobacco exposure because over 90% of lung cancer in developed
countries is estimated to be attributable to smoking.10 However, if there is spatial clustering
of other risk factors for lung cancer unrelated to COPD, such as occupational exposure to
asbestos concentrated in traditional ship building areas in the UK,21 then lung cancer
mortality may be a poor proxy for cumulative smoking in those areas. This would
particularly affect models 1 and 2, which do not allow for a lung cancer–specific spatial
residual. Further, if there are important shared causes of lung cancer and COPD other than
smoking, these will also be at least partially captured by the shared component, in which
case the COPD specific residual may underestimate the risk associated with nonsmoking
causes.

Another implicit assumption is that the exposure–response function affecting both diseases
is similar enough in terms of lag periods (or latency) and nature of exposure (cumulative,
intensity or duration) for the model to generate meaningful results. This is reasonable for
COPD and lung cancer—both diseases show an increase in risk with increased levels of
smoking; lung cancer rates have been seen to lag smoking rates by about 20 years22 or the
product of average tar content and adult tobacco consumption per capita by 25–30 years.23
Lag effects of smoking on COPD mortality are rarely explicitly stated but are suggested at
25 years.24 As long as there is reasonable similarity between the exposure–response
function affecting both diseases and disease counts are accumulated over a long time frame
(20 years in the present analysis) relative to any potential differences in lags, a meaningful
partitioning of risk into shared and nonshared amounts should be possible. However,
distortions to the model may occur if the exposure–response function varies—for example,
if the increased risks related to smoking waned over long periods of time in COPD whereas
that for lung cancer increased. Unfortunately, such detailed exposure–response information
is rarely available, especially for diseases taking many decades to develop. In situations in
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which differential lags were an issue, one could simply lag the data appropriately (assuming
the lag period was well established) and then apply the same methods as used here.
Alternatively, if lags were not known, a space-time version of our models could be used25
with inclusion of an explicit lag parameter.

ICD9 codes for “COPD and allied conditions” included those for asthma (asthma codes
contributed <5% of deaths). Asthma codes were included as it can be difficult to distinguish
between asthma and COPD in older age groups and studies of death certificates suggest
misclassification of COPD deaths to asthma and vice versa.26,27 Misclassification of deaths
recorded to COPD and allied conditions or lung cancer will introduce bias if it varies
substantially spatially. Variation over time is only important to this method if this results in
spatial variations that would not be averaged out over the time period under study. The
extent to which misclassification varies spatially in Great Britain is difficult to assess.
However, factors such as the central control of all medical education and specialist training
and sole handling of death certificate coding by the Office for National Statistics will tend to
minimize systematic variations. Random variations in certification practice should be
mitigated as each spatial unit (district) will typically contain several hospitals and several
hundred general practitioners.

This type of study is ecologic in nature and therefore prone to the ecologic fallacy, where
risk estimates seen at the group level may not reflect risk estimates at the individual level.28
However, the purpose of this analysis is not to obtain estimates of the risk to individuals of
dying of COPD due to smoking, but to identify geographic differences in COPD mortality
after attempting to adjust for cumulative smoking.

Interpretation
We consider that the proportion of geographic variation in COPD mortality shared with lung
cancer mortality is mainly smoking-related, but will also include smaller contributions from
other shared risk factors such as air pollution, diet, or occupational exposures.2 In situations
in which a shared risk factor is a stronger predictor of one disease than the other, we would
expect the shared risk component estimated from our models to reflect only partially the
spatial pattern of that underlying risk factor. The differential or excess variation in the
disease having the stronger association with the shared risk factor will be captured by the
specific component for that disease. Thus, if putative risk factors such as air pollution or diet
are stronger predictors of COPD mortality than of lung cancer mortality, we would expect
the COPD-specific risks estimated from our models to reflect at least partially spatial
variation associated with these factors.

Our results can thus be interpreted as providing descriptive estimates of geographic
variations in COPD mortality after adjusting for a proxy that primarily reflects cumulative
smoking. Higher adjusted COPD mortality risks were seen in the conurbation areas of
England (Greater London, Manchester, Liverpool, Leeds, Sheffield, and Birmingham) and
in mining areas in southern Wales (Figs. 2, 3). These areas are generally known to have high
levels of risk factors other than smoking that have been linked to COPD in previous studies,
including (historical) air pollution levels, occupational risk factors, and mining and heavy
industry.5 Higher COPD-specific mortality risks were not seen in central Scotland
(including Glasgow and Edinburgh), which might also be expected to have high rates of
these exposures. One suggested explanation is that this could be related to competing risks
due to higher cardiovascular mortality in Scotland,29 reducing the numbers of persons
surviving to die of COPD.30

In addition to providing a descriptive summary of geographic variations in COPD mortality,
the area-specific adjusted COPD risks estimated in this study could also be used to
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investigate further the relative importance of specific etiologic factors by examining the
relationship between these estimates and ecologic data on, for example, air pollution,
deprivation, fruit and vegetable consumption, and other modifiable risk factors of public
health interest. By using appropriate aggregated individual-level regression models that
account for the within-area distribution of such risk factors,31 such an approach may
provide insights about the relative importance of individual-level risks of COPD associated
with factors not shared with lung cancer. This forms the basis of research in progress.32 It is
likely that any associations thus identified would be underestimates because as explained
previously, the COPD-specific risk estimates may only partially capture the spatial
variations associated with factors such as air pollution and diet, if these are also risk factors
for lung cancer. Working out the size of the relative underestimation could be attempted
through an extensive simulation study, which might be appropriate in certain circumstances
— for example, if such studies were used to support expensive policy interventions.

Other Possible Applications of the Model
The model can be applied to any diseases with shared risk factors, for example, cancers with
related dietary risk factors33 or childhood diabetes and leukemia in relation to viral
infections in childhood.34 An infectious disease example might be to use rates of a
reportable sexually transmitted infection as a proxy for sexual behavior in studying the
etiology of another sexually transmitted infection. Alternatively, the model could be applied
to the same disease in 2 different time periods, to detect emerging disease clusters. The
shared component would capture stable patterns of variation in disease risk over time,
whereas the specific components would capture patterns present in one or other time period,
which might indicate a time-localized disease cluster or changes in risk factors such as a
new hazard. In health policy research the model could be used to identify areas with high
values of the shared component for different causes of avoidable mortality, with a view to
targeting suitable interventions in those areas.

CONCLUSIONS
Joint modeling of 2 diseases can be used to investigate geographic patterns of disease related
to shared or specific risk factors when direct information on those risk factors is not readily
available. Such information provides a richer perspective on spatial variations in disease risk
than a standard disease mapping analysis. The precise interpretation of the shared and
specific patterns must be guided by what is already known about the 2 diseases and their risk
factors, but can be used, for example, to help inform etiologic debate about specific causes
of disease, generate new hypotheses, or to aid policy formulation and evaluation or resource
allocation.

Acknowledgments
We thank Paul Aylin for discussion and interpretation of data quality and Kees de Hoogh for provision of UK
district polygons and the Small Area Health Statistics Unit for the data.

Supported by grants 075883 and 066901 from the Wellcome Trust (to A.H.).

APPENDIX: PRIOR DISTRIBUTIONS
Uniform distributions were assumed for α1 and α2. Normal distributions with large variance
(100,000)—which are locally uniform across the plausible range of values—were chosen for
β and β*. Following Knorr-Held and Best,15 the log of the scaling parameter δ in model 3
was assigned a normal prior with mean 0 and variance 0.17, which is a diffuse prior with
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high probability that δ2 (the relative risk associated with the shared latent covariate) is
between one-fifth and 5.

Three sets of priors for the variance parameters were chosen as follows:

Set 1
Conjugate inverse gamma priors with shape parameter 0.5 and scale parameter 0.0005 for

each of , , , , λ2 and λ*2. This prior was proposed by Kelsall and Wakefield35 as
being a suitable diffuse prior for the variance components in a Bayesian disease mapping
model, and implies that, a priori, each variance has a prior mode at 0.0005/(0.5 + 1) =
0.00033 and infinite expectation and variance.

Set 2
Following a recent suggestion by Gelman36 we use standard half-normal priors (standard
normal distributions that are truncated on the left at zero) for the square root of each
variance parameter. This prior has a mode at zero, expectation 0.79, and variance 0.36.

Set 3

Same as set 1 for the overdispersion parameters  and , and the variances of the disease-

specific spatial residuals  and , but inverse gamma priors with shape parameter 0.5 and
scale parameter 0.0005 × K on the variances of the latent covariate (λ2 in model 2 and λ*2

in model 3). This gives a prior mode for λ2 or λ*2 that is K times larger than the prior

modes of  and  and reflects our prior beliefs that the majority of the spatial variation in
COPD and lung cancer mortality will reflect shared risk factors (specifically smoking). We
consider values of K = 2, 4, and 10.
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FIGURE 1.
Maps of district-level COPD and lung cancer SMRs for Great Britain 1981–1999. (A) SMR
for COPD; and (B) SMR for lung cancer.
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FIGURE 2.
Maps of posterior mean relative risk estimates for the COPD-specific and latent covariates
in model 2 and associated probabilities of excess risk. (A) Residual relative risk of COPD
mortality not explained by the latent smoking proxy; (B) Probability that residual relative
risk of COPD exceeds 1; (C) Relative risk of COPD mortality associated with latent
smoking proxy; and (D) Probability that smoking-related relative risk of COPD mortality
exceeds 1 .
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FIGURE 3.
Maps of posterior mean relative risk estimates for the COPD-specific and latent covariates
in model 3 and associated probabilities of excess risk. (A) Residual relative risk of COPD
mortality not explained by the latent smoking proxy; (B) Probability that residual relative
risk of COPD exceeds 1; (C) Relative risk of COPD mortality associated with latent
smoking proxy; and (D) Probability that smoking-related relative risk of COPD mortality
exceeds 1.
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