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The transcription factor ATF4 regulates the expression of

genes involved in amino acid metabolism, redox homeo-

stasis and ER stress responses, and it is overexpressed in

human solid tumours, suggesting that it has an important

function in tumour progression. Here, we report that in-

hibition of ATF4 expression blocked proliferation and sur-

vival of transformed cells, despite an initial activation of

cytoprotective macroautophagy. Knockdown of ATF4 signif-

icantly reduced the levels of asparagine synthetase (ASNS)

and overexpression of ASNS or supplementation of aspar-

agine in trans, reversed the proliferation block and in-

creased survival in ATF4 knockdown cells. Both amino

acid and glucose deprivation, stresses found in solid tu-

mours, activated the upstream eukaryotic initiation factor

2a (eIF2a) kinase GCN2 to upregulate ATF4 target genes

involved in amino acid synthesis and transport. GCN2 acti-

vation/overexpression and increased phospho-eIF2a were

observed in human and mouse tumours compared with

normal tissues and abrogation of ATF4 or GCN2 expression

significantly inhibited tumour growth in vivo. We conclude

that the GCN2-eIF2a-ATF4 pathway is critical for maintain-

ing metabolic homeostasis in tumour cells, making it a

novel and attractive target for anti-tumour approaches.
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Introduction

Earlier studies in mouse embryonic fibroblasts (MEFs)

showed that the basic leucine zipper transcription factor

ATF4 is a critical regulator of genes involved in redox balance

and maintenance of amino acid metabolism. Consequently,

ATF4�/� MEFs require non-essential amino acids (NEAAs)

and antioxidants to survive and proliferate (Harding et al,

2003). ATF4 also appears to have multiple functions during

development: ATF4 knockout mice exhibit abnormal lens

formation, growth retardation, anemia and delayed bone

development (Tanaka et al, 1998; Masuoka and Townes,

2002; Yang et al, 2004).

Although ATF4 can be transcriptionally regulated (Siu

et al, 2002), it is the translational upregulation of ATF4 that

has received the most attention, because of the unusual mode

of translational regulation of its mRNA in response to stress

through phosphorylation of the eukaryotic initiation factor 2a
(eIF2a) (Harding et al, 2000; Lu et al, 2004; Vattem and Wek,

2004). The endoplasmic reticulum kinase PERK (activated by

misfolded/unfolded proteins in the ER) or the cytoplasmic

kinase GCN2 (activated by amino acid deprivation) phos-

phorylate eIF2a at Ser51, thereby downregulating global

translation. Paradoxically, a group of stress-responsive

mRNAs that include ATF4 are translated more efficiently

when eIF2a is phosphorylated. In the case of ATF4, this is

due to the presence of the two upstream open reading frames

located in the 50UTR of the mRNA. These two elements

repress ATF4 translation under unstressed conditions but

enable its translation under stressed conditions (eIF2a phos-

phorylation). This translational regulation model was first

characterized in yeast and later found to also exist in mam-

malian cells (Hinnebusch, 1984; Mueller and Hinnebusch,

1986; Harding et al, 2000; Vattem and Wek, 2004).

GCN2 is a high molecular weight protein kinase activated

by uncharged tRNA (Wek et al, 1990, 1995; Ramirez et al,

1992). Activated GCN2 phosphorylates eIF2a to translation-

ally upregulate ATF4, which in turn increases amino acid

biosynthetic and transport pathways (Harding et al, 2000,

2003). GCN2 knockout mice are viable and fertile and display

no gross phenotypic abnormalities unless fed diets lacking a

single amino acid (Zhang et al, 2002; Anthony et al, 2004).

Other than maintaining amino acid homeostasis, GCN2 also

regulates synaptic plasticity and memory (Costa-Mattioli

et al, 2005), feeding behaviour (Hao et al, 2005; Maurin

et al, 2005), as well as lipid metabolism (Guo and Cavener,

2007). GCN2 is also activated by UV radiation and mediates

NFkB signalling (Deng et al, 2002; Jiang and Wek, 2005).

In the tumour microenvironment, the abnormal develop-

ment of vasculature results in insufficient blood supply,

which is the major reason for the development of acute and

chronic hypoxia and has been associated with deprivation of

glucose and other nutrients. Earlier, we showed that PERK

activation and the resulting eIF2a phosphorylation increase

the ability of transformed cells to survive under hypoxia

in vitro and in vivo and promote tumour growth (Bi et al,

2005). In the same study, we reported that as a downstream
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target of PERK and phospho-eIF2a, ATF4 also contributes to

hypoxia resistance in MEFs. We and others reported that

ATF4 overexpression is elevated in primary tumour tissues

and co-localizes with hypoxic regions (Ameri et al, 2004; Bi

et al, 2005). However, the precise function of ATF4 in tumour

cell survival and proliferation has not been elucidated. In this

study, we report that ATF4 is necessary for tumour cells to

maintain homeostasis of amino acid metabolism and that

activation of GCN2-ATF4-asparagine synthetase (ASNS) path-

way promotes tumour cell survival under nutrient (amino

acid or glucose) deprivation. GCN2-eIF2a pathway is acti-

vated in various human and mouse tumour tissues.

Deficiency of ATF4 or GCN2 severely inhibits tumour growth

in vivo. Together, these results suggest that GCN2-ATF4-ASNS

pathway is a promising target for tumour therapy.

Results

ATF4 expression is required for survival and proliferation

of fibrosarcoma and colorectal adenocarcinoma cells in

the absence of non-essential amino acid

supplementation

To investigate the function of ATF4 in tumour cell prolifera-

tion and survival, plasmids expressing ATF4-specific shRNA

(pSM2-shATF4) or non-targeting shRNA (pLKO-shNT) were

transfected into HT1080 (human fibrosarcoma) or DLD1

(human colorectal adenocarcinoma) cells. Two established

HT1080 shATF4 clones (shATF4.cl3 and shATF4.cl4) and one

DLD1 shATF4 clone showed 60–70% reduction of ATF4

mRNA levels compared with corresponding shNT clones

(Supplementary Figure S1A). As the basal ATF4 protein levels

are low in unstressed cells, we treated cells with the ER

stress-inducing agent thapsigargin to upregulate ATF4.

Consistent with mRNA levels, both HT1080 and DLD1

shATF4 clones showed no ATF4 induction after treatment

with thapsigargin (Figure 1A).

It was reported earlier that ATF4�/� MEFs require the

presence of NEAAs and antioxidant such as b-mercaptoetha-

nol (b-ME) to survive (Harding et al, 2003) (Supplementary

Figure S2). Similar to SV40-immortalized ATF4�/� MEFs,

tumour cells expressing ATF4 shRNA showed significantly

reduced survival in the absence of NEAA (Figure 1B). A long-

term growth assay suggested that shATF4 clones have defects

in cell survival and proliferation rates (Supplementary Figure

S1B). In contrast, cell survival of ATF4 knockdown cells was

not affected by adding b-ME at concentrations from 25 mM to

0.2 mM (data not shown). Transiently knocking down ATF4

also reduced cell survival, indicating that this effect was

not due to clonal effects during selection (Supplementary

Figure S1C).

Reduced cell survival could result from decreased cell

proliferation and/or increased cell death. By analysing the

levels of fluorescent EdU incorporation in exponentially

growing cells, we found that HT1080.shATF4 cells showed a

35% reduction in cell proliferation compared with shNT cells

(Figure 1C). Similar findings were seen in DLD1 cells

(Supplementary Figure S3A). Adding NEAA to the medium

led to full recovery of cell proliferation in both knockdown

cell lines (Supplementary Figure S3A). Cell-cycle analysis

also showed that shATF4 cells had an increased G1 popula-

tion compared with shNT cells (Supplementary Figure S3B),

indicating that ATF4 knockdown caused G1/S arrest in

tumour cells. Addition of NEAA partially reversed the G1

arrest. These data suggest that ATF4 deficiency induces

amino acid starvation, which causes G1/S cell-cycle arrest

and reduced proliferation.

Knockdown of ATF4 in transformed cells induces

apoptosis

When the ATF4 knockdown cells were cultured in the ab-

sence of NEAA, morphological features of apoptosis such as

membrane blebbing and cell shrinkage were observed. These

apoptotic phenotypes were diminished by the addition of

NEAA (Figure 2A). shATF4 cells also had higher levels of

cleaved PARP, an apoptosis marker, which was similarly

reduced in the presence of NEAA (Figure 2B). To further

analyse the levels of apoptosis in shATF4 cells cultured

without NEAA, we measured caspase3/7 activities. shATF4

cells exhibited an over 13-fold increase in basal caspase3/7

activity compared with shNT cells; similarly, supplementa-

tion with NEAA significantly reduced the caspase activities

(Figure 2C).

To exclude the possibility that the defects of shATF4 cells

were due to off-target effects of the shRNA or selection-

induced mutations, we overexpressed full-length mouse

ATF4 that was not targeted by the shRNA against human

ATF4 using an adenoviral vector. Overexpression of mATF4

significantly increased cell survival and blocked the apoptotic

phenotype of shATF4 cells (Figures 2D and E). These findings

further support a pro-survival function of ATF4 in these

tumour cells.

Knockdown of ATF4 induces a pro-survival autophagic

response

Autophagy is a lysosomal-dependent intracellular degrada-

tion process that is activated by certain stresses, primarily by

nutrient starvation. As shATF4 cells rely on NEAA to survive,

we hypothesized that autophagy might be induced in the

HT1080.shATF4 cells as an initial pro-survival response in the

absence of NEAA. This hypothesis was supported by the fact

that in the absence of NEAA, shATF4 cells had a smaller size

compared with shNT cells and cytoplasmic vacuoles (a sign

of autophagosome formation) were observed (data not

shown). shATF4 cells had elevated levels of the autophagy

marker microtubule-associated protein light chain (LC) 3-II

compared with shNT cells (Figure 3A), which were reduced

to basal levels by adding NEAA, indicating that autophagy

was induced in shATF4 cell because of NEAA shortage.

Under electron microscopy, the HT1080.shNT cells exhi-

bited typical fibroblast morphology with intact ER and

mitochondria, whereas the shATF4 cells were smaller,

rounded and contained double-membrane autophagosomes,

further confirming extensive induction of autophagy in

shATF4 cells (Figure 3B, arrows pointing to autophago-

somes). Similar to LC3 processing, addition of NEAA re-

versed the autophagic phenotype. The induction of

autophagy was also confirmed by expressing GFP-LC3 in

HT1080 cells. In shNT cells, the GFP signal was distributed

evenly throughout the cytoplasm. However, in shATF4 cells,

the signal was concentrated in green dots or ring-shaped

structures, indicating the formation of autophagosomes

(Figure 3C). To test whether the autophagy induced in

shATF4 cells was a cytoprotective stress response, an siRNA

targeting Atg7 (an E1-like ubiquitin conjugating enzyme
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required for autophagosomes maturation) was used to inhibit

autophagy. When Atg7 levels were reduced and autophagy

was blocked, the shATF4 cells showed increased apoptosis

compared with shNT cells (Figures 3D and E). These results

indicate that the autophagy induced by loss of ATF4 in the

HT1080 cells promotes survival. The combination of losing

ATF4 and the inhibition of autophagy results in a cooperative

enhancement of cell death.

Addition of Asn in trans or expression of ASNS, rescues

the survival of shATF4 cells

The mixture of NEAAs used in the experiments described

above was comprised of seven amino acids: Ala, Asp, Asn,

Glu, Gly, Pro and Ser. Each amino acid was added to a final

concentration of 100 mM in DMEM. Regular DMEM contains

400 mM Gly and Ser but not the other five amino acids

(Supplementary Table S1). To determine which amino

acid(s) was/were responsible for mediating the pro-survival

effects of NEAA, individual amino acids were added into

DMEM at a 100 mM final concentration in cultured shATF4

cells. The results indicated that Asn, but not any other

individual amino acid, could rescue the survival of shATF4

cells (Figure 4A). An even more substantial pro-survival

effect of Asn was observed in a long-term clonogenic survival

assay (Figure 4B).

It has been reported that the ASNS gene is directly regu-

lated by ATF4 through binding to its promoter (Siu et al,

2002; Gjymishka et al, 2009). Indeed, we also found that

ASNS expression was reduced by 470% in shATF4 cells

compared with shNT cells (Figure 4C). Moreover, adding Asn

to HT1080.shATF4 cells rescued NEAA deprivation-induced

G1 arrest (Supplementary Figure S3B), a finding that is

consistent with reports that ASNS deficiency can induce a

G1 arrest (Greco et al, 1987; Gong and Basilico, 1990).

Furthermore, overexpression of ASNS in shATF4 cells par-

tially rescued cell survival (Figure 4D) and adding Asn
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repressed both apoptosis and autophagy in shATF4 cells

(Figure 6A). This result suggests that ASNS is an important

enzyme for maintaining intracellular asparagine levels, which

are crucial for tumour cell survival and cell-cycle progression.

The amino acid glutamine (Gln) serves not only as a

substrate for nucleotide and protein synthesis, a precursor

for the synthesis of Asn, but also as an important energy

source for tumour cells (Reitzer et al, 1979; DeBerardinis

et al, 2007). To produce Asn, ASNS transfers the amino group

from Gln to Asp (Figure 5A). As ASNS requires Gln to

synthesize Asn, we wanted to test whether shATF4 cells

were more sensitive to Gln deprivation than shNT cells. To

test this, shNT and shATF4 cells were cultured in DMEM

with/without 4 mM glutamine. MTT assays showed that

shATF4 cells showed about 50% reduction in survival in

the absence of Gln, whereas the shNT cells exhibited only a

25% reduction after 48 h incubation (Figure 5B).

Interestingly, adding Asn (100 mM final concentration) to

Gln-deprived cells could partially rescue cell survival

(Figure 5C), suggesting that producing Asn may also be an

important function of Gln, at least in this tumour cell line. In

summary, ATF4 deficiency severely inhibits tumour cell

survival in vitro, which is primarily due to Asn deprivation.

Activation of the GCN2-eIF2a pathway under amino acid

deprivation promotes cell survival, upregulates

p21 (cip1/waf1) and activates autophagy

We hypothesized that if shATF4 cells are deficient in the

biosynthesis of NEAAs, this should lead to the activation of

the upstream kinase GCN2, completing an autoregulatory

feedback loop. Indeed, we found that GCN2 was phosphory-

lated in HT1080.shATF4 cells and adding Asn or NEAA

repressed this phosphorylation (Figure 6A), suggesting that

knocking down ATF4 reduces ASNS expression, causing an

Asn deficiency, which activated GCN2. eIF2a, the substrate of

GCN2, was also phosphorylated in shATF4 cells in response

to NEAA and similar to GCN2, its phosphorylation was

repressed by addition of Asn or NEAA in trans. The CDK

inhibitors p21 and p27 have a critical function in G1/S cell-

cycle arrest in response to stress, and it had been reported

that they can be induced by amino acid deprivation (Leung-

Pineda et al, 2004). shATF4 cells constitutively expressed

high levels of p21, which were substantially reduced by

adding NEAA or Asn; however, p27 levels were unaffected

(Figure 6A). This is consistent to an earlier report that ATF4-

null primary mouse bone marrow stromal cells have in-

creased p21 but not p27 expression (Zhang et al, 2008).

The induction of p21 is likely responsible for the G1/S cell-

cycle arrest in shATF4 cells.

As GCN2 is the molecular sensor of amino acid deprivation

that induces translational upregulation of ATF4, we tested

whether GCN2 activation promotes tumour cell survival

when a single amino acid is removed from the culture

media. SV40 immortalized, Ras-transformed GCN2þ /þ and

GCN2�/� MEFs were cultured in DMEM with or without Gln.

Under Gln deprivation, GCN2þ /þ cells showed enhanced

eIF2a phosphorylation and upregulation of ATF4, ASNS and

p21, whereas the GCN2�/� cells failed to activate this path-

way and had increased levels of cleaved caspase3

(Figure 6B). These results showed that the induction of p21

under amino acid starvation depends on GCN2 activation.

As eIF2a is currently the sole known substrate of GCN2,

we wanted to further investigate whether the induction of

ATF4 and p21 was dependent on eIF2a phosphorylation. To

test this, eIF2a wild-type or eIF2a S51A mutant MEFs (a Ser-

Ala mutation blocks eIF2a phosphorylation) were incubated
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in DMEM with or without Gln. Similar to the GCN2�/� cells,

eIF2a S51A mutant cells were unable to induce ATF4, ASNS

or p21 in the absence of Gln, but had increased levels of

apoptosis (Figure 6C).

In full DMEM (i.e. þGln, þMet), GCN2�/� cells showed

25% reduction in cell survival compared with wild-type cells

after 48 h incubation, whereas Met or Gln deprivation further

reduced the cell survival of GCN2�/� cells to around 50% or

4%, respectively (Figure 6D). In summary, the activation of

GCN2-eIF2a-ATF4 pathway is necessary for tumour cell

survival under amino acids starvation.

It was reported earlier that GCN2 activation and eIF2a
phosphorylation induce autophagy in yeast (Talloczy et al,

2002). We also observed a correlation between GCN2 activa-

tion with LC3 cleavage in HT1080.shATF4 cells (Figure 6A),

suggesting that GCN2 could be the molecular switch that

senses amino acid shortage and induces autophagy in mam-

malian cells. To test this, wild-type, GCN2�/� and eIF2a S51A

mutant MEFs were incubated in Gln-free media. GCN2�/�

cells had significant lower LC3 processing compared with

wild-type cells in response to Gln starvation. eIF2a S51A

mutant cells could not induce LC3 processing at all

(Figure 6E). To confirm the function of GCN2 in autophagy

induction in human tumour cells, HT1080 cells stably trans-

fected with shNT or shGCN2 plasmid, were incubated in

Gln-free media. Autophagy was analysed by blotting for an
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autophagy marker p62/SQSTM1, a long-lived protein that is

rapidly degraded during autophagy progression (Klionsky

et al, 2008). p62 was degraded in shNT cells on Gln depriva-

tion but stabilized in shGCN2 cells (Figure 6F). In conclusion,

a functional GCN2-eIF2a pathway is required for amino acid

starvation-activated autophagy in transformed cells.

Activation of phospho-eIF2a-ATF4 pathway under

glucose deprivation depends on GCN2

Induction of ATF4-ASNS pathway by glucose deprivation has

been observed in tumour cell lines (Siu et al, 2002; Cui et al,

2007). The upstream event of ATF4 translational upregula-

tion, eIF2a phosphorylation, can also be induced by glucose

starvation (Gomez et al, 2004), and it was suggested that this

may be PERK dependent (Gomez et al, 2008). In yeast, which

does not have PERK, eIF2a phosphorylation is dependent on

GCN2 under glucose starvation (Yang et al, 2000). Given that

the carbon backbone of amino acids can enter glycolysis or

citric acid cycle to produce ATP, and that GCN2 is activated

by uncharged tRNAs, we hypothesized that tumour cells may

use amino acids as alternative energy source under glucose

deprivation. The reduced amino acid pool should then lead to

GCN2 activation, eIF2a phosphorylation and ATF4 induction

to increase amino acid synthesis/uptake.
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To test this, HT1080 cells were incubated in DMEM with or

without 25 mM glucose for 16 h. GCN2 phosphorylation was

detected after glucose deprivation, and was associated with

eIF2a phosphorylation (Figure 7A). Moreover, adding excess

glutamine to the media potently suppressed eIF2a phospho-

rylation under glucose deprivation (Figure 7B), strongly

suggesting that eIF2a phosphorylation induced by glucose

deprivation was due to reduced concentrations in one or

more amino acids. To test this more directly, we measured

intracellular amino acid levels using liquid chromatography-

coupled mass spectrometry (LC-MS). Analysis of the levels of

five amino acids (Asn, Ser, Gln, Leu and Ala) after normal-

ization to total protein revealed that 2 h after glucose depriva-

tion, the levels of Ser and Ala were significantly reduced by

37 and 50%, respectively (Figure 7C). The levels of the other

amino acids were not significantly affected at this time point.

After 4 h of glucose deprivation (when eIF2a phosphorylation

is increased), the levels of Ser and Ala returned to near

control levels, whereas the levels of Asn and Gln were

increased compared with control cells in glucose-replete

DMEM, reflecting activation of a recovery pathway (e.g.

induction of autophagy, increased amino acid uptake from

the media or both). This notion was further supported by the

finding that under glucose deprivation, HT1080 cells con-

sumed Gln at a much faster rate compared with that under

glucose-replete media (Supplementary Figure S4E).

To test whether the eIF2a phosphorylation in response to

glucose deprivation depends on GCN2 or PERK, wild-type,

GCN2�/� and PERK�/� MEFs were glucose deprived. Unlike

wild-type cells, both GCN2�/� and PERK�/� MEFs had sub-

stantially reduced eIF2a phosphorylation and ATF4 induction

on glucose deprivation (Figure 7D), suggesting that both GCN2

and PERK contribute to eIF2a phosphorylation and ATF4

upregulation on glucose deprivation. It is possible that both

kinases are activated under glucose starvation by different stress

signals. It was reported that both PERK and GCN2 contribute to

ER stress-induced cell-cycle arrest, suggesting that there could

be crosstalk between two kinases (Hamanaka et al, 2005).

To study the function of GCN2 for tumour cells under

nutrient deprivation, we generated GCN2 knockdown cells
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(HT1080.shGCN2). The reduced GCN2 expression was

confirmed by both real-time PCR and immunoblot

(Supplementary Figures S4A and B). Unlike shNT cells,

ASNS expression cannot be induced in shGCN2 cells by Gln

deprivation (Supplementary Figure S4C). The mRNA levels of

three downstream target genes of ATF4, ASNS, SLC1A4 and

SLC7A5 (two amino acid transporters) were significantly

increased by glucose deprivation in shNT cells, but not in

shGCN2 or shATF4 cells (Figure 7E; Supplementary Figure

S4D). As several ATF4 target genes are involved in amino

acid transportation and synthesis, it is likely that GCN2

senses the reduction of amino acid levels under glucose

deprivation and phosphorylates eIF2a to reduce global trans-

lation, but at the same time upregulates ATF4 to supply

amino acids. We hypothesized that if this was true, the

activation of the GCN2-ATF4 pathway should protect cells

under glucose deprivation. Indeed, knocking down GCN2 or

ATF4 sensitized tumour cells to low glucose (Figure 7F),

indicating that the integrity of the GCN2-ATF4 pathway is

required for cell survival under glucose deprivation.

GCN2-ATF4 pathway contributes to tumour growth

in vivo

The fact that ATF4 deficiency causes significant reduction in

cell survival in vitro suggests that ATF4 might have a function

in tumour growth. To test this, equal numbers of HT1080

shNTor shATF4 cells were injected in the flanks of nude mice

and tumour growth was monitored over a 3–4-week period.

shNT cells grew rapidly and formed large tumours. However,

the shATF4 cells formed fewer tumours that were signifi-

cantly smaller compared with those from shNT cells

(Figure 8A). Immunofluorescence analysis of cell prolifera-

tion in vivo using the Ki67 antigen as a marker, showed that,

consistent with the in vitro data, cells in shATF4 tumours had
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a significantly lower proliferation rate (Figure 8B). Also

consistent with the in vitro data, overexpression of ASNS in

shATF4 cells led to partial, but significant rescue of tumour

growth (Figure 8C). Similarly, the absence of GCN2 in Ras-

transformed MEFs or knockdown of GCN2 in HT1080 cells,

blocked tumour growth (Figures 8D and E). These findings

suggest that xenograft tumour growth requires a functioning

GCN2-ATF4 pathway.

To investigate whether the GCN2-eIF2a pathway is acti-

vated in primary tumours, clinical samples of human liver,

breast and lung tumours with corresponding normal tissue

controls were homogenized and lysates subjected to immu-

noblotting. Three out of four liver tumours and the samples

form breast and lung tumours exhibited substantial GCN2

overexpression and increased phospho-eIF2a levels com-

pared with normal tissues (Figure 9A). Similar results were

obtained from spontaneous mouse tumours. Analysis of

the components of this pathway from tumours and corres-

ponding normal breast tissue from mammary tumour-

prone MMTV-Neu mice was performed. All mouse breast

tumours exhibited significant GCN2 overexpression as well as

increased levels of eIF2a phosphorylation and ATF4 upregu-

lation compared with normal tissue (Figure 9B).

Despite extensive efforts, we could not detect phospho-

GCN2 in tissue homogenates by immunoblot, even after

GCN2 immunoprecipitation, probably because of loss of the

phospho-group during tissue homogenization or immuno-

precipitation. Therefore, we performed immunohistochemical
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staining for total and phospho-GCN2 levels using paraffin-

embedded human tumour tissue arrays. Colon and breast

carcinoma tissues exhibited strong staining of total and

phospho-GCN2. Less but substantial staining of total and

phospho-GCN2 were detected in lung carcinoma; in contrast,

normal tissues showed very little or no staining for total or

phospho-GCN2 (Figure 9C). Interestingly, phospho-GCN2

staining was not homogeneous across the tumour section,

suggesting that local microenvironmental factors might be

affecting its phosphorylation. Further analysis of phospho-

GCN2, phospho-eIF2a and corresponding total proteins in

serial sections of human samples of colorectal cancer meta-

stases to the liver, revealed substantial overlap in the signal for

GCN2 and eIF2a phosphorylation (Figure 9D; Supplementary

Figure S6). Interestingly, we also found substantially higher

levels of total eIF2a in the tumour cells compared with the

normal surrounding stroma. The signal for phospho-eIF2a
was weaker and present in a subset of cells that showed

strong signal for total eIF2a. In summary, the upregulation of

GCN2-eIF2a-ATF4 signalling module in tumour compared

with normal tissues implies that there must exist a tumour-

specific requirement for GCN2 activation in tumours for

adaptation to a nutrient-deprived microenvironment.

Discussion

The GCN2-eIF2a-ATF4 signalling module has been described

as a vital regulator of protein synthesis and amino acid

metabolism in response to amino acid deprivation in euka-

ryotes, from yeast to mammals. Yet, the consequences of
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ablating components of this pathway on survival and pro-

liferation of transformed cells under physiological and stress

conditions in vitro and in vivo have not been adequately

described. Rapidly proliferating transformed cells have been

shown to increase their nutrient uptake in excess of their

bioenergetic needs and to divert metabolic programs towards

pathways that support macromolecular biosynthesis to sup-

port their rapid growth (DeBerardinis et al, 2008). Our study

supports a model in which inhibition of ATF4 or GCN2

leads to suboptimal growth and survival of tumour cells

and xenografts because of an imbalance between amino

acid/energy requirements and biosynthetic pathway function

and identifies Asn as a key component of this regulatory

mechanism.

The function of ATF4 in adaptation of transformed cells

to nutritional stress

We and others have shown that ATF4 is overexpressed in

several human tumour tissues and is upregulated in response

to hypoxic/anoxic stress (Ameri et al, 2004; Bi et al, 2005).

Moreover, dysregulation of ATF4 expression has been impli-

cated in the induction of chemoradioresistance: ATF4 mRNA

levels correlate with tumour cell resistance to DNA-interact-

ing drugs such as cisplatin (Levenson et al, 2000) and recent

work has suggested that the circadian regulator protein Clock

binds to the E-box in the ATF4 promoter and transcriptionally

upregulates ATF4 in response to cisplatin, which induces

enzymes involved in glutathione metabolism and contributes

to chemoresistance (Igarashi et al, 2007). Collectively, these

findings suggest that ATF4 has an important function in

cellular resistance to chemotherapeutic agents and genotoxic

stress, perhaps through the upregulation of target genes that

promote production of reducing compounds.

Our studies show that inhibition of ATF4 in the absence of

any stress, sensitizes tumour cells to NEAA deprivation, a

result that is consistent with earlier studies performed in

MEFs (Harding et al, 2003). In contrast to ATF4�/� MEFs that

required b-ME, tumour cells expressing ATF4 shRNA did not

need this antioxidant to survive. This difference could be due

to at least two possible mechanisms: (1) the low level of ATF4

remaining in tumour cells still satisfies the cellular needs for

antioxidant activity; (2) tumour cells either overexpress anti-

oxidant enzymes or are more tolerant to oxidative stresses.

However, ATF4 knockdown tumour cells did show reduced
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survival in the absence of NEAA, indicating that these cells

were not able to synthesize certain amino acids that are

crucial for survival and proliferation, thus cell-cycle arrest,

apoptosis and autophagy were induced.

Loss ATF4 and induction of autophagy

Autophagy, a mechanism in which cells digest their own

proteins and organelles, is believed to enable cancer cells to

survive under nutrient starvation and has multiple functions

in tumour progression. In this study, we found evidence that

loss of ATF4 leads to a lower apoptotic threshold; yet para-

doxically also appears to stimulate autophagy. However, this

result can be explained under the prism of energy homeo-

static mechanisms: initially, loss of ATF4 (and thereby a

substantial portion of amino acid biosynthetic and transport

capacity) leads to nutrient deprivation and initiation of the

autophagic response. This notion is supported by morpholo-

gical and molecular evidence showing formation of double-

membrane-engulfed cytoplasmic vacuoles and elevated levels

of the autophagic marker cleaved LC3 in HT1080.shATF4 cells

in the absence of NEAA. These effects are readily reversed

when knockdown cells are supplemented with NEAA, suggest-

ing that amino acid deprivation is the key activator of

autophagy. Despite the activation of this pro-survival

mechanism, however, the inability of HT1080.shATF4 cells

to synthesize amino acids (and more specifically Asn) ulti-

mately leads to the activation of apoptotic pathways leading

to cell death and loss of clonogenic survival.

The pro-survival function of the initial autophagic re-

sponse is further supported by the fact that inhibition of

Atg7, an enzyme responsible for fusion of peroxisomal and

vacuolar membranes, prevents the induction of autophagy

and results in increased apoptosis in shATF4 cells. It has been

reported that after Bortezomib treatment, ATF4 promotes

autophagy by upregulating LC3B levels and this confers

protection against Bortezomib-induced apoptosis (Milani

et al, 2009). In this work, we have shown that ATF4 defi-

ciency leads to higher levels of processing of LC3. Therefore,

although ATF4 upregulation because of proteasomal inhibi-

tion can positively affect autophagy, lack of ATF4 can also

indirectly promote autophagy through a distinct mechanism

involving Asn depletion and GCN2 activation.

Asparagine is a key effector of ATF4-dependent

amino acid homeostasis

An analysis of the effect of individual amino acids on shATF4

tumour cells showed that supplementation of Asn, and no

other individual amino acid, was sufficient to rescue cell

survival, a finding that was later validated by our studies of

ASNS. Among the known downstream targets of ATF4 are

proteins involved in amino acid transport and metabolism,

including ASNS. ASNS catalyses the ATP and glutamine-

dependent conversion of L-aspartate to L-asparagine, a

NEAA that is necessary for protein synthesis and cell growth

(Richards and Shuster, 1998). HT1080 cells, like several other

human tumour cell lines, grow in DMEM, which is rich in Gln

(4 mM). Gln deprivation, significantly reduces survival of

HT1080 and DLD1 shATF4 cells, which could be partially

rescued if Asn was added, suggesting that in tumour cells, the

high requirement of Gln (a vital source of energy and nitro-

gen) (Sauer et al, 1982; DeBerardinis et al, 2007), may be (at

least partially) due to the biosynthesis of Asn. According to

our unpublished microarray data, the expression of glutami-

nase, an enzyme that catalyses Gln deamidation (the first

reaction in glutamine catabolism), is upregulated by

ATF4, suggest that ATF4 may also promote tumour cells to

take use of Gln.

Interestingly, L-asparaginase, an enzyme that catalyses

the biodegradation of Asn, is a common chemotherapeutic

drug for childhood acute lymphoblastic leukaemia (ALL)

and forms of acute myeloblastic leukaemia (Cooney and

Handschumacher, 1970; Ertel et al, 1979; Richards and

Kilberg, 2006). To compensate for the lack of exogenous

Asn available to L-asparaginase treated cells, leukaemic and

stromal cells upregulate ASNS synthesis and activity, which

may contribute to the development of L-asparaginase resis-

tance in the tumour cells (Hutson et al, 1997; Aslanian et al,

2001). Moreover, a causal relationship between L-asparagi-

nase activity and ASNS expression has been observed in

ovarian cancer cell lines (Lorenzi et al, 2008).

However, further investigation is still needed into the

precise function of Asn in tumour cell survival and tumour

growth: it is unclear whether Asn is just a substrate for

protein synthesis, or whether it has additional, yet unidenti-

fied functions in tumour cell metabolism and proliferation.

The ability of ASNS expression to rescue (at least partially)

survival and growth of cells with reduced ATF4 levels,

coupled with the clinical efficacy of L-asparaginase in ALL,

highlight the importance of this pathway in the maintenance

of amino acid homeostasis. Our study also supports the need

for further screening of cancer cells lines and strains, which

might be susceptible to L-asparaginase treatment and to

balance the administration of L-asparaginase with the poten-

tial development of drug resistance.

GCN2 forms an autoregulatory loop to compensate

for ATF4 deficiency

GCN2, a protein kinase activated by uncharged tRNAs that

occur under amino acid deprivation, triggers the repression of

protein synthesis as well as the upregulation of amino acid

biosynthesis/transportation through increased translation of

ATF4 mRNA. Both GCN2 and its substrate, eIF2a, showed

increased phosphorylation in shATF4 cells, which was re-

duced when cells were treated with Asn or NEAA. Under

glutamine deprivation, GCN2þ /þ cells exhibited increased

eIF2a phosphorylation, and ATF4, ASNS and p21 induction;

in contrast, GCN2�/� cells were not able to activate this

pathway and underwent apoptosis. Moreover, the induction

of ATF4 and p21 under amino acid deprivation depends on

eIF2a phosphorylation, suggesting that p21 may be transla-

tionally induced by phosphorylated eIF2a. Under genotoxic

stress, the induction of p21 contributes to cell survival by

blocking cell-cycle progression and allowing sufficient time

for the repair of damaged DNA (McDonald et al, 1996).

Although it remains to be formally shown, the induction of

p21 under amino acid starvation may similarly have a cyto-

protective function, by inhibiting proliferation and thus

promoting conservation of energy otherwise expended for

protein synthesis.

Our finding that eIF2a phosphorylation and ATF4 induc-

tion under low glucose is GCN2 dependent, also shows that

GCN2 is a molecular switch that senses nutrient deprivation

in the tumour microenvironment to downregulate protein

synthesis (eIF2a phosphorylation), slow down cell-cycle
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progression (p21 induction) and increase amino acid uptake

(ATF4 induction). These responses could help tumour cells

conserve energy and maintain homeostasis of amino acid

metabolism.

Another pro-survival function of GCN2-eIF2a pathway

under amino acid deprivation may be the induction of

autophagy. Consistent to earlier study performed in yeast

(Talloczy et al, 2002), phosphorylation of eIF2a is required

for autophagy induction in MEFs, though further investiga-

tion is needed to determine the mechanism. The LC3II levels

in GCN2�/� cells are lower compared with wild-type cells,

but higher than those in eIF2a mutant cells. This may be due

to the crosstalk from other eIF2a kinases (PERK, PKR, etc.).

A function for GCN2 and ATF4 in tumour progression

Several of these in vitro findings were recapitulated in vivo by

comparing tumour growth in ATF4 or GCN2 knockdown cells

with their WT counterparts. shATF4 cells formed fewer

tumours, which were significantly smaller and grew slower

compared with the rapid formation of large shNT tumours.

The shATF4 tumours exhibited reduced proliferation rates

based on the analysis of Ki67 staining. Similarly, Ras-trans-

formed GCN2 knockout MEFs were unable to form large

tumours in vivo. We showed earlier that deficiency in PERK

or eIF2a phosphorylation results in decreased resistance to

hypoxic stress both in vitro and in vivo (Koumenis et al, 2002;

Bi et al, 2005). Although it is possible that GCN2 also

contributes to resistance to hypoxia in vivo, GCN2�/� MEFs

were as sensitive to hypoxia as WT MEFs in vitro; moreover,

GCN2�/� MEFs still phosphorylate eIF2a and induce ATF4

under hypoxia (Supplementary Figure S5). On the other

hand, PERK�/� MEFs still phosphorylate eIF2a and induce

ATF4 under Gln deprivation (Figure 7D). Therefore, we

propose that in the tumour microenvironment, GCN2 and

PERK cooperate to provide resistance to distinct forms of

stress (Figure 10). Our findings further suggest that yet

another stress commonly found in tumours, low glucose,

requires both PERK and GCN2 to activate eIF2a phosphoryla-

tion; therefore, hypoxia, glucose and amino acid deprivation

each appear to activate this pathway though distinct and

sometimes overlapping pathways (Figure 10). The precise

function and contribution of each component of the pathway

to resistance to stress and tumour growth will require further

analysis of activation of each pathway with specific markers

and correlation to each stress in vivo. As a first step towards

this analysis, we have shown that overexpression of ASNS in

the tumour resulted in partial rescue of tumour growth

(Figure 8C). These results show that expression of ASNS is,

at least partially, responsible for the growth defect in the

ATF4 knockdown cells.

The lack of complete rescue of the phenotype is likely due

to suboptimal presence of Gln, the precursor for Asn synth-

esis and ASNS substrate throughout the tumour growth or

contribution of ATF4 to other processes, such as angiogen-

esis. Indeed, an angiogenesis defect was also attributed to

suboptimal growth of PERK�/� tumours previously shown by

our group and more recently suggested by another study in

mouse insulinomas (Gupta et al, 2009).

The slower tumour growth in ATF4 and GCN2-deficient

cells reflects the tumour cells’ dependency on the integrity of

this GCN2-eIF2a-ATF4 pathway under nutrient deprivation;

this reliance for tumour cell growth makes the GCN2-eIF2a-

ATF4 pathway a biological target for efficient cancer thera-

pies. GCN2�/� mice do not exhibit gross morphological or

functional abnormalities unless they are fed a diet lacking

certain essential amino acids, such as Leu (Anthony et al,

2004). As ATF4�/� mice exhibit abnormalities such as micro-

pthalmia and anemia (mostly attributed to the antioxidant

function of ATF4), GCN2 might offer a better therapeutic

target than ATF4. We would predict that normal tissues with

sufficient nutrient supply would not be as affected by a

specific GCN2 inhibitor compared with tumour tissues,

which would be under nutrient deprivation (because of

suboptimal blood flow and increased metabolic demands)

and thereby be more dependent on functional GCN2 for

survival and proliferation.

Materials and methods

Cell culture and generation of stable cell clones
HT1080 and DLD1 cells were cultured in DMEM (4.5 g/l glucose,
4 mM Gln) supplemented with penicillin, streptomycin, 10% fetal
calf serum. To establish stable ATF4 knockdown cell lines, HT1080
and DLD1 cells were transfected with pLKO-shNT or pSM2-shATF4
plasmids (OpenBiosystems) using Lipofectamine2000 (Invitrogen)
and selected with puromycin (2mg/ml and reduced to 0.5 mg/ml for
maintenance). All cells were supplemented with NEAA and 55 mM
b-ME after transfection. Stable GCN2 knockdown cell line was
produced in the same manner. All the MEFs were cultured in the
same conditions as HT1080.shATF4 cells. Individual amino acids
(Sigma) were dissolved in water to make 10 mM (100� ) stock
solutions.

Real-time PCR
RNA was isolated from cells after TRI-Reagent protocol (Invitro-
gen). Reverse transcription was performed using AMV Reverse
Transcriptase (Promega). Real-time PCR was performed on Applied
Biosystems 7300 Real-Time PCR System using Power SYBRs Green
PCR Master Mix.

Tumour microenvironment
stress

Low glucose Hypoxia
Amino acid
deprivation

p-GCN2

Autophagy

p-PERKp GCN2

p-eIF2αα

Asn
(other
AAs?)

p21

Proliferation

?
ATF4

ASNS,
(SLC1A4, etc)

Apoptosis

Figure 10 A model for the function of GCN2, ATF4, ASNS and Asn
in conferring tumour cell protection from microenvironment stress.
Blue arrows indicate signalling primarily in response nutrient
deprivation stress and green arrows indicate signalling primarily
from hypoxic stress. Common pathways are indicated by black
arrows. ATF4 likely has additional functions in response to hypoxia
that are not depicted here.
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Cell survival, proliferation and apoptosis assays
MTT assay was performed using Cell Proliferation Kit I (Roche
Diagnostics). Cell proliferation was assayed with Click-iT EdU Flow
Cytometry Kit (Invitrogen). Caspase3/7 activities were measured
using Caspase-Glo 3/7 Kit (Promega). For clonogenic survival assays,
cells were plated at a density of 500 cells per plate, incubated for 12
days and fixed with 10% methanol/10% acetic acid and stained with
0.4% crystal violet. As HT1080 cells do not form well-defined
colonies, 300ml 33% acetic acid was added to each dish to solubilize
the stain, which was transferred to a 96-well plate and absorbance
was read at 540 nm. The average normalized surviving fraction from
four independent experiments and the s.e. are reported.

Plasmids and viral vector
pCMV-mATF4 vector and Adeno-mATF4 virus was a gift from
Dr Guozhi Xiao (Department of Medicine, University of Pittsburgh).
pCMV-HA-ASNS vector was purchased from OriGene. ATF4 and
GCN2 shRNA vectors are from Open Biosystems.

Glutamine (Gln) assay
Gln concentration in the media was measured using a glutamine
assay kit (Sigma). Gln consumption was calculated from the
difference between Gln concentration before and after 16 h incuba-
tion. The result was normalized to the number of surviving cells.

Intracellular amino acid concentration
Cells were glucose starved (DMEM, no glucose, 10% FBS,
L-glutamine) for 2 or 4 h. Control cells received same media with
4.5 g/l glucose. Cells were washed with ice-cold PBS, 4% perchloric
acid (with 20mM internal standard) was added to each dish, and the
cells were collected and resuspended in the perchloric acid solution.
The solution was frozen at �80 1C for 5 min, thawed, and the
precipitated protein was collected in a microcentrifuge. The protein
pellet was dissolved in 1 M NaOH and protein assay was performed
(Lowry, Bio-Rad). The supernatant was neutralized to pH 7–8 with
KOH. Samples were incubated on ice for 30 min, potassium
perchlorate was precipitated and the resulting supernatant was
submitted for amino acid analysis performed by LC separation of the
o-pthalaldehyde derivatives and fluorescent detection at the Mass
Spec Core Facility, The Children’s Hospital of Philadelphia. Concen-
trations were determined as mg/ml and normalized to total protein.

Animals
Athymic NCR-Nu/Nu male mice of ages 6–8 weeks (NCI at
Frederick) were used. Animals were housed and cared for at the
University of Pennsylvania, Stemmler Animal facility. All animal
experiments were performed in accordance with NIH guidelines and

with the approval of the University of Pennsylvania Animal Use
Committees (IACUC). Nu/Nu mice were subcutaneously injected
with HT1080 cells (2�106 cells/tumour) or MEFs (2.5�106 cells/
tumour). When tumours became cumbersome or necrotic (B3
weeks for HT1080 or 9 days for MEFs), mice were killed; tumours
were excised, photographed, weighed, frozen and embedded in
OCT freezing medium.

Tumour samples
Snap frozen, human tumour and normal tissues (liver, breast and
lung) were obtained from the Tumour Tissue and Biospecimen
Bank facility at the University of Pennsylvania, School of Medicine.
Collection and processing of human specimens was performed in
accordance to the regulations of the Abramson Cancer Center
and the Department of Pathology and Laboratory Medicine.
For immunohistochemistry see Supplementary data.

Cell-cycle analysis
HT1080 cells were cultured in regular DMEM, DMEM with 100mM
Asn or DMEM with 100mM NEAA for 24 h. Cell-cycle analysis was
performed as described earlier (Javvadi et al, 2008).

Statistics
All statistics were performed using unpaired two-tailed Student’s
t-test unless otherwise specified. A P-value of 0.05 was chosen as
the threshold for statistical significance.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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