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Abstract
Sensory input to different cortical areas differentially varies across the light-dark cycle and likely is
responsible, in part, for activity-dependent changes in time-of-day differences in protein expression
such as Fos In this study we investigate time-of-day differences between dark (just before light onset)
and light (just before dark onset) for the number of immunoreactive (IR) neurons that stained for
tumor necrosis factor alpha (TNFα), interleukin-1β (IL1β), nerve growth factor (NGF), the neuronal
nuclear protein (NeuN) and Fos in the rat somatosensory cortex (Sctx) and visual cortex (Vctx).
Additionally, astrocyte IL1β-IR in the Sctx and Vctx was determined. TNFα and IL1β, as well as
the immediate early gene protein Fos, were higher at the end of the dark phase (2300 h) compared
to values obtained at the end of the light phase (1100 h) in the Sctx and Vctx. IL1β –IR in Sctx and
Vctx astrocytes was higher at 2300 h than that observed at 1100 h. . In contrast, the number of NGF-
IR neurons was higher in the Vctx than in the Sctx but did not differ in time. However, the density
of the NGF-IR neurons in layer V was greater at 2300 h in the Sctx than at 1100 h. NeuN-IR was
higher at 2300 h in the Sctx but was lower at this time in the Vctx compared to 1100 h. These data
demonstrate that expressions of the molecules examined are dependent on activity, the sleep-wake
cycle and brain location. These factors interact to modulate time-of-day expression. Section Title:
Regulatory Systems
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1. Introduction
Neurotrophic growth factors and other cytokines are posited to play a role in activity-dependent
cellular mechanisms (Cellerino and Maffei, 1996; Boulanger and Poo, 1999; Thoenen, 2000;
Krueger et al., 2008; Levi-Montalcini, 1966). Further, several modern theories of sleep
mechanisms and function emphasize that sleep is dependent upon prior neuronal activity and
is a fundamental property of highly interconnected neuronal networks such as cortical columns
(Krueger and Obal, 1993; Kavanau, 1994; Benington and Heller, 1995; Tononi and Cirelli,
2003; Krueger et al., 2008). Many neurotrophins/cytokines mentioned have the capacity to
enhance non-rapid eye movement (NREM) sleep and there is substantial evidence that tumor
necrosis factor alpha (TNFα), interleukin-1 beta (IL1β) and nerve growth factor (NGF) are
involved in physiological sleep regulation (reviewed Krueger et al., 2008) and in the sleep
responses to chronic and acute inflammation (Majde and Krueger, 2005). It is of interest
therefore to determine whether expressions of sleep regulatory substances (SRSs), such as
NGF, IL1β, and TNFα, change in the somatosensory cortex (Sctx) or visual cortex (Vctx)
during the time of day where the rats are mainly using their whiskers or visual system (Montero,
1997).

Electroencephalographic (EEG) delta wave power during NREM sleep, a measure of sleep
intensity, is altered by the time of day (Yasuda et al., 2005a; Alföldi et al., 1991). When EEG
electrodes are located over the Sctx, relative EEG slow wave activity (SWA) is higher during
the dark than during daylight. In contrast, if the electrodes are located over the Vctx, relative
EEG SWA is higher during the light than dark. Further, the local topographical stimulation of
the barrel field in the somatosensory cortex for 2 h increases the levels of NGF, IL1β and
TNFα (Churchill et al., 2008; Hallett et al., in press). In the current study, we used the time of
day differences in rats' neural activity within the Sctx or Vctx to compare the immunoreactive
cells for IL1β, TNFα, NGF as well as the immediate early gene protein Fos and the neuronal
nuclear protein, NeuN. The number of TNFα-, IL1β- and NeuN-positive cells was greater in
the rat Sctx in the dark than in the light. TNFα and IL1β expression also increased in the rat
Vctx in the dark compared to the light. For IL1β differential expression also occurred in
astrocytes. In contrast, Vctx expression of NeuN and NGF were greater in the light than in the
dark.

2. Results
2.1 TNFα-IR cells at 1100 h (end of light period) or 2300 h (end of dark period)

Overall, the number of darkly stained TNFα-IR cells was higher at 2300 h relative to 1100 h
for layers II–V of the Sctx (Table 1A & Fig. 1 B, D & F relative to A, C & E). The most
prominently labeled TNFα-IR cells are evident in layers IV and V (Fig. 1B and 1F). In Sctx
layer V, the TNFα-IR labels the cytoplasm in the cell body and the lower part of the apical
dendrite. In the Vctx, there was a significantly higher number of TNFα-IR cells than in the
Sctx for all of the layers and for layer IV there were a higher number of TNFα-IR cells at 2300
h than at 1100 h (Table 1B & Fig. 2B, D &F relative to 2A, C & E).

2.2 IL1β-IR cells at 1100 h or 2300 h
In the Sctx, the number of IL1β-IR cells was greater in Sctx layers IV–V at 2300 h relative to
1100 h (Table 1A & Fig. 3B, D &F relative to 3A, C & E). In layer V, the IL1β-IR was in the
cell body cytoplasm including the apical dendrite (Fig. 3F vs E). In the Vctx, the number of
IL1β-IR cells was greater in layers II–III, IV and VI than in the Sctx (Table 1A & B) and in
layer V at 2300 h compared to 1100 h (Table 1B & Fig. 4B, D & F relative to 4A, C & E). In
the Vctx, IL1β-IR was distributed similarly to that observed in the Sctx (compare Fig. 3F to
Fig. 4F).
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IL1β-IR astrocytes were evident within layers I and VI in the rats killed at 2300 h in both the
Sctx and Vctx (Fig. 5). In the Sctx, the number of ILβ-IR cells was greater at 2300 h relative
to 1100 h in layers I and VI and the external capsule below the Sctx (Table 2). The number of
IL1β-IR astrocytes were greater in the Sctx than in the Vctx in layer V, but greater in the Vctx
than Sctx in layers VI and the fiber pathways adjacent to these areas (the forceps major (fmj)
below the monocular region of the Vctx). In the Vctx, the number of IL1β-IR astrocytes was
greater at 2300 h relative to 1100 h in layers I & VI (Table 2, Fig. 5).

2.3 NGF-IR cells at 1100 h or 2300 h
The number of NGF-IR neurons in the Sctx and the Vctx was similar at both times of day
(Table 1). In the layer V pyramidal neurons, a significant higher density was observed at 2300
(11.7 ± 1.7) relative to 1100 (6.3 ± 1.0; p = 0.008). The number of NGF-IR neurons was greater
in the Vctx than the Sctx in layers II–III and VI (Table 1 and Fig. 6). The density of the NGF-
IR neurons was greater in the Vctx at 1100 relative to 2300.

2.4 Neu-N-IR cells at 1100 h or 2300 h
In the Vctx, the number of NeuN-IR cells differed from the Sctx in all of the layers. There were
no significant differences in time of day for the NeuN-IR cells; however there was a significant
interaction between brain regions and time of day for layers IV–VI. In the Sctx, the number of
Neu-N-IR cells was higher at 2300 h relative to 1100 h in layers IV–VI (Table 1A & Fig. 7)
and in the Vctx, the number of NeuN-IR cells in layers IV–V was greater at 1100 h relative to
2300 h (Table 1B & Fig. 8).

2.5 Fos-IR cells at 1100 h (end of the light period) or 2300 h (end of the dark period)
As previously observed in other publications, the number of Fos-IR cells was significantly
higher at 2300 h compared to 1100 h in both the Sctx and Vctx. These increases occurred in
all of the layers of the Sctx in both cortices (Table 1). There was also a significantly greater
number of Fos-IR cells in the Vctx relative to the Sctx in layers V and VI.

3. Discussion
The main finding reported herein is that the cytokines, TNFα and IL1β, show a greater number
of immunoreactive cells within both the Sctx and Vctx at the end of the active period relative
to the end of the sleep cycle. . There were also greater numbers of darkly TNFα- and IL1β-
stained cells in the Vctx than in the Sctx in most of the layers for both time periods. Circadian
processes may also influence the levels of TNFα- and IL1β-IR in neurons. Both IL1β and
TNFα interfere with the BMAL/Clock interaction with Cry1,2 and Per1 and 2 (Cavadini et al.,
2007). In rats, a well known suprachiasmatic nucleus (SCN) zeitgaber is light. In contrast, the
SCN is not the site of the food-entrainable oscillator and whisker stimulation, since it occurs
during feeding, may have a greater influence on that oscillator. The site of that oscillator
remains controversial (see Mistlberger et al., 2009). Further, mice lacking the IL1 type I
receptor have less spontaneous sleep during the dark hours and the transition to light (Fang et
al., 1998) where as mice lacking the TNF 55 kD receptor have less sleep mostly during the
transition from light to dark and into the first few hours of light (Fang et al., 1997). These
studies suggest slightly different time-of-day sensitivities of IL1β and TNFα and are thus
consistent with the current findings.

A second finding is that IL1β-IR astrocytes increase in the dark relative to light. Microglial
cells and astrocytes are known for their capacity to express IL1β (Eriksson et al., 1999;
Konsman et al., 1999; Yasuda et al., 2007). IL1β-IR astrocytes occur mainly in layers I & VI
(Yasuda et al., 2007). Although lightly-stained for IL1β, pyramidal-shaped neurons were
observed in layer V in those rats; the Yasuda (2007) study was done at the end of the light
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period, a time that the current study showed that layer V IL1β-IR levels are at a low level.
Previously we also showed that IL1β-IR astrocytes increase with whisker stimulation (Hallett
et al., in press); those findings are consistent with the current findings because in the dark rats
often eat and move about and both of these activities are associated with whisker stimulation.

That the number of NGF-IR neurons failed to change in the Sctx during the dark relative to
the light was unexpected. The number of NGF-IR Sctx neurons increases during sleep
deprivation (Brandt et al., 2001). That finding suggests that NGF is activity-dependent because
sleep loss enhances neuronal activity (Vyazovskiy et al., 2009). However, since the density of
Sctx NGF-IR neurons in layer V increases during the dark period, then the NGF levels within
these larger neurons do in fact increase with the increased whisker use. The finding that Vctx
NGF-IR neurons increase during the light also supports the previous conclusions that NGF is
activity-dependent.

The activity-dependency of NeuN is another finding of the current study. These results are
consistent with a previous observation that the levels of NeuN increase with electrical
stimulation in tissue culture (Mullen et al., 1992) and decrease with chronic depolarization in
culture (Weyer and Schilling, 2003). The physiological function of NeuN is not known, but
the low expression of NeuN in the dorsal SCN relative to other regions of the hypothalamus
suggests that NeuN levels may relate to circadian function (Geoghegan and Carter, 2008).

Our finding of greater activity period expression of Fos-IR cells is consistent with prior reports
describing greater, cfos mRNA and Fos protein expression during the wake cycle (dark) than
in the sleep cycle (light) (Grassi-Zucconi et al., 1993; Pompeiano et al., 1994; Cirelli and
Tononi, 2000; Semba et al., 2001). The cfos-jun dimer, called AP-1, increases the transcription
of IL1β, IL6, and TNFα (O'Neill and Greene, 1998; Van Wagoner and Benveniste, 1999; Guha
et al., 2000; Xiao et al., 2004). The redox-sensitive transcription factors, AP-1 and NF-κB are
also induced by TNFα and IL1β (Benveniste and Benos, 1995; Guha et al., 2000). Therefore
the increases in cfos mRNA and Fos protein during the wake state may be activating increases
in the cytokine network in response to activity during the wake cycle.

After application of IL1β or TNFα onto the Sctx, Fos- and IL1β-IR cells are induced in the
reticular thalamus, the somatic region of the reticular nucleus of the thalamus (Churchill et al.,
2005; Yasuda et al., 2007). Furthermore, cortical application of IL1β up-regulates Fos-IR cells
in hypothalamic regions implicated in sleep regulation, such as the ventrolateral preoptic area
and dorsal median preoptic nucleus (Yasuda et al., 2007). Further, unilateral cortical
application of SRSs, such as IL1β and TNFα, enhance EEG SWA on the ipsilateral side
(Yoshida et al., 2004; Yasuda et al., 2005b). Those findings coupled with the time-of-day
dependency of IL1β-IR and the whisker stimulation induced IL1β-IR suggest an endogenous
local source of SRSs. Indeed, when rats are sleep deprived after unilateral whisker removal,
the side ipsilateral to the cut whiskers received disproportionate sensory stimulation and
exhibited enhanced EEG delta power in subsequent sleep (Vyazovskiy et al., 2000; 2002).
Other studies indicate that greater cortical afferent input is associated with deeper subsequent
sleep in the region receiving the input. For example, excessive right hand stimulation during
wakefulness increases EEG SWA during subsequent sleep in the left cortex in human (Kattler
et al., 1994). Since rats increase their tactile and whisker activity and decrease their visual input
during the dark, Sctx relative EEG SWA is higher than that of the Vctx (Yasuda et al.,
2005a). Conversely in the light, relative EEG SWA of the Vctx is higher than that of the Sctx.
These data and current results emphasize the importance of prior activity for gene expression
and state oscillations.

In conclusion, the present study provides direct evidence that two SRSs, TNFα and IL1β, are
up-regulated in the Sctx during the wake period (dark), while Vctx NGF is sensitive to light.
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These findings also support the hypotheses that sleep is an activity-dependent local event
regulated in part by Sctx and Vctx expression of SRSs.

4. Experimental Procedures
4.1 Animals

Male Sprague-Dawley rats weighing 250–400 g were obtained from Taconic Farm, Inc.
(Germantown, NY). All rats were maintained on a 12:12-hour light-dark cycle (lights on at
0000 h) at 21–23±2°C ambient temperature. The rats were housed in pairs in polycarbonate
cages with pine shavings. To avoid light entering from the hallway during the kills in the dark,
a darkroom door was used for entry into the rat room. Water and standard rodent Lab Diet
(5001) food were available ad libitum throughout the experiment. Seven rats were killed at 7
min intervals between 11 and 12 h or 23 and 24 h after light onset. The use of rats was in
accordance with Washington State University (WSU) and international guidelines and was
approved by the WSU Institutional Animal Care and Use Committee.

4.2 Time of Day Differences
Rats (n=14) were adapted to handling for at least 3 days prior to the kill. On the first adaptation
day, the rats were allowed to smell the ungloved hands of the investigators; while on the
following two days, the rats were picked up and allowed to explore the lab coats of the handling
investigators. On the day of the kill, the rats were anesthetized and perfused as described
(Churchill et al., 2008; Hallett et al., in press), except that the postfixation was for 6 h. Briefly,
the rats were anesthetized within a saturated atmosphere of isoflurane inside a large glass
chamber located inside a hood and cardiac perfused with warm 0.9% saline, followed by cold
4% paraformaldehyde.

4.3 Immunohistochemistry
Brains were sectioned coronally with a sliding microtome at 30 μm thickness and collected at
360 μm intervals for each antigen. Immunohistochemistry was performed as described
previously (Churchill et al., 2005, 2008), using a polyclonal anti-human Fos antibody produced
in rabbit (1:10,000; Calbiochem (Oncogene Research Products), San Diego, CA), goat anti-
rat IL1β (0.5 μg/ml, R&D Systems, Inc., Minneapolis, MN), goat anti-rat TNFα (0.5 μg/ml,
R&D Systems, Inc., Minneapolis, MN), rabbit anti-mouse NGF that cross reacts with rat NGF
(1:2500 or 1:5000; Chemicon, Temecula, CA) or mouse monoclonal antibody to NeuN (1:500;
Chemicon, Temecula, CA). After 3 days of incubation at 4°C with gentle rocking and washing
three times in phosphate-buffered saline (PBS) for 10 min, the sections were incubated for 2
h in biotinylated secondary horse antibody to goat (for IL1β or TNFα), biotinylated secondary
goat antibody to rabbit (NGF or Fos) or biotinylated secondary horse antibody to mouse
(NeuN). Negative controls for the secondary antibodies were performed by omitting the
primary antibody. The specificity of the NGF, Fos and NeuN antibodies were previously
published (Zhang et al., 2007; Berghorn et al., 1994; Mullen et al., 1992). The specificity of
the IL1β and TNFα antibodies were previously published (Churchill et al., 2008; Leyva-Grado
et al., 2009; Hallett et al., in press).

4.4 Imaging and Quantitative analysis
The Sctx or monocular region of the Vctx was identified in the brain sections as demarcated
in the rat brain atlas by Paxinos and Watson (2007). The digital photographs were prepared on
a Leica DMLB microscope with a Spot camera for quantitative analysis. The digital images
were adjusted using Adobe Photoshop, only in contrast and brightness. In the Spot camera
software, a rectangular box was prepared using a transparent micron ruler for calibration and
superimposed onto the digital images over each of the Sctx or Vctx layers. NGF-, Fos- and
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NeuN-stained sections were photographed with the 10× objective and two 0.5 mm × 0.2 mm
boxes were added to each of the Sctx or Vctx layers. IL1β-stained sections were photographed
with a 20× objective and one 0.5 mm × 0.2 mm box was added to each of the neuronal Sctx or
Vctx layers or three 0.23 mm by 0.08 mm were added to the white matter layers. The numbers
of NGF-, TNFα-, NeuN-, Fos- and IL1β-IR cells were counted for each layer at 5 mm lateral
to the midline on both sides in the Sctx and 2 mm lateral to the midline on both sides in the
monocular region of the Vctx. For each antigen, three different sections from both the Sctx or
Vctx were photographed and the data were averaged. For the NGF-IR cells, layer V of the Sctx
was analyzed for density of staining using the Image J program. Quantification was done by
individuals blind to the experimental treatment.

4.5 Statistical Analyses
A two-way ANOVA was used to evaluate the differences in the number of immunoreactive
cells between 1100 and 2300 and the differences between the Sctx and Vctx. Probability less
than 0.05 was considered significant. If a significant interaction occurred, then the paired
Student's t-test was used to evaluate the differences between 1100 and 2300.
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List of abbreviations

EEG encephalographic

IR immunoreactivity, immunoreactive

IL1β interleukin-1 beta

NGF nerve growth factor

NeuN neuronal nuclear protein

NREM Non rapid eye movement sleep

Sctx somatosensory cortex

SWA slow wave activity

TNFα tumor necrosis factor alpha

Vctx visual cortex
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Fig. 1. TNFα-IR in the Sctx at 1100 (light) or 2300 (dark)
TNFα-IR cells increased in specific Sctx layers in the dark (2300 h) (C, D & F) in comparison
with light (1100 h)(A, B, E). Darkly stained neurons are evident at 2300 h in layer IV–VI. The
TNF-IR appears in the cytoplasm and extends into the apical dendrite of the large pyramidal
neurons in layer V at 2300 h (D & F). Bar = 0.05 mm for A–D; Bar =0.025 mm for E&F.
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Fig. 2. TNFα-IR in the Vctx at 1100 (light) or 2300 (dark)
TNF-IR cells increased in Vctx layers IV–V in the dark (C, D & F) in comparison with light
(A, B, E). Darkly stained neurons are evident at 2300 h in layer IV–V. The TNFα-IR appears
in the cytoplasm and extends into the apical dendrite of the large pyramidal neurons in layer
V at 2300 h (D & F). Bar = 0.05 mm for A–D; Bar =0.025 mm for E&F.
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Fig. 3. IL1β-IR in the Sctx at 1100 (light) or 2300 (dark)
IL1β-IR cells increased in Sctx layers II–V at 2300 h (C, D & F) in comparison to 1100 h (A,
B, E). The IL1β-IR appears in the cytoplasm and extends into the apical dendrite of the large
pyramidal neurons in layer V at 2300 h (D & F). Bar = 0.05 mm for A–D; Bar =0.025 mm for
E&F.
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Fig. 4. IL1β-IR in the Vctx at 1100 (light) or 2300 (dark)
IL1β-IR cells increased in Vctx layers V–VI at 2300 h (D & F) in comparison to 1100 h (B,
E). The IL1β-IR appears in the cytoplasm and extends into the apical dendrite of the large
pyramidal neurons in layer V at 2300 h (D & F). Bar = 0.05 mm for A–D; Bar =0.025 mm for
E&F.
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Fig. 5. IL1β-IR in astrocytes of the Sctx and Vctx at 1100 (light) or 2300 (dark)
IL1β-IR astrocytes increased in number at 2300 h in layer VI (B& D) and the white matter
below this layer (external capsule for the Sctx and forceps major (fmj) relative to 1100 h (A&C).
The Vctx astrocytes (A&B) were much darker than the Sctx astrocytes (C & D). The layer VI
and fibrous astrocytes in the white matter are marked by the arrows. Bar = 0.05 mm.
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Fig. 6. NGF-IR neurons in the Vctx at 1100 (light) or 2300 (dark)
The number of NGF-IR neurons increased in layers II–IV of the Vctx when comparing 2300
h (B) with 1100 h (A). No differences were observed in layers V–VI between 1100 (C & E)
and 2300 (D & F). Bar = 0.05 mm for A–D; Bar =0.025 mm for E&F.
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Fig. 7. NeuN-IR neurons in the Sctx at 1100 (light) or 2300 (dark)
The number of NeuN-IR neurons increased in layers II–VI of the Sctx when comparing 2300
h (B, D, F) with 1100 h (A, C, & E). The NeuN-IR neurons in layer IV are more densely
distributed at 2300 h and the large NeuN-IR pyramidal neurons in layer V appear more densely
labeled. Bar = 0.05 mm for A–D; Bar =0.025 mm for E&F.
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Fig. 8. NeuN-IR neurons in the Vctx at 1100 (light) or 2300 (dark)
The number of NeuN-IR neurons increased in layers IV–V of the Vctx when comparing 2300
h (B, D, F) with 1100 h (A, C, & E). The NeuN-IR neurons in layer II–IV appear more densely
distributed and there are more large NeuN-IR pyramidal neurons in layer V. Bar = 0.05 mm
for A–D; Bar =0.025 mm for E&F.
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Table 2

Quantitative evaluation of the number of IL1β-IR astrocytes in the Sctx and Vctx layers at the end of the light
(1100) or dark (2300) period. Data are represented as Mean ± S.E.M. for n= 7 rats.

# IL1β-IR astrocytes in Sctx/ 0.114 mm2

Sctx layers 1100 2300 t-value, prob

I 9.9 ± 1.3 13.9 ± 1.7 * t = 2.10, p = 0.040

# IL1β-IR astrocytes in Sctx/ 0.10 mm2

II–III 4.1 ± 0.6 5.6 ± 0.7 * t = 2.86, p = 0.014

IV 1.6 ± 0.2 1.3 ± 0.2 t = −1.02, p = 0.17

V 2.5 ± 0.4 2.9 ± 0.3 t = −1.10, p = 0.17

VI 3.0 ± 0.6 4.0 ± 0.4 * t = 3.60, p = 0.006

Ext cap 25.3 ± 4.8 33.9 ± 4.0 t = 1.27, p = 0.13

# IL1β-IR astrocytes in Vctx/ 0.114 mm2

Vctx layers 1100 2300 t-value, prob

I 9.6 ± 1.1 12.4 ± 0.9 † t = 1.71, p = 0.074

# IL1β-IR astrocytes in Vctx/ 0.10 mm2

II–III 4.1 ± 0.5 4.2 ± 0.5 t = 0.08, p = 0.47

IV 1.6 ± 0.3 1.5 ± 0.4 t = −0.27, p = 0.40

V 1.5 ± 0.4 2.1 ± 0.2 t =1.26, p = 0.13

VI 3.6 ± 0.4 5.9 ± 0.5 * t = 3.13, p = 0.013

fmj 31.1 ± 6.7 71.3 ± 6.2 * t = 3.49, p = 0.013

*
p< 0.05 comparing light (1100) and dark (2300) using a Student's paired t-test

+
p≤ 0.10 comparing light (1100) and dark (2300) using a Student's paired t-test
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