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Abstract

Background: Recessive mutations in guanylate cyclase-1 (Gucy2d) are associated with severe, early onset Leber congenital
amaurosis-1(LCA1). Gucy2d encodes guanylate cyclase (GC1) is expressed in photoreceptor outer segment membranes and
produces cGMP in these cells. LCA1 patients present in infancy with severely impaired vision and extinguished
electroretinogram (ERG) but retain some photoreceptors in both their macular and peripheral retina for years. Like LCA1
patients, loss of cone function in the GC1 knockout (GC1KO) mouse precedes cone degeneration. The purpose of this study
was to test whether delivery of functional GC1 to cone cells of the postnatal GC1KO mouse could restore function to these
cells.

Methodology/Principal Findings: Serotype 5 AAV vectors containing either a photoreceptor-specific, rhodopsin kinase
(hGRK1) or ubiquitous (smCBA) promoter driving expression of wild type murine GC1 were subretinally delivered to one eye
of P14 GC1KO mice. Visual function (ERG) was analyzed in treated and untreated eyes until 3 months post injection. AAV-
treated, isogenic wild type and uninjected control mice were evaluated for restoration of visual behavior using optomotor
testing. At 3 months post injection, all animals were sacrificed, and their treated and untreated retinas assayed for
expression of GC1 and localization of cone arrestin. Cone-mediated function was restored to treated eyes of GC1KO mice
(ERG amplitudes were ,45% of normal). Treatment effect was stable for at least 3 months. Robust improvements in cone-
mediated visual behavior were also observed, with responses of treated mice being similar or identical to that of wild type
mice. AAV-vectored GC1 expression was found in photoreceptors and cone cells were preserved in treated retinas.

Conclusions/Significance: This is the first demonstration of gene-based restoration of both visual function/vision-elicited
behavior and cone preservation in a mammalian model of GC1 deficiency. Importantly, results were obtained using a well
characterized, clinically relevant AAV vector. These results lay the ground work for the development of an AAV-based gene
therapy vector for the treatment of LCA1.
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Introduction

Leber congenital amaurosis (LCA) is an autosomal recessive

group of diseases that represent the earliest and most severe form

of all inherited retinal dystrophies. The first gene implicated in the

onset of this genetically and clinically heterogeneous disease, and

therefore assigned to the LCA1 locus was retinal-specific Guanylate

cyclase-1 (Gucy2d) [1]. Gucy2d encodes the retina- specific protein

guanylate cyclase (GC1) which is expressed in both cone and rod

photoreceptor disc membranes [2]–[3] and plays a role in the

regulation of cGMP and Ca2+ levels within these cells. Following

light stimulation, levels of cGMP within photoreceptor outer

segments rapidly fall due to hydrolysis by cGMP phosphodiester-

ase (PDE). This reduction of cGMP leads to a closure of cGMP-

gated channels, reduced Ca2+ influx and hyperpolarization of the

cell. This decrease in intracellular Ca2+ stimulates return of light-

stimulated photoreceptors to the dark state via its interaction with

guanylate cyclase (GC) activating proteins (GCAPs), a family of

calcium binding proteins that regulate the activity of GC. In the

dark adapted photoreceptor, Ca2+ bound GCAPs inhibit the

activity of GC. Upon light stimulation, however, Ca2+-free GCAPs

stimulate GC activity which increases cGMP levels, reopens
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cGMP-gated channels and a returns the cell to a depolarized state

[4]. Mutations which reduce or abolish the ability of GC to

replenish intracellular cGMP and reopen cGMP-gated cation

channels, as is the case in LCA1, are thought to create the

biochemical equivalent of chronic light exposure in rod and cone

photoreceptors [5].

Mutations in Gucy2d account for as many as 20% of all cases of

LCA making it one of the leading causes of this disease [1],[6],[7]

The number of patients affected by LCA1 is approximately double

that affected by the well known RPE65 version of LCA (LCA2)

[8],[9]. Diagnosis of LCA1 is typically made within the first few

months of life and is characterized by severely impaired vision,

extinguished electroretinogram (ERG) and pendular nystagmus

[8], [10]. Despite these functional deficits, LCA1 patients present

with normal fundus [8] and retain some rods and cones in both

their macular and peripheral retina for years [6], [11]–[12]. Using

spectral-domain optical coherence tomography (SDOCT) to scan

the central macular and perifoveal areas, a recent study revealed

that LCA1 patients (age range, 20–53 years) retained all 6 retinal

layers with a visible photoreceptor inner/outer segment juncture

[12]. Maintenance of retinal structure in LCA1 is unlike other

forms of the disease which exhibit marked retinal thinning that

generally worsens with age [12]. While the preservation of retinal

structure does not parallel better visual acuity in LCA1 patients, it

does suggest that they may be responsive to gene-based

therapeutic strategies that require some level of rod/cone cell

preservation.

Two animal models carrying null mutations in the GC1 gene

have been used to evaluate gene replacement therapy, the

naturally occurring GUCY1*B chicken and the guanylate-

cyclase-1 (GC1) knockout mouse [13]–[14]. The GUCY1*B

chicken is blind at hatch, exhibits extinguished scotopic (rod-

mediated) and photopic (cone-mediated) ERG and retinal

degeneration [5], [15]–[16]. Prehatch lentiviral-mediated transfer

of Gucy2d to the GUCY1*B retina restored vision to these animals

as evidenced by behavioral testing and ERG analysis [13]. Despite

the short term therapeutic success, this therapy fell short of

preserving retinal structure or function in the long term. The

transient nature of this result, obtained in a non-mammalian

species with an integrating viral vector delivered in-ovo suggested

the need for more appropriate translational studies towards the

development of clinical application. A mammalian model of GC1

deficiency, the GC1KO mouse exhibits cone photoreceptor

degeneration [17]–[18]. Like LCA1 patients, loss of cone function

in this mouse model precedes cone degeneration [17]. Rod

photoreceptors in this model do not degenerate and continue to

generate ERG responses to light [17], a result likely due to the

presence of GC2, a close relative of GC1 in these cells [19]–[22].

AAV-mediated transfer of Gucy2d to the post-natal GC1KO retina

failed to restore cone ERG responses or prevent cone degeneration

[14]. In both the chicken and mouse studies which were conducted

by the same investigators, the therapeutic cDNA was of bovine

origin, the species historically used in biochemical assays

evaluating GC1 function [13], [23]. This raises the question of

whether the heterologous nature of these gene transfer strategies

was the reason for their incomplete success.

In the present series of experiments, we evaluated whether

delivery of a species-specific (murine) version of GC1 to cones of

the postnatal GC1KO mouse could restore function to and

preserve these cells. Serotype 5 AAV vectors were used to

deliver mGC1 to photoreceptors of postnatal day 14 (P14)

GC1KO mice. The results reported herein are the first

demonstration that gene therapy is capable of restoring visual

function and visually evoked behavior to a mammalian model of

GC1 deficiency. Importantly, results were obtained following

postnatal delivery of a well characterized, clinically relevant

AAV vector. These results lay the groundwork for the

development of an AAV-based gene therapy vector for

treatment of LCA1.

Materials and Methods

Experimental Animals
GC1+/2 heterozygote embryos were removed from a

cryopreserved stock at The Jackson Laboratory (Bar Harbor,

ME). Heterozygotes were mated at the University of Florida to

produce GC1 KO (2/2) and isogenic +/+ control offspring. All

mice were bred and maintained in the University of Florida

Health Science Center Animal Care Services Facility under a

12hr/12hr light/dark cycle. Food and water were available ad

libitum. All experiments were approved by the University of

Florida’s Institutional Animal Care and Use Committee and

conducted in accordance with the ARVO Statement for the Use

of Animals in Ophthalmic and Vision Research and NIH

regulations.

Construction of AAV vectors
Serotype 5 Adeno-associated virus (AAV5) vectors were used to

deliver murine GC1 (mGC1) as they have been shown to exhibit

robust transduction efficiency and relatively quick expression in

retinal photoreceptors [24]. Both a cell-specific and ubiquitous

promoter were selected to drive expression of mGC1 (generously

provided by Joseph Besharse). A promoter for the cell-specific, G

protein-coupled receptor kinase 1 (GRK1), also known as

rhodopsin kinase was chosen for its ability to specifically target

robust transgene expression in rod and cone photoreceptors when

used in conjunction with AAV [25]. The ubiquitous smCBA

promoter which exhibits a similar expression pattern to full-length

CBA in retina was chosen for its ability to efficiently target the

neural retina [14]. Polymerase chain reaction utilizing forward

primer 59AAAAGCGGCCGCATGAGCGCTTGGCTCCTGC-

CAGCC39 and reverse primer 59 AAAAGCGGCCGCT-

CACTTCCCAGTAAACTGGCCTGG39 was used to amplify

mGC1 from a plasmid containing an mGC1-eGFP fusion [26].

The resulting fragment was cloned into pCRblunt plasmid

(Invitrogen, Carlsbad, CA) and then sequence verified. AAV

vector plasmid containing smCBA driving expression of mGC1

(pTR-smCBA-mGC1) was created by replacing full length CBA

with smCBA in plasmid pTR-CBSB-hRPE65 [27] via EcoR I

digest and ligation. Subsequently, hRPE65 was replaced with

mGC1 via Not I digestion and ligation, resulting in the creation of

pTR-smCBA-mGC1. AAV vector plasmid containing human

GRK1 promoter driving expression of mGC1, pTR-GRK1-

mGC1 was created by removing hGFP from pTR-hGRK1-hGFP

[28] and replacing it with mGC1 via Not I digest and ligation.

AAV vectors were packaged according to previously published

methods [14]. Viral particles were resuspended in Balanced Salt

Solution (Alcon, Fort Worth, TX) and titered by quantitative real-

time PCR [27]. Resulting titers were 4.6961012 vg/ml and

4.1261013 vg/ml for AAV5-smCBA-mGC1 and AAV5-hGRK1-

mGC1, respectively.

Subretinal Injections
One ml of AAV5-GRK1-mGC1 (4.1261010 delivered vector

genomes) or AAV5-smCBA-mGC1 (4.696109 delivered vector

genomes) was injected subretinally at postnatal day 14 (P14) to the

right eye of each GC1KO mouse, leaving the left eye as a

contralateral control. Subretinal injections were performed as
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previously described [29]–[30]. Further analysis was carried out

only on animals which received comparable, successful injections

(.60% retinal detachment and minimal complications). It is well

established that the area of retinal detachment corresponds to the

area of viral transduction [29], [31].

Electroretinographic analysis
Electroretinograms of treated GC1KO (n = 14) and isogenic

+/+ controls (n = 2) were recorded using a PC-based control and

recording unit (Toennies Multiliner Vision; Jaeger/Toennies,

Höchberg, Germany) according to methods previously described

with minor modifications [14]. Initial ERG measurements were

recorded at 4 weeks post injection, and every subsequent 2 weeks

thereafter until 3 months post-injection (the latest time point

evaluated in this study). Age matched +/+ isogenic controls were

recorded alongside treated animals at every time point. Mice were

dark-adapted overnight (more than 12 hours) and anesthetized

with a mixture of 100 mg/kg ketamine, 20 mg/kg xylazine and

saline in a 1:1:5 ratio, respectively. Pupils were dilated with 1%

tropicamide and 2.5% phenylephrine hydrochloride. A heated

circulating water bath was used to maintain the body temperature

at 38uC. Hydroxypropyl methylcellulose 2.5% was applied to each

eye to prevent corneal dehydration. Full field ERGs were recorded

using custom, gold wire loop corneal electrodes. Reference and

ground electrodes were placed subcutaneously between the eyes

and in the tail, respectively. Scotopic rod recordings were elicited

with a series of white flashes of seven increasing intensities

(.01 mcds/m2 to 5 cds/m2). Interstimulus intervals for low

intensity stimuli were 1.1 second. At the three highest intensities

(100 mcds/m2, 1 cds/m2 and 5 cds/m2), instimulus intervals were

2.5, 5.0 and 20.0 seconds, respectively. Ten responses were

recorded and averaged at each intensity. Mice were then light

adapted to a 100 cds/m2 white background for 2 minutes.

Photopic cone responses were elicited with a series of five

increasing light intensities (100mcds/m2 to 12 cds/m2). Fifty

responses were recorded and averaged at each intensity. All stimuli

were presented in the presence of the 100 cds/m2 background. B-

wave amplitudes were defined as the difference between the a-

wave troughs to the positive peaks of each waveform. Photopic b-

wave maximum amplitudes (those generated at 12 cds/m2) of all

smCBA-mGC1- treated (n = 6) and hGRK1-mGC1- treated

(n = 8) GC1KO (both treated and untreated eyes) and isogenic

+/+ control mice were averaged and used to generate standard

errors. These calculations were made at every time point (4 weeks-

13 weeks post injection). This data was imported into Sigma Plot

for final graphical presentation. The paired t-test was used to

calculate P-values between treated and untreated eyes within each

promoter group (smCBA or hGRK1) and between each promoter

group over time (4 weeks post-injection vs. 3 months post-

injection). The standard t-test was used to calculate P-values

between smCBA-mGC1 vs. hGRK1-mGC1 treated eyes. Signif-

icant difference was defined as a P-value,0.05. Because a subset

of mice from each treated group was sent to SUNY Upstate for

behavioral analyses, the total number of mice averaged and

presented at each time point in results differs. Three mice from the

smCBA-mGC1-treated group were sent for optomotor testing,

leaving an n of 3 mice used for ERG analysis during the 8, 10 and

12 week measurements. Two mice from the hGRK1-mGC1-

treated group were sent for optomotor testing, leaving an n of 6

used for ERG analysis during the 6, 8, 10 and 12 week

measurements. All mice sent for behavioral analysis were analyzed

subsequently by ERG at 13 weeks post injection upon their return

to the University of Florida (smCBA-mGC1: n = 3, hGRK1-

mGC1: n = 2).

Optomotor Testing
Photopic visual acuities and contrast sensitivities of treated and

untreated GC1KO mouse eyes were measured using a two-

alternative forced choice paradigm as described previously

[32],[33]. To test the sensitivity of individual eyes from the same

animal we took advantage of the fact that mouse vision has

minimal binocular overlap and that the left eye is more sensitive to

clockwise rotation and the right to counter-clockwise rotation [34].

Thus in our ‘‘randomize-separate’’ optomotor protocol, each eye’s

acuity and contrast sensitivity threshold was determined separately

and simultaneously via stepwise functions for correct responses in

both the clockwise and counter-clockwise directions. Correct

detection of patterns rotating in the clockwise direction was driven

primarily by visual signals originating from the left eye and correct

responses in the counterclockwise direction were derived from

visual signals originating from the right eye. Acuity was defined the

highest spatial frequency (100% contrast) yielding a threshold

response, and contrast sensitivity was defined as 100 divided by the

lowest percent contrast yielding a threshold response. For photopic

acuity, the initial stimulus was a 0.200 cycles/degree sinusoidal

pattern with a fixed 100% contrast. For photopic contrast

sensitivity measurements, the initial pattern was presented at

100% contrast, with a fixed spatial frequency of 0.128 cycles/

degree. Photopic vision was measured at a mean luminance of

70 cd/m2. Visual acuities and contrast sensitivities were measured

for both eyes of each mouse four to six times over a period of 1

week. Age matched, isogenic +/+ control animals (M1, M2) and

naı̈ve GC1KO mice (M3, M4) are presented along with the

smCBA-mGC1-treated (M5, M6, M7) and hGRK1-mGC1-

treated mice (M8, M9). Cone-mediated ERG amplitudes gener-

ated from a 12 cds/m2 stimulus of all mice (M1–M9) are

presented alongside the behavior results. Unpaired t-tests were

carried out on acuity and percent contrast values to determine

significance of results.

Tissue Preparation
Three months post injection, P14-treated GC1KO mice were

sacrificed. The limbus of injected and uninjected eyes was marked

with a hot needle at the 12 o’clock position, facilitating orientation.

Enucleation was performed under dim red light and eyes were

placed immediately in 4% paraformaldehyde. Eyes that were to be

used for cryosectioning were prepared according to previously

described methods [14]. Briefly, corneas were removed from each

eye, leaving the lens inside the remaining eye cup. A small ‘‘V’’

shaped cut was made into the sclera adjacent to the burned limbus

to maintain orientation. After overnight fixation, the lens and

vitreous were removed. The remaining retina/RPE-containing

eyecup was placed in 30% sucrose in PBS for at least 1 hour at 4u.
Eyecups were then placed in cryostat compound (Tissue Tek OCT

4583; Sakura Finetek USA, Inc., Torrance, CA) and snap frozen

in a bath of dry ice/ethanol. Eyes were serially sectioned at 10

microns with a cryostat (Microtome HM550; Walldorf, Germany).

Eyes that were to be used for whole mount analysis were prepared

according to previously described methods [35]. Orientation was

achieved as previously mentioned. After overnight fixation,

cornea, lens, vitreous and retinal pigment epithelia were removed

from each eye without disturbing the retina. A cut was made in the

superior (dorsal) portion of the retina adjacent to the original

limbus burn to maintain orientation.

Immunohistochemistry and Microscopy
Retinal cryosections and whole mounts were washed 3 times in

16PBS. Samples were then incubated in 0.5% Triton X-100 for

1 hour in the dark at room temperature, blocked in a solution of
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1% bovine serum albumin (BSA) in PBS for 1 hour at room

temperature and incubated overnight at 37u with a rabbit

polyclonal GC1 antibody (1:200, sc-50512, Santa Cruz Biotech-

nology, Inc.), rabbit polyclonal cone arrestin antibody (‘‘Lumij’’

1:1000, generously provided by Dr. Cheryl Craft) or a lectin PNA

conjugated to Alexa Fluor 488 (1:200, L21409, Invitrogen) diluted

in 0.3% Triton X-100/1% BSA. Retinal whole mounts were

incubated overnight at room temperature with the same cone

arrestin antibody, diluted 1:1000 in 0.3% Triton X-100/1% BSA.

Following primary incubation, retinal sections and whole mounts

were washed 3 times with 16 PBS then incubated for 1 hour at

room temperature with IgG secondary antibodies tagged with

either Alexa-594 or Alexa-488 fluorophore (Molecular Probes,

Eugene OR) diluted 1:500 in 16PBS and washed with 16PBS.

Retinal sections were counterstained with 49, 69-diamino-2-

phenylindole (DAPI) for 5 minutes at room temperature. After a

final rinse with 16 PBS and water, sections were mouted in an

aqueous-based media (DAKO) and coverslipped. Retinal whole

mounts were oriented on slides with the superior (dorsal) portion of

the retina positioned at 12- o’clock. Samples were mounted in

DAKO and coverslipped. Retinal sections were analyzed by

confocal microscopy (Leica TCS SP2 AOBS Spectral Confocal

Microscope equipped with LCS Version 2.61, Build 1537

software). All images were taken with identical exposure settings

at either 206 or 636magnification. Excitation wavelengths used

for DAPI, GC1 and cone arrestin stains were 405, 488 and 594,

respectively. Emission spectra were 440–470nm, 500–535nm and

605–660nm, respectively. Retinal whole mounts were analyzed

with a widefield fluorescent microscope (Zeiss Axioplan 2)

equipped with a QImaging Retiga 4000R Camera and QImaging

QCapture Pro software. Quadrants of each whole mount were

imaged at 56 under identical exposure settings and then merged

together in Adobe Photoshop.

Image Analysis
Cone photoreceptor densities were analyzed in retinal whole

mounts by counting cells labeled with secondary fluorophore

directed against cone arrestin antibody in the central and inferior

retina using ImageJ software (NIH, Bethesda, MD, USA). Five

squares (500 mm2) were placed over identical areas in central and

inferior retina of both treated and untreated GC1KO eyes. For

central retina, squares were placed at an equal eccentricity around

the optic nerve head in all eyes (125 mm). Cone photoreceptors

were counted in each respective retinal area, values were averaged

and standard deviations calculated. The standard t-test was used to

calculate P-values between desired samples. Significant difference

was defined as a P-value,0.05.

Results

Both the photoreceptor-specific human RK promoter and
ubiquitous smCBA promoter drive mGC1 transgene
expression in rods and cones of GC1KO mice

GC1- deficiency affects both rod and cone photoreceptors in

LCA1 patients. We therefore chose the photoreceptor-specific

human RK promoter and the ubiquitous smCBA promoter for

this study as a means to target both cell types. The human RK

promoter was chosen for its small size and ability to efficiently

drive transgene expression specifically in photoreceptor cells [25],

[36]–[37]. Immunostaining of GC1KO retinas 3 months post-

treatment with AAV5-hGRK1-mGC1 revealed that this promoter

drove robust GC1 expression exclusively in photoreceptor (rod

and cone) outer segments. A representative image of a retinal cross

section from an eye injected with this therapeutic vector

(Figure 1A) shows intense GC1 staining in the OS layer whereas

the contralateral, untreated eye lacks any GC1 expression

(Figure 1B). The smCBA promoter also efficiently drove GC1

expression in photoreceptor cells. Photoreceptor OS exhibited

robust smCBA-mediated GC1 expression in treated eyes

(Figure 1C), relative to the contralateral, untreated eye

(Figure 1D). Levels of hGRK1 and smCBA-mediated GC1

expression approached those seen in isogenic, +/+ control eyes

(Figure 1E). GC1 expression in hGRK1-mGC1-treated eyes was

restricted to outer segments. In smCBA-mGC1- treated eyes, GC1

expression was occasionally found in photoreceptor inner

segments and cell bodies of the outer nuclear layer (Figure 1F,

arrows). Notably however, neither promoter construct drove

therapeutic GC1 expression in retinal cells other than photore-

ceptors. This lack of off-target expression could be relevant to the

development of safe future clinical applications. A representative

section stained for GC1 was also stained with lectin PNA which

labels cone outer segment sheaths. Figure 2 shows an overlay of

GC1 (red) and PNA (green) expression in cone cells. GC1

expression was not exclusive to cones, however, proving that

therapeutic transgene is expressed in both rods and cones of

treated GC1KO mice (Figure 2).

Photoreceptor function (ERG) is restored in AAV-treated
GC1KO mice

It was previously reported that cone responses in the GC1KO

mouse are barely detectable by 1 month of age [17]. Here we show

that P14-treatment of this mouse with an AAV vector carrying the

mouse GC1 gene under the control of either a photoreceptor-

specific (hGRK1) or ubiquitous (smCBA) promoter led to

substantial restoration of cone photoreceptor function as measured

by ERG. Representative cone traces (Figure 3A) as well as the

average photopic b-wave amplitudes (Figure 4) from hGRK1-

mGC1-treated, smCBA-mGC1-treated, GC1KO and isogenic

+/+ controls show that cone function in treated eyes is restored to

approximately 45% of normal at four weeks post injection. Similar

to previous reports, cone responses in contralateral, untreated eyes

were undetectable at this time point. At 4 weeks post injection, the

average cone-mediated b-wave amplitude in smCBA-mGC1-

treated eyes (65.1 mV) was significantly higher (P = .006) than that

in the untreated eyes (3.9 mV). The average cone mediated b-wave

amplitude in hGRK1-mGC1-treated eyes (59.1 mV) was signifi-

cantly higher (P,.001) than that in untreated eyes (3.2 mV). The

level of restoration achieved four weeks following delivery of the

photoreceptor-specific hGRK1-mGC1 vector was not significantly

different from that achieved with the ubiquitous promoter-

containing smCBA-mGC1 vector (P = .604). At 3 months post

injection, the average cone-mediated b-wave amplitude in

smCBA-mGC1-treated eyes (53.3 mV) was significantly higher

(P,.001) than that in the untreated eyes (2.8 mV). The average

cone mediated b-wave amplitude in hGRK1-mGC1-treated eyes

(45.3 mV) was significantly higher (P,.001) than that in untreated

eyes (3.4 mV). The level of restoration achieved 3 months following

delivery of the photoreceptor-specific GRK1-mGC1 vector was

not significantly different from that achieved with the ubiquitous

promoter-containing smCBA-mGC1 vector (P = .331). Both

promoters conferred similar levels of functional restoration to

cones in treated eyes of the GC1KO mouse in the short term.

Importantly, restoration of cone photoreceptor function remained

stable for 3 months (the latest time point evaluated in this study)

(Figures 3 and 4). There was no significant difference in photopic

b-wave amplitudes of smCBA-mGC1-treated or hGRK1-mGC1-

treated eyes between 4 weeks and 3 months post treatment

(P = 0.174 and 0.125, respectively).
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ERG implicit times which are an important feature in the diagnosis

of various retinal disorders including other forms of LCA [36] were

also determined. While such measurements cannot be reliably

obtained from an untreated GC1KO eye, we were able to compare

cone b-wave implicit times in AAV-mGC1 treated and isogenic +/+
control mice. At 4 weeks post injection, there was no significant

difference between cone b-wave implicit times in treated and +/+
control eyes (P = 0.884); average values in AAV-mGC1-treated and

+/+ eyes at this time point were 50.8 ms and 50.4 ms, respectively.

At 3 months post injection, there was also no significant difference

between the two groups (P = 0.697); averages of all cone b-wave

implicit times in treated and +/+ control eyes were 59.7 ms and

Figure 1. AAV-mediated GC1 expression in photoreceptors of the GC1KO mouse. AAV5-hGRK1-mGC1 drives expression of GC1 in
photoreceptor outer segments of GC1KO mice. (A). No GC1 expression is seen in the untreated, contralateral control eye (B). AAV5-smCBA-mGC1
drives expression of GC1 in photoreceptor outer segments (C) and occasionally in photoreceptor cell bodies (arrows in F). No such GC1 expression is
seen in the untreated, contralateral control eye (D). Levels of therapeutic transgene expression in the AAV5-mGC1-treated eyes are only slightly less
than that seen in isogenic GC1+/+ control eyes (E). All retinas were taken from mice 3 months post treatment or age matched untreated controls.
Scale bars in A = 100mm, F = 25mm. OS-outer segments, IS-inner segments, ONL-outer nuclear layer.
doi:10.1371/journal.pone.0011306.g001
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Figure 2. AAV5-mGC1 drives expression of GC1 in both rod and cone photoreceptors. Representative retinal section from a GC1KO eye
injected with AAV5-smCBA-mGC1 stained for GC1 (red) and PNA lectin (green) reveals GC1 expression in cone outer segments (yellow overlay) as well
as in rod outer segments (red alone). hGRK1-mGC1 injected eyes revealed the same pattern (data not shown).
doi:10.1371/journal.pone.0011306.g002

Figure 3. AAV5-mGC1 restores retinal function to cone photoreceptors of the GC1KO mouse. Representative cone (left column)- and rod
(right column)-mediated ERG traces from GC1 +/+ (upper waveforms), untreated GC1KO (middle waveforms) and AAV5-mGC1-treated (bottom
waveforms) mice. For the middle and bottom waveforms in each panel, red traces correspond to eyes injected with AAV5-smCBA-mGC1 (bottom)
and their uninjected contralateral eyes (middle) and black traces correspond to eyes injected with AAV5-hGRK1-mGC1 (bottom) and uninjected
contralateral eyes (middle). Cone responses in AAV5-mGC1-treated eyes are restored to approximately 45% of normal amplitude.
doi:10.1371/journal.pone.0011306.g003
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58.3 ms, respectively. The response kinetics of cones in the treated

GC1KO retina, as determined by implicit time measurements

appeared to be normal and stable in the short term.

It was previously reported that rod ERGs in the GC1KO mouse

show alterations by 1 month of age, with the rod a-wave and b-

wave both markedly reduced [17]. This loss plateaus at 5 months

of age with responses approximately 50–70% that of a WT mouse.

While we observed some instances of AAV-mGC1-mediated

improvements in treated eyes of GC1KO mice relative to

untreated controls (example seen in Figure 3), this result was not

as consistent as that seen for the cone-mediated responses.

Additional studies are required to elucidate how effective this

therapy will be at restoring rod-mediated ERGs.

Cone mediated visual acuity and contrast sensitivity are
restored in AAV-treated GC1KO mice

Optomotor analysis revealed that eyes of GC1KO mice

treated with either smCBA-mGC1 (Figure 5A: M5, M6, M7) or

hGRK1-mGC1 (Figure 5: M8, M9) responded significantly

better than untreated eyes under all photopic, cone-mediated

conditions. Untreated GC1KO eyes perform poorly with a

visual acuity of 0.16360.040 cycles per degree (Figure 3B, 3C,

Figure 4. Average photopic b-wave maximum amplitudes as a function of both flash intensity and time after treatment. Responses of
GC1KO, isogenic +/+ controls, AAV5-smCBA-mGC1-treated (A) and AAV5-hGRK1-mGC1-treated (B) GC1KO mice reveal that cone responses in both
smCBA-mGC1 and hGRK1-mGC1-treated mice are approximately 45% of normal for at least 3 months post injection (the longest time point evaluated
in this study).
doi:10.1371/journal.pone.0011306.g004
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blue bar, mean 6 s.d., n = 9 eyes). Isogenic GC1+/+ control

eyes (Figure 5: M1, M2) respond significantly better, showing an

average acuity of 0.41860.046 cycles per degree (black bar,

n = 4 eyes). AAV-mGC1-treated eyes (Figure 5: M5–M9) have

an average acuity of 0.39260.077 cycles per degree (red bar,

n = 5 eyes), a level essentially identical to control +/+ eyes and

significantly better than untreated GC1KO eyes (P,0.0001).

Photopic contrast sensitivities (Figure 5A, 5B) paralleled the

photopic acuity results, with AAV-mGC1-treated eyes (contrast

sensitivity of 11.9067.37, n = 5 eyes) showing contrast thresh-

olds identical to +/+ mice (11.9463.03, n = 4 eyes). Again,

GC1KO eyes treated at P14 with AAV-mGC1 performed

Figure 5. Optomotor analysis of visual function restoration in GC1KO mice treated with either AAV5-smCBA-mGC1 or AAV5-
hGRK1-mGC1. M1–M9 correspond to the nine mice used for testing. Photopic acuities and contrast sensitivities of GC1+/+ control mice (M1, M2),
naı̈ve GC1KO (M3, M4), smCBA-mGC1-treated (M5, M6, M7) and hGRK1-mGC1-treated GC1KO (M8, M9) mice reveal that treated mice behave like
normal sighted mice (A, B). Average values for photopic visual acuity and contrast sensitivity of all GC1+/+ eyes (n = 4), untreated GC1KO eyes (n = 9)
and AAV5-mGC1-treated eyes (n = 5) are shown (B) (* = P,0.0001). Cone-mediated ERG responses from each mouse (M1–M9) are shown for
comparison (C).
doi:10.1371/journal.pone.0011306.g005
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significantly better than untreated eyes, exhibiting an average

contrast sensitivity of 1.2760.31 (n = 9, P,0.0001). In all

photopic tests, untreated GC1KO eyes perform extremely

poorly, essentially equivalent to having no cone-mediated

function. Statistical comparisons of these measurements are

shown in Table 1. Cone-mediated ERG traces of all GC1+/+
(M1, M2), GC1KO (M3, M4), smCBA-mGC1-treated (M5, M5,

M7) and hGRK1-mGC1-treated (M8, M9) mice used in the

optomotor analyses are shown in Figure 5C to relate visual

function (optmotor behavior) to retinal function (ERG).

Rod ERG amplitudes are partially preserved in the GC1KO

mouse. Studies have shown that even very small ERG

amplitudes can translate into robust visual behavior [13] and

that ERG activity (particularly in mouse) does not always

reliably predict behavioral performance [38]. In fact, some

LCA2 patients who received AAV-RPE65 therapy were found

to exhibit behavioral restoration despite a complete lack of ERG

response [39]–[40]. Optomotor testing revealed that scotopic,

rod-mediated visual acuities and contrast sensitivities of

untreated GC1KO eyes are very similar to isogenic, +/+
controls (data not shown). For this reason, it was impossible to

compare rod-mediated visual restoration in treated vs. untreated

eyes using these behavior tests. It is likely therefore that any

future studies of the effects of AAV-mediated mGC1 expression

on rod function in this mouse model will have to be evaluated at

the level of ERG.

Cone photoreceptors are preserved in AAV-mGC1-
treated GC1KO mice

Representative untreated GC1KO retinal sections immuno-

stained with an antibody against cone arrestin revealed the

characteristic disorganization and detachment of cone outer

segments (Figure 6B). On the contrary, cone outer segments were

intact and cone arrestin distribution appeared normal in treated

GC1KO and +/+ retinal sections (Figure 6A,C,D, respectively).

While not quantified in these retinal sections, these eyes also

exhibit an apparent increase in cone cell densities relative to

untreated controls. To quantify cone cell abundance, treated mice

were sacrificed three months post-injection and retinal whole

mounts from their treated and untreated eyes stained with an

antibody against cone arrestin. Qualitatively, it appeared that cone

photoreceptors were preserved as a result of treatment with both

the smCBA-mGC1 and hGRK1-mGC1 vectors (Figure 7).

Because cone cell loss progresses from central to peripheral retina

(most notably inferior hemisphere) in the GC1KO mouse [18], we

focused on comparing cone counts in these two areas. Cone cell

quantification revealed a statistically significant difference in the

cone densities of treated vs. untreated eyes. Cones were

significantly more abundant in the central and inferior retinas of

a representative hGRK1-mGC1-treated retina relative to untreat-

ed, contralateral control (P,0.001 and ,0.001, respectively)

(Figure 7A). Similar differences were seen in central and inferior

areas of a representative smCBA-mGC1-treated retina and its

contralateral control (P = 0.008 and ,0.001, respectively)

(Figure 7B). Raw cone cell counts from each respective whole

mount are found in Table S1. P14- treatment of GC1KO mice

with either therapeutic vector is therefore capable of preserving

cone photoreceptor structure for at least three months (the longest

time point evaluated in this study), a result we anticipated given

the robust electrophysiological and behavioral restoration that also

was observed.

Discussion

This is the first demonstration of gene-based restoration of both

visual function/vision-elicited behavior and cone preservation in a

mammalian model of GC1 deficiency. Importantly, results were

obtained using a well characterized, clinically relevant AAV

vector. Our results build upon two previous attempts to rescue

vision in animal models of GC1 deficiency, both of which reported

incomplete success [13]–[14]. Our study differs in that the species-

specific (murine) GC1 cDNA was incorporated into the therapeu-

tic vector. Why bovine GC1 failed to restore retinal function or

visual behavior to the GC1KO mouse in previous studies remains

unclear.

Three ongoing clinical trials for Rpe65-LCA (LCA2) have

demonstrated the ability to target a therapeutic transgene to the

retinal pigment epithelium thereby restoring retinal function and

visually-evoked behavior to patients [31],[39],[40],[45]. However,

the need to efficiently target therapeutic vectors to photoreceptor

cells is required for the treatment of many other retinal disorders.

Restoration of visual behavior following cone-specific targeting of

a therapeutic transgene has been reported in several animal

models of cone dysfunction [33],[46]–[47]. Our findings add to

this array of gene therapy tools because they are the first

demonstration that visual behavior can be restored to an animal

model following delivery of a gene targeted to both rod and cone

photoreceptors, not just cones. This was achieved through the use

of a serotype 5 AAV vector which has proven effective at targeting

photoreceptors in a number of animal species including mouse,

dog and monkey [33],[46]–[50]. Our methods differ from recent

Table 1. Statistical comparison of the photopic visual
functions of +/+, P14-treated and untreated GC1KO mouse
eyes as measured by optomotor behavior.

Photopic Acuity

WT Tx no Tx

Number of Values 4 5 9

Mean 0.4183 0.3919 0.163

Standard Deviation 0.0456 0.07731 0.03954

P-value

WT vs Tx 0.5671 Not significant

WT vs no Tx ,0.0001 *

Tx vs no Tx ,0.0001 *

Photopic Contrast Sensitivity

WT Tx no Tx

Number of values 4 5 9

Mean 11.94 11.16 1.27

Standard Deviation 3.03 7.37 0.31

P-value

WT vs Tx 0.4186 Not significant

WT vs no Tx ,0.0001 *

Tx vs no Tx ,0.0001 *

Under photopic conditions, P14 treatment with either AAV5-smCBA-mGC1 or
AAV5-hGRK1-mGC1 produces acuity and contrast sensitivity similar to normal
GC1+/+ animals. Treated eyes have significantly better acuity and contrast
sensitivity than untreated GC1KO eyes. Each mouse was tested for 4–6 trials per
condition. Data from each animal was then averaged to obtain the means for
each condition. The standard deviation listed is the standard deviation of the
individual mouse means. P-values were calculated using an unpaired t-test.
*P,0.0001.
doi:10.1371/journal.pone.0011306.t001
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reports of restoration of retinal function in mouse models of

AIPL1-LCA [36]–[37] and RPGRIP-LCA [51] which employed

serotype 8 AAV as a means to confer therapy. While AAV5 has a

slower onset of transgene expression than AAV8 [52], there is

evidence that AAV8 has the increased potential for transfer across

synapses which may limit its use for photoreceptor-targeted gene

therapy in humans [53]. Our results suggest that the well-

characterized AAV5 vector is sufficient for targeting therapy to

photoreceptor cells.

Promoter choice is another vital component of any gene

replacement strategy. For the purposes of targeting expression to

photoreceptors, we chose to use the photoreceptor-specific

hGRK1 promoter as well as the well-characterized, ubiquitous

smCBA promoter. Both drove murine GC1 expression exclu-

sively in photoreceptor cells. Similar to previous reports, hGRK1-

mediated transgene expression was limited to photoreceptor cells

[36]–[37]. More specifically, GC1 expression was found only in

photoreceptorouter segments. smCBA-mediated GC1 expression

was similar with an added rare presence of the transgene product

in photoreceptor inner segments and cell bodies. However, like

the hGRK1 vector, the majority of transgene expression was

localized to photoreceptor outer segments. Neither promoter

drove any off-target expression suggesting that any expression

from the smCBA vector in RPE cells is negligible or very

inefficient, perhaps due to the instability of mGC1 within the

context of the incorrect retinal cell type. A recent study showed

that, when used in conjunction with AAV, hGRK1 also

efficiently drove AIPL1 expression exclusively in rod and cone

photoreceptors of AIPL1 mutant mice [36]. Sun et al. (2010)

suggest this promoter would be well-suited for human applica-

tion. However, another report revealed that the specificity of

hGRK1 promoter in canine retina is quite different [28]. hGRK1

drove transgene expression exclusively in rod photoreceptors of

the canine retina, except when very high viral vector titers were

used [28]. It was speculated that the discrepancy between murine

and canine retina was due to a species-specific difference in

expression of G-protein coupled receptor kinases in rods and

cones. GRK1 is expressed in rods and cones of mice and rats, but

is only found in rods of the canine retina [54]. Desensitization of

cones in these species is modulated by GRK7, a cone-specific

isoform [54]. In monkey and human retinas, GRK1 is localized

to rods but is also co-expressed with GRK7 in cones [54]. We

postulate that the lack of redundant GRK isoforms may be

responsible for the high acitivity of hGRK1 in mouse cones [28].

However, the existence of these isoforms in human retina may

limit the ability of hGRK1 to efficiently target both cell types.

The activity of this promoter therefore deserves careful

examination in the non-human primate retina. Our study also

showed that the smCBA promoter drove no off-target transgene

expression in the GC1KO retina. This is a truncated version of

the chimeric CMV-chicken beta-actin promoter (CBA). CBA has

been shown to be safe, effective and persistent when used in proof

of concept experiments and in clinical trials of retinal disease

[14],[31],[39]–[40],[45],[49], [55]–[56] and is perhaps better

suited for translation into the clinic.

The GC1 null genotype produces a recessive cone dystrophy in

the GC1KO mouse. LCA1 patients, in addition to having cone

degeneration and extinction of photopic ERG responses also

exihibit rod degeneration and extinction of scotopic ERGs. The

phenotypic differences between mouse and man are thought to be

attributed to a species-specific dependence on GC2, a cyclase

proven to support rod function in the GC1KO mouse [22].

Indeed, a GC1/GC2 double knockout mouse phenotypically

resembles human LCA1 [22]. Additional studies will be required

to evaluate the effects of AAV-mediated GC1 expression in rod

photoreceptors. While we observed some instances of increased

rod-mediated ERG responses in treated eyes of the GC1KO

mouse, this effect was not as consistent as that seen for cone

responses upon treatment. It is possible that the treatment effect

was less obvious in rods due to residual GC2-mediated function.

For this reason, it could be informative to test our therapeutic

construct(s) in the GC1/GC2 double knockout mouse. Regardless,

it is likely that GC1 will need to be targeted to both cones and rods

of LCA1 patients. We believe our clinically relevant smCBA-

containing vector may be well suited for this task.

Finally, it is important to note that LCA1 patients maintain

photoreceptor cell bodies for decades [6],[12] and therefore may

Figure 6. Cone arrestin expression in cone photoreceptors of +/+,
GC1KO, AAV5-smCBA-mGC1-treated and AAV5-hGRK1-mGC1-
treated mice. Untreated GC1KO retinas contain characteristic disorga-
nized, detached cone outer segments (B), whereas cone outer segments
were intact and cone arrestin distribution appeared normal in treated
GC1KO (C,D) and +/+ (A) retinal sections. All retinas were taken from mice 3
months post treatment or age matched untreated controls. Scale bar in
D = 100 mm. OS-outer segments, IS-inner segments, S-synaptic terminals.
doi:10.1371/journal.pone.0011306.g006
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have a relatively large age window for gene replacement therapy. In

fact, maintenance of macular morphology in LCA1 patients is far

better than that seen in LCA2 patients of similar age [12]. In

addition, the number of patients affected by LCA1 is approximately

double that affected by LCA2 [8], [9]. The results of three ongoing

clinical trials for LCA2 have revealed safety and efficacy [39]–[40],

[45] with some patients exhibiting visual gains sufficient to generate a

new locus of fixation or pseudo-fovea [55]. The fact that some LCA2

patients treated with AAV-RPE65 exhibited profound improvements

despite the relatively poor integrity of their retinas [55] argues

strongly for the development of an AAV-based therapy for treating

LCA1. The improved structural integrity of their retinas relative to

other LCA patients suggests that they may have even more to gain

from gene replacement therapy.

Supporting Information

Table S1 Cone cell counts in retinal whole mounts from

hGRK1-mGC1-treated, smCBA-mGC1-treated and untreated

GC1KO mouse eyes. Five samplings were taken from identical

areas of each central/inferior retina; values were averaged and

standard deviations calculated. P values were calculated between

respective groups. Standard t-tests were used to compare densities

in each eye. Significant difference was defined as P,0.05.

Figure 7. AAV-mediated GC1 expression preserves cone photoreceptors in GC1KO mice. Representative retinal whole mounts from AAV5-
hGRK1-mGC1 treated (A, right), AAV5-smCBA-mGC1-treated (B-right) and contralateral, uninjected GC1KO eyes (A and B, left) stained for cone arrestin
reveal that cone photoreceptors are preserved in GC1KO mice treated with AAV5-mGC1 for at least 3 months post treatment (the latest time point
evaluated in this study). Cone cell densities were counted (see materials and methods) in central and inferior regions of treated and untreated GC1KO mice.
Significant differences were found in both areas following treatment with either viral vector. All retinas were taken from mice 3 months post treatment.
doi:10.1371/journal.pone.0011306.g007
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Found at: doi:10.1371/journal.pone.0011306.s001 (9.29 MB TIF)
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