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Abstract
Complex interactions between genes and environment result in a sodium-induced elevation in blood
pressure (salt sensitivity) and/or hypertension that lead to significant morbidity and mortality
affecting up to 25% of the middle-aged adult population worldwide. Determining the etiology of
genetic and/or environmentally-induced high blood pressure has been difficult because of the many
interacting systems involved. Two main pathways have been implicated as principal determinants
of blood pressure since they are located in the kidney (the key organ responsible for blood pressure
regulation), and have profound effects on sodium balance: the dopaminergic and renin-angiotensin
systems. These systems counteract or modulate each other, in concert with a host of intracellular
second messenger pathways to regulate sodium and water balance. In particular, the G protein-
coupled receptor kinase type 4 (GRK4) appears to play a key role in regulating dopaminergic-
mediated natriuresis. Constitutively activated GRK4 gene variants (R65L, A142V, and A486V), by
themselves or by their interaction with other genes involved in blood pressure regulation, are
associated with essential hypertension and/or salt-sensitive hypertension in several ethnic groups.
GRK4γ 142V transgenic mice are hypertensive on normal salt intake while GRK4γ 486V transgenic
mice develop hypertension only with an increase in salt intake. GRK4 gene variants have been shown
to hyperphosphorylate, desensitize, and internalize two members of the dopamine receptor family,
the D1 (D1R) and D3 (D3R) dopamine receptors, but also increase the expression of a key receptor
of the renin-angiotensin system, the angiotensin type 1 receptor (AT1R). Knowledge of the numerous
blood pressure regulatory pathways involving angiotensin and dopamine may provide new
therapeutic approaches to the pharmacological regulation of sodium excretion and ultimately blood
pressure control.
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1.1 Introduction
Dopamine is important in the regulation of sodium balance and blood pressure via renal
mechanisms [1,2] The affinity of dopamine for its receptors is in the nanomolar range; higher
concentrations occupy other GPCRs [1,2]. Circulating dopamine concentrations (picomolar
range) are not sufficiently high to activate dopamine receptors, but high nanomolar
concentrations can be attained in dopamine-producing tissues (e.g., renal proximal tubule,
jejunum). Independent of innervation, renal proximal tubules synthesize dopamine that is not
converted to norepinephrine [1,2]. Dietary sodium and intracellular sodium are the major
determinants for the renal tubular synthesis/release of dopamine [3–9]; the stimulatory effect
of increased dietary sodium on renal dopamine production is impaired in some hypertensive
humans [10–12]. Locally generated dopamine, which is secreted preferentially into the renal
tubular lumen, and acts in an autocrine/paracrine manner [1,2,13], is responsible for over 50%
of incremental sodium excretion, especially when sodium intake is increased. The increase in
renal sodium excretion due to dopamine is caused by inhibition of sodium transporter and pump
activities, in the short-term, and a decrease in the expression of several sodium transporters,
in the long-term. The inhibitory effect of dopamine on sodium pump activity is tissue/cell-
specific. Indeed, in alveolar epithelial cells, dopamine stimulates rather than inhibits sodium
channel and pump [14–16]. The short-term inhibition of sodium transport by dopamine
involves interaction at caveolin-1 rich plasma membrane microdomains followed by their
internalization, via scaffolding proteins [17–32]. The long-term inhibition of sodium transport
by dopamine may involve the regulation of protein expression [33].

Dopamine can also affect sodium balance by regulating fluid and sodium intake via the
“appetite” centers in the brain [34–36] and gastrointestinal transport [37]. Dopamine regulates
the secretion/release of other hormones and humoral agents [38–44] that also regulate sodium
balance and blood pressure (1). These hormones may interact with dopamine to increase (e.g.,
atrial natriuretic peptide [45], prolactin [46]) or decrease its inhibitory effect on sodium
transport (e.g., angiotensin II [47–50], insulin [51,52]). Oxidative stress and inflammation also
impair dopamine receptor function [53–58]. This article reviews the role of dopamine and
dopamine receptor subtypes and their regulation by G protein-coupled receptor kinase (GRK4),
with especial emphasis on GRK4 type 4 (GRK4), in essential hypertension.

2.1 Renal dopamine receptor subtypes
In mammals, dopamine exerts its actions via two receptor classes, D1-like and D2-like, that
belong to the α group of the rhodopsin-like family of GPCRs[1,2,59]. The D1-like receptors,
D1 (D1R) and D5 (D5R) subtypes (also called D1AR and D1BR in rodents), stimulate adenylyl
cyclases [1,2,60]. The D1R, but not D5R, couples to GO [61]. In contrast, D5R, but not D1R,
couples to Gz and Gα12/13 [62,63]. The D1-like receptors are also linked to Gαq [64–67]. The
linkage of G protein subunits to the specific D1-like receptor is tissue-specific. In fibroblasts,
the D1R couples to Gαq and phospholipase C [68]. More recently, the D5R has also been linked
to stimulation of phospholipase C activity of neural tissue (hippocampus, cortex, and striatum)
[69]. In neural (striatal) cells, D1R mediated-stimulation of phospholipase C requires the
presence of D2R, while D5R, by itself, increases calcium mobilization that is inhibited by
D2R [70]. However, in a pituitary adenoma rat cell line, GH4C1, transfected with the D5R, the
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D5R actually decreases inositol phosphate production [71]. Therefore, the linkage between
D1R and D5R to phospholipase C activation is cell-specific.

The D2-like receptors, D2R, D3R, and D4R, couple to G-proteins Gαi and Go, inhibit adenylyl
cyclase and calcium channel activities, and modulate potassium channel activity [1,2,60].
There are two isoforms of D2R; postsynaptic D2R effects are mediated by the long isoform,
D2LR, while presynaptic D2R effects are mediated by the short isoform, D2SR [60]. There
could be seven distinct alternatively spliced D3R variants. The full-length D3R and a shorter
receptor isoform, the D3SR, bind to dopamine. There are five other alternatively spliced D3R
variants that do not bind dopamine, including D3Rnf, but regulate receptor dimerization [72].
Different numbers of 16 amino acid repeats in the third cytoplasmic loop cause several human
D4R isoforms (e.g., D4-2, D4-4, and D4-7) [73]. The role of these D4R isoforms remains to
be determined. However, the D4R long (at least one 7 to 10 repeat) has been reported to be
associated with higher diastolic and systolic blood pressure [74].

The D3R may also couple to Gαq in renal proximal tubule cells [75]. As stated above, the
D1R and D2R heterodimer stimulates phospholipase C but the D2SR can stimulate
phospholipase D, independent of D1R [76]; the latter enzyme is inhibited by D5R [57]. These
effects need not negate each other because, as mentioned earlier, the D2SR is presynaptic, while
the inhibition of phospholipapse D by D5R occurs in renal proximal tubule cells. The D4R may
also regulate phospholipase C-coupled D1-like receptor action, e.g., D1-like receptor-mediated
grooming [77].

All of the dopamine receptor subtypes are expressed in the renal tubule and renal vasculature.
However, dopamine receptors are not distributed evenly along the mammalian nephron. All
members of the dopamine receptor family are present in the renal proximal tubule. The
medullary thick ascending limb of Henle expresses D1R, D3R, and D5R while the cortical thick
ascending limb expresses D3R only. The distal convoluted tubule expresses D1R and D3R,
while the collecting duct expresses all members of the dopamine receptor family except D2R
[1,78,79].

Dopamine inhibits sodium transport at multiple sites along the renal tubule and acts on multiple
targets (NHE1 [80], NHE3 [22,75,81,82], Na/PiIIa[24,31,83,84], Na+/HCO3

− cotransporter
[30], Cl−/HCO3

− exchanger [85], Na+/K+ATPase [17–19,23,27,28,37,50,86–91], and probably
NCC [92]. Dopamine, via the D4R, may also inhibit ENaC [93,94] and arginine vasopressin-
dependent sodium transport and water permeability [94]. Dopamine stimulates NKCC2 in
medullary thick ascending limb, but because Na+/K+ATPase is inhibited, overall transport is
decreased [95]. There is tissue specific regulation of sodium transport by dopamine. For
example, in pulmonary alveolar cells, dopamine stimulates Na+/K+ATPase [91], and D2LR
stimulates Na+/K+ATPase in murine fibroblasts [96]. D1R and D2R, on the one hand, and
Na+/K+ATPase, on the other, can also negatively regulate each other in HEK293T cells by
direct protein-protein interaction [97]. While the inhibition of Na+/K+ATPase in the kidney by
dopamine under conditions of NaCl excess is beneficial, inhibition of Na+/K+ATPase activity
in neuronal cells by high concentrations of dopamine can lead to cell death [98]. Inhibition of
Na+/K+ATPase activity in vascular smooth muscle cells would increase vascular resistance,
as has been reported in the rat tail [99]. Low concentrations of dopamine, however, decreases
systemic vascular resistance, probably by other mechanisms [100–102], e.g., opening of
potassium channels [103] that is mediated by D5R but not D1R, at least in human coronary
arteries [104].

The autocrine/paracrine regulation of renal tubular sodium transport, via D1-like receptors, is
mediated by tubular and not by hemodynamic mechanisms [105–108]. Thus, systemically
administered dopaminergic drugs may not mimic the autocrine/paracrine function of
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dopamine. However, D3R may regulate glomerular dynamics [109]. The quantitative
contribution of a particular dopamine receptor subtype to renal sodium transport and
glomerular dynamics has not been studied. However, the D1R is responsible for ≈80% of D1-
like receptor activity in renal proximal tubules [110] while the D5R may be more important in
the distal nephron [92,111]. Each of the dopamine receptor subtypes, alone, or via interaction
with the other dopamine receptor subtypes or other GPCRs regulate sodium transport in a
unique fashion [1,2,78]. Indeed, disruption of any of the dopamine receptor genes in mice
results in hypertension, the pathogenesis of which is specific for each subtype [1,78].

3.1 Regulation of dopamine receptor function
As with other GPCRs, dopamine receptor signal transduction is regulated precisely [112–
119]. Loss of receptor responsiveness (desensitization) is a mechanism that dampens short-
term agonist effects following repeated agonist exposure. At least three families of regulatory
molecules contribute to GPCR desensitization: second messenger-dependent protein kinases,
GRKs, and arrestins [112–119]. Desensitization of GPCRs involves phosphorylation,
sequestration/internalization, and degradation of receptors.

Homologous desensitization, in response to agonist stimulation, occurs via action of a member
(s) of the GRK family [112–119]. Heterologous desensitization, mediated by second
messenger-dependent kinases, occurs when a decrease in receptor responsiveness is induced
by a ligand other than its own specific ligand. The phosphorylation of GPCRs, including the
D1R, leads to the binding of a member(s) of the arrestin family, uncoupling of the receptor
from its G protein complex, and a decrease in its functional response. The phosphorylated
GPCR/β-arrestin complex undergoes endocytosis/internalization via clathrin-coated pits into
a series of endosomal units, where the GPCR is dephosphorylated, and recycled back to the
plasma membrane. The unrecycled GPCRs are degraded in proteasomes and/or lysosomes.

3.2 G protein-coupled receptor kinase (GRK) and dopamine receptors
There are seven GRKs in humans: GRKs 1 and 7 belong to the opsin kinase family, GRKs 2
and 3 belong to the β-adrenergic receptor kinase (βARK) family, and GRKs 4, 5, and 6 belong
to the GRK4 family [116]. The tissue distribution of GRK4 is different from the other GRKs
[117]. GRKs 1 and 7 are expressed in rods and cones, respectively. GRKs 2, 3, 5, and 6 are
ubiquitously expressed while GRK4 is expressed to a greater extent in the testes and
myometrium and to a lesser extent in specific brain areas [119], intestines [120], and the kidney
[112,117].

3.3 GRK2 and GRK4 and renal D1R
The D1R (but not D5R), expressed endogenously in human [19,112,121] and rat renal proximal
tubule cells [52,122,123], is regulated to a lesser extent by GRK2 and to a greater extent by
GRK4 in human kidneys [121], but the converse may be true in rat kidneys [53,123]. In a
human embryonic kidney cell line (HEK293), overexpression of GRK3 also desensitizes the
rat D1R [114]; a role for GRK5 in the desensitization of the rat D1R is not settled (113, 114).
GRK6 is not be important in the regulation of D1R in the kidney [124] but it is important in
the desensitization of the D1R in intestinal crypt cells [120], emphasizing the importance of
cell type in D1R regulation.

3.4 GRK4 isoforms and renal dopamine receptors
GRK4 is constitutively active. This may be due to its ability to bind to inactive GαS and Gβ
subunits [125]. Unlike the other GRKs, GRK4 has several splice variants. Four GRK4
(GRK4α, β, γ, and δ) splice variants have been reported in humans, five in rats, and one in mice
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[117,119,121,122,126–128]. Only the GRKα in humans, GRK4A in rats, and the only GRK4
reported in mice are closely homologous (approximately 70%) [119,126,127].

The GRK4 isoform that desensitizes D1R and D3R is cell-specific; GRK4γ in CHO and human
renal proximal tubule cells [112,129]. GRK4α also desensitizes D1R in HEK-293 cells [113,
114], and D3R in human renal proximal tubule cells [129]. There is also GRK4 isoform-specific
regulation of other GPCRs. GRK4α desensitizes the metabotropic glutamate receptor [130],
G protein-coupled calcium-sensing receptor [131], GABAB [132,133], luteinizing hormone/
human chorionic gonadotropin receptor [119,134], FSH receptor [135], and mutant (Y326A)
β2 adrenergic receptor [135].

GRK4α does not desensitize the angiotensin type 1 receptor (AT1R) [137], formyl peptide
receptor [138], mGlu4 metabotropic glutamate receptor [139], mGlu5 metabotropic glutamate
receptor [140], parathyroid hormone receptor [112,141], wild-type β2 adrenergic receptor
[137,142], and m1, m2, m3, m4, and m5 muscarinic receptors [143]. GRK4α is also not linked
to Gαq [144]. GRK4β desensitizes the luteinizing hormone/human chorionic gonadotropin
receptor [139], and possibly the V2 vasopressin receptor [145]. GRK4δ, in the presence of
GRK5 and GRK6, desensitizes the m2 muscarinic receptor [143] and luteinizing hormone/
human chorionic gonadotropin receptor [119], but sensitizes the m3 muscarinic receptor
[143]. GRK4δ does not desensitize D1R (unpublished data). As mentioned earlier, GRK4γ,
especially its gene variants, desensitizes the D1R [112], and D3R [129], and only at high
concentrations does GRK4γ minimally desensitize the luteinizing hormone/human chorionic
gonadotropin receptor [119]. GRK4γ wild type does not desensitize the parathyroid hormone
receptor [122], and AT1R but GRK4 142V and GRK4 486V may actually increase, directly
or indirectly, AT1R expression and function [146,147]. GRK4 142V increases AT1R
expression in mice on normal salt diet [146], while GRK4 486V increases AT1R expression
in mice on high salt diet [147].

3.5 GRK regulation of dopamine receptors other than D1R (Table 1)
The D2R is regulated by GRK2, GRK3, GRK5, and GRK6 [148,149], with D2SR affected to
a greater extent than D2LR [73]. However, GRK2 or GRK3, but not GRK5 or GRK6, is
involved in the desensitization of the calcium signal mediated by D1R/D2R interaction [150].
The D3R is regulated by GRK2, GRK3 [151], and GRK4 (GRK4γ>GRK4α) [129]. The GRK
regulating D4R is not clear but does not seem to involve either GRK2 or GRK3 [73]. The GRK
regulating D5R is also not clear but does not seem to involve GRK4 [47]. These studies show
that the GRK regulation of dopamine receptor subtypes is GRK isoform-specific.

3.6 GRK and sodium transporters
GRK2 decreases the degradation of ENaC [152,153]. GRK2 and GRK3 phosphorylate and
may aid in the internalization of Na+K+ ATPase [154]. It is unclear how this effect of GRK2
on D1R desensitization and decreased internalization of Na+K+ ATPase is modulated [17–
19,23,27,28,37,50,86–91]. NKCC1 colocalizes with GRK3 in rodent olfactory epithelia, but
its regulation by GRK3 has not been demonstrated [155].

4.1 GRK4 and essential hypertension
Hypertension is the most expensive disease in the USA. It affects 73 million Americans, causes
50% of heart diseases and 75% of strokes, and costs in excess of $69 billion in 2008.
Hypertension affects a third of middle-aged adults, but the prevalence is higher (65%) in
individuals above 60 years of age [156,157]. About 30% to 50% of essential hypertension is
thought to be heritable, but the genetic causes of essential hypertension have been difficult to
identify [158]. More than one gene is undoubtedly involved, because Mendelian dominant and

Jose et al. Page 5

Biochim Biophys Acta. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



recessive traits are not readily discernible in hypertensive subjects, except in those with
monogenic forms of hypertension. Indeed, recent genome-wide association studies (GWAS)
have been able to identify only 2% of genetic factors believed to influence blood pressure
[159–164]. However, the GWAS were not designed to identify predisposing genes engaged in
a complex network of gene-gene and gene/environment interactions [165], e.g., the genes (or
factors) underlying salt sensitivity, a dietary sodium-induced increase in blood pressure that
may or may not be in the hypertensive range.

Several criteria have been suggested to link gene(s) to complex disorders such as salt sensitivity
and hypertension, but the definitive evidence is provided by swapping one phenotype for
another (i.e., transgenic studies) [166]. Many genes have been proposed to be causal of
hypertension. Their gene variants, including those identified in the GWAS, however, have not
been shown to produce hypertension in mice. Furthermore, gene overexpression and deletion
studies performed in mice must take into account the salt sensitivity of the strain. C57BL/6
mice from Jackson Laboratories have an impaired ability to excrete a NaCl load which results
in an increase in blood pressure when their salt intake is increased; others are salt-resistant
(e.g., SJL mice) [167]. We have reported recently that the renal D1-like receptor function is
impaired in salt-sensitive C57BL/6 Jackson mice. Renal GRK4 expression is increased in salt-
loaded C57BL/6 Jackson mice [167]. Deletion of Grk4 in C57BL/6 mice prevents the
development of salt-sensitive hypertension [168]. Renal D1-like receptor function is also
impaired in the spontaneously hypertensive rat (SHR), a strain with increased expression of
GRK4E. Renal cortical silencing of GRK4 attenuates the increase in blood pressure with age
in the SHR but not in normotensive Wistar-Kyoto rats whose blood pressures minimally
increase with age [121].

The GRK4 locus on human chromosome 4p16.3 is linked to the increase in blood pressure
from childhood to adulthood [169] and to hypertension in adults [170]. Interestingly,
adolescents with GRK4 65L/142V/A486 haplotype have a greater increase in blood pressure
with age than those with the wild-type GRK4 haplotype [171]. We have reported [172–174]
with subsequent confirmation by others [175,176] that GRK4 gene variants (65L, 142V, and
486V) are associated with essential hypertension in several ethnic groups: Caucasians, Chinese,
Ghanaians, and Japanese. In salt-sensitive hypertensive Japanese the presence of three GRK4
variants impaired the natriuretic effect of a dopaminergic drug and predicted salt-sensitive
hypertension correctly in 94% of cases [174]. In Ghanaians, multilocus genotype combinations
of angiotensin-converting enzyme insertion/deletion, and GRK4 65L had an estimated
predictive accuracy for hypertension of 70% [173], confirming an earlier study [177].

A meta-analysis revealed a significant association of GRK4 486V with hypertension, with an
odds ratio of 1.5 (95% CI: 1.2 to 1.9) [117]. One study however, did not find an association of
GRK4 486V with the top fifth percentile of diastolic blood pressure of subjects with white
European ancestry [178]. However, the authors did not test the association of GRK4 gene
variants with hypertension [178]. Another study did not find an association between GRK4
142V and hypertension but did find an association between variants of the promoter region of
D1R and hypertension [179]. The discordance between this report in European Caucasians
[179] and other reports involving other populations may be a result of the influence of genetic
background in the phenotypic expression of a quantitative trait essential hypertension.
Interestingly, low renin hypertension is less frequent in the Caucasian (15–20%) [180] than in
other populations (40–60% in Japanese) [181]. In our Japanese study, the single best genetic
model for low-renin hypertension included only GRK4 A142V, by itself, or GRK4 A142V
and CYP11B2, with an estimated predictive accuracy of 78% [174]. Ethnicity may also explain
some of the discordances. GRK4 65L and GRK4 142V are less frequent while GRK4 486V is
more frequent in Asians than in African-Americans. GRK4 486V is also more frequent in
Hispanic and non-Hispanic whites than in African-Americans [182]. Recent GWAS did not
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identify GRK4 as associated with hypertension [158–164]. This is probably because salt
sensitivity and gene-gene interaction were not taken into account. Previous studies have shown
that it was critical to assess the association of GRK4 with hypertension, in conjunction with
other GRK4 SNPs [174] and genes, e.g., ACE with GRK4 65L [173,177], ADRB2, TH, and
GRK4 486V [176]. GRK4 A142V and GRK4 A486V are, moreover, not included in the
Affymetrix or Illumina platforms, respectively.

Early in the process of D1R [20,86,183,184] and D3R stimulation [129], D1R and D3R increase
their respective activities, in part, by the recruitment of intracellular D1R and D3R to the plasma
membrane. This recruitment of D1R and D3R to the plasma membrane requires the presence
of GRK4γ wild-type [129,184]. However, as indicated above [117], sustained D1R and D3R
stimulation results in desensitization caused by their phosphorylation and internalization.
Resensitization occurs by receptor dephosphorylation, caused by protein phosphatase 2A in
D1R [183], and recycling to the plasma membrane. Sorting nexins also help in the recycling
of GPCRs to the plasma membrane. The GRK4γ wild-type (but not GRK4α wild-type)
desensitizes the AT1R and decreases AT1R expression in the kidney [146,147]. Therefore,
GRK4 wild-type is necessary for D1R and D3R [129,184] to exert their renal autocrine/
paracrine natriuretic function, in part by inhibiting the antinatriuretic effect of AT1R [146,
147]. However, GRK4 gene variants constitutively modify, phosphorylate, and internalize
D1R [112] and presumably the D3R also, preventing their recycling to the plasma membrane.
GRK4 gene variants also increase AT1R expression in mice. This involves GRK4γ 142V on
normal salt diet and by GRK4γ486V on high salt diet [146,147]. While GRK4γ 142V transgenic
mice are hypertensive even on a normal salt diet [112,146,185], GRK4γ 486V transgenic mice
develop hypertension only when stressed by a high salt diet [147,186]. Depending upon the
genetic background of the mouse, overexpression of human GRK4γ wild-type converts a salt-
sensitive phenotype to a salt-resistant phenotype, while overexpression of human GRK4γ 486V
converts a salt-resistant phenotype to a salt-sensitive phenotype [146,186]. These phenotype
changes, related to differential actions of human GRK4γ variants and their regulation of D1R
and other GPCRs, could be taken as evidence of the “apparent polygenicity” of hypertension.

GRK4γ 65L transgenic mice are normotensive on a normal salt diet (unpublished data) but
whether or not some form of stress is needed for the hypertensive phenotype to develop is not
known [173,177]. It is known however, that adolescent African-Americans expressing GRK4
65L, when exposed to mental stress, respond with an increase in blood pressure and a decrease
in sodium excretion [187].

4.2 Role of other GRKs in hypertension
GRK activity and GRK2 expression are increased in lymphocytes of patients with essential
hypertension and SHRs [188]. Overexpression of GRK2 in vascular smooth muscle in mice
produces hypertension and impairs the vasodilatory action of β-adrenoceptors [189]. The
vasoconstrictor response to angiotensin II is also impaired in these mice, which is at odds with
the increased reactivity and sensitivity to angiotensin II in essential hypertension [190].
Interestingly, GRK2 activates the epithelial sodium channel by phosphorylating the C terminus
of its β subunit, making it insensitive to the inactivating effects of ubiquitin protein ligases
Nedd4 and Nedd2 [191]. Although GRK2 polymorphisms have not been associated with
human essential hypertension, increased renal expression of GRK2, which is increased with
aging [87], in the insulin/obesity/metabolic syndrome [52,58,123], and by oxidative stress
[32,53,58], impairs D1R function in rats. More importantly, increased GRK2 expression (but
not GRK5) has been reported in lymphocytes of African-Americans with hypertension [192].
GRK5 overexpression in vascular smooth muscle cells in mice also increases blood pressure.
The hypertension in male GRK5 transgenic mice is caused, in part, by decreased β1-adrenergic
receptor activity, whereas the high blood pressure in female mice is caused, in part, by increased
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AT1R activity [193]. The increase in GRK5 expression in hypertension may be secondary not
primary; angiotensin II-induced GRK5 up-regulation in the rat aorta may be due to
hypertension per se [194].

5.1 GRK4 and pharmacogenomics in essential hypertension
GRK4 polymorphisms may provide predictive pharmacogenetic insight into therapeutic
antihypertensive strategies. In hypertensive African- Americans, the GRK4 65L/A142
haplotype is predictive of a poor response to β-adrenergic blockade [195]. Our preliminary
studies in hypertensive Japanese suggest that the absolute decrease in blood pressure in
response to angiotensin receptor blockers (ARBs) is associated with GRK4 142V [196].
(Interestingly, ARBs also normalize the blood pressure of GRK4γ 142V transgenic mice
[146].) The addition of a diuretic to the non-responders of ARBs decreased blood pressure in
hypertensive Japanese with the GRK4 486V gene variant. These studies suggest that the
pharmacogenetics of GRK4 can be important in guiding the therapy for hypertension.

6.1 Summary
In summary, there is GPCR specificity of GRK4, especially the human GRK4γ isoform, in the
regulation of human D1R and D3R (Figure 1). The human GRK4 locus is linked to hypertension
and the human GRK4 gene variants, either alone or in conjunction with variants of other genes,
are associated with essential hypertension. The ability of humans with salt-sensitive essential
hypertension to excrete a chronic sodium load is inversely correlated with the number of human
GRK4 allelic variants. Therefore, salt sensitivity may be imparted by the GRK4 gene variants,
and this effect seems to be dependent on the number of allelic variants present. Human
GRK4γ 142V transgenic mice are hypertensive even on a normal sodium intake while human
GRK4γ 486V transgenic mice develop hypertension only when given a high salt diet.
Additional genes contribute to the predictive value of GRK4 single nucleotide polymorphisms
for salt sensitivity and hypertension, suggesting that epistasis is responsible for the etiology of
this complex polygenic disorder. GRK4 gene variants may not only be predictive of
hypertension phenotypes (e.g., salt sensitivity, low plasma renin) but may also predict response
to antihypertensive drugs.
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Figure 1.
GRK4 and renal dopamine and angiotensin type 1 receptor interaction During conditions of
moderately increased NaCl intake, the renal D1R is stimulated by dopamine produced in the
kidney. The D1R or D3R, whose coupling to G protein subunits is regulated by G protein-
coupled receptor kinase type 4 (GRK4), inhibits sodium reabsorption in several nephron
segments. This results in an increase in sodium excretion and maintenance of normal blood
pressure. GRK4 wild-type (GRK4 WT) also negatively regulates AT1R transcription. The
decrease in AT1R expression, caused by GRK4 WT, facilitates the inhibitory effect of D1R on
renal sodium transport. In essential hypertension, constitutively active variants of GRK4 not
only uncouple D1R and D3R from G protein subunits, but also increase AT1R transcription
in the kidney. These effects impair the ability of the kidney to excrete the excess sodium load,
resulting in sodium retention, and ultimately hypertension.
Green = normal coupling of D1R and D3R to G protein subunits, Red = uncoupling of D1R
and D3R from G protein subunits
Green arrows = stimulatory, Red arrows = inhibitory
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Table 1

G protein-coupled receptor kinases involved in specific dopamine receptor signaling.

Dopamine Receptor Subtype G protein-coupled receptor kinase References

D1R (in differentiated kidney cells)
(in embryonic kidney cells)

GRK2, GRK4 (GRK4α and GRK4γ in humans#, GRK4E in rats)
GRK2, GRK3, GRK4α but not GRK4γ, GRK5*

53,112,121–123
113,114

 (in intestines but not kidney cells) GRK6 120,124

D2R GRK2, GRK3, GRK5, GRK6 73,148,149

D3R (in kidney cells) GRK2, GRK3, GRK4γ>GRK4α 129,151

D4R GRK2 or GRK3? 73

D5R ?

*
GRK5 increased agonist-dependent phosphorylation of rat D1R one report (114), but not in another report (113). GRK4α and GRK4γ desensitize

the human D1R (112) while GRK4α but not GRKγ desensitizes the rat D1R (113).

?unknown or not definite

Biochim Biophys Acta. Author manuscript; available in PMC 2011 December 1.


