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Abstract
Human brain development is created through continuing complex interactions of genetic and
environmental influences. The challenge of linking specific genetic or environmental risk factors to
typical or atypical behaviors has led to interest in using brain structural features as an intermediate
phenotype. Twin studies in adults have found that many aspects of brain anatomy are highly heritable,
demonstrating that genetic factors provide a significant contribution to variation in brain structures.
Less is known about the relative impact of genes and environment while the brain is actively
developing. We summarize results from the ongoing National Institute of Mental Health child and
adolescent twin study that suggest that heritability of different brain areas changes over the course
of development in a regionally specific fashion. Areas associated with more complex reasoning
abilities become increasingly heritable with maturation. The potential mechanisms by which gene–
environment interactions may affect heritability values during development is discussed.

Human structural, functional, and behavioral brain development emerges as an ongoing
dialogue between a child’s genetic heritage and his or her environment. Understanding how
these factors interact at different points during development may help to identify how and when
to intervene to help children grow to their fullest potential. However, establishing the links
between specific risk factors and developmental outcomes has proven to be extremely
challenging. Research of complex neurodevelopmental disorders such as schizophrenia,
autism, and attention-deficit/hyperactivity disorder (ADHD) has shown that a particular
clinical syndrome may be associated with a wide variety of genetic risk factors, suggesting that
there may be multiple routes from nucleotide to behavior (Abrahams & Geschwind, 2008;
Owen, Craddock, & O’Donovan, 2005; Samaco, Hogart, & LaSalle, 2005; Walsh et al.,
2008). Even disorders arising from a well-characterized genetic abnormality such as Rett
syndrome or fragile X can show broad variability in the resultant phenotype, speaking to the
complexity of the interactions with other genes or environmental factors that affect how a given
genetic feature is expressed (Dykens & Hodapp, 2007; Hessl et al., 2001; Hoffbuhr, Moses,
Jerdonek, Naidu, & Hoffman, 2002; Loesch et al., 2003; Moretti & Zoghbi, 2006). Relating
behavioral differences to specific environmental factors is also not straightforward. The effects
of environmental toxins such as prenatal alcohol exposure depend not only on the timing and
quantity of the exposure, but also on the genotype of both fetus and mother (Warren & Li,
2005). Individuals exposed to traumatic environments typically show a range of responses,
raising the question of what factors provide resilience as well as vulnerability (Curtis &
Cicchetti, 2003; Yehuda, Flory, Southwick, & Charney, 2006).
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Brain Structural Features as Endophenotypes
One approach to disentangling these complex interactions is to use stepping stones such as
brain structure to help bridge the gap between genetic and environmental risk factors and
behavior (Figure 1). Genes do not code for behaviors, but for the building blocks of the cells
whose interactions eventually give rise to those behaviors; conversely, the translation of
environmental input into persistent behavioral changes occurs through alterations in brain
systems and even structures. The advent of brain imaging revolutionized the neuroscience of
behavior by making it possible to noninvasively study the brain in vivo. As an example, cortical
thickness can be measured at a level of resolution high enough to detect differences in regions
across the cortex that are also known to be functionally and cytoarchitecturally heterogeneous.
The association of a particular behavioral feature with thickness in a specific cortical area may
be a clue that the mechanisms involved in the development of that cortical region are also
relevant to that behavior. In addition, finding that specific genetic polymorphisms affect a
cortical region directs us to the functions of associated gene products.

The first landmark report of brain structural differences associated with a psychiatric disorder
described increased ventricular volume in individuals with schizophrenia (Johnstone, Crow,
Frith, Husband, & Kreel, 1976). Since then, a large body of observations has accumulated
relating differences in brain structure and function to typical and atypical aspects of behavior,
and work in this area is accelerating as techniques improve. In the following discussion we
will be focusing on brain structural imaging, but it should be noted that there is increasing
interest in the exploration of similar consideration for other brain measures such as functional
magnetic resonance imaging (fMRI; Menzies et al., 2007; Pearlson & Calhoun, 2007).

To take schizophrenia as an example, structural abnormalities have been reported in many
areas of the brain. Abnormalities such as enlarged ventricles and decreased cortical gray matter
in the frontal and mediotemporal lobes are found relatively frequently, whereas changes in
other brain regions, such as decreased volume of the thalamus and cerebellum, are more
variable (Pearlson & Calhoun, 2007; Shenton, Dickey, Frumin, & McCarley, 2001; van Haren,
Bakker, & Kahn, 2008). Some of the disparity is likely due to changes in imaging methodology
inherent in the technical advances of the past 3 decades. In addition, it has become apparent
that most findings are relatively subtle, and that many studies are underpowered (Meda et al.,
2008; van Haren et al., 2008). Heterogeneity of patient populations may also be a contributing
factor. Clinically, individuals with schizophrenia can have very different presentations,
depending on the relative severity of different types of symptoms, and an ongoing debate
concerns how best to account for the imperfect correspondence between the clinical diagnostic
entity and the underlying neurobiology (Hyman, 2007). An additional complication arises
when considering the stage of the disorder. Results from several longitudinal studies have
indicated that decreases in gray matter volume become more pronounced over the course of
the disorder. It is not known to what extent the progressive gray matter loss is a fundamental
aspect of the disease process, is due to treatment with antipsychotic medications, or occurs as
a response to the stress and potential environmental hardships associated with having a chronic
severe psychiatric illness. A notable finding has been that individuals who develop
schizophrenia during childhood appear to have a much more rapid and severe loss of cortical
gray matter than those with the more typical onset in early adulthood, raising the additional
question of how disease-related factors interact with normal brain developmental processes
(Thompson, Vidal, et al., 2001).

Such considerations are not limited to schizophrenia; they are also applicable for neuroimaging
studies in other neurodevelopmental disorders such as autism and ADHD.
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The question thus arises regarding how to disentangle “state” differences related to factors such
as age and disease stage, environmental factors, medication, or comorbidities, from “trait”
genetic heterogeneity that may indicate different genetic risk factors, potentially associated
with different disorder subtypes or causal pathways.

One approach has been to search for endophenotypes, simpler characteristics that are associated
with the upstream causes of a complex phenotype such as a psychiatric disorder but whose
links to genetic factors are potentially easier to parse (Gottesman & Gould, 2003). Several
requirements are necessary for a trait to be an effective endophenotype. It must be not only
associated with the syndrome of interest but also present independent of disease state. In
addition it should be present in healthy individuals at increased genetic risk for the disorder,
and variance of the trait must be measurably affected by genetic differences, that is, it must be
heritable. Heritability is broadly defined as the amount of variation due to genetic factors. It is
worth recalling that the heritability of a trait refers only to the extent to which genetic factors
affect variation in the trait, and not whether genes play a role in producing the trait itself.

Preliminary results support the exploration of brain structural features as endophenotypes for
neurodevelopmental disorders. Two studies in autism found limbic structures in unaffected
first-degree relatives were more similar to affected family members than healthy controls
(Dalton, Nacewicz, Alexander, & Davidson, 2007; Rojas et al., 2004). Children with ADHD
and their unaffected siblings both had decreases in right pre-frontal gray and matter and left
occipital gray and white matter compared with healthy controls; however, cerebellar
abnormalities were found only in the children with ADHD (Durston et al., 2004). Specific areas
of the cortex were different in healthy monozygotic twins of individuals with schizophrenia
compared to unrelated controls, suggesting some abnormalities in cortical thickness were
related to disease state and other to genetic liability (Cannon et al., 2002; Gogtay et al.,
2003). A recent meta-analysis concluded that there was evidence of decreased gray matter
volume and hippocampal abnormalities in first-degree relatives of individuals with
schizophrenia (Boos, Aleman, Cahn, Pol, & Kahn, 2007). The scope of the conclusions was
limited, however, by the few brain structures in which enough data was available for adequate
analysis. The findings were also criticized on the basis that the available twin data suggest the
heritability of the hippocampus is relatively low (McDonald, Dineen, & Hallahan, 2008),
highlighting the need to establish the heritability of a trait being considered as an
endophenotype.

Twin Modeling
Fisher (1918), Wright (1968), and others in the field of quantitative genetics derived
sophisticated methods of estimating variance components from correlations of traits in family
members with different degrees of relatedness. These techniques make it possible to parcellate
variance in the absence of more precise data regarding what the specific operative genetic and
environmental factors actually are. Twin studies are one of the most powerful study designs
for this purpose. The classic twin model assumes that the amount of genetic material shared
by two family members is 100% in monozygotic (MZ) twins and 50% in dizygotic (DZ) twins.
When twins are raised together, the environment is also assumed to be identical for both
individuals. Increases in phenotypic similarity between MZ twins compared to DZ is ascribed
to genetic factors. Similarity because of shared environmental effects (C) will increase the
similarity between DZ twins. Nonadditive genetic effects will tend to increase the similarity
in MZ twins relative to DZ, providing an estimate of dominance (D). The residual variance (E)
is a combination of environmental factors unique to the individual combined with measurement
error.
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A twin study including MZ and DZ twins who have been raised together can therefore provide
estimates of A, C, or D, and E. C and D cannot be estimated simultaneously because these
measures are negatively confounded with each other; shared environmental effects increase
the correlation between DZ twins, whereas dominance effects increase the correlation between
MZ twins (Evans, Gillespie, & Martin, 2002). These effects cannot be differentiated without
additional data from twins reared apart, in which the effects of shared environment can be more
directly modeled. Inclusion of broader kinships, such as children of twins, allows further
estimation of additional factors such genetic and environment correlation. Sophisticated
methodology such as structural equation modeling (Figure 2) provides the means to create
more flexible models, for example, including data additional family members such as siblings,
or modeling interactions of variance components with factors such as age. It also makes it
possible to test whether particular variance components significantly improve the fit of the
overall model.

Although the twin study design has proven highly useful in partitioning contributors to variance
of complex traits, it relies on some key assumptions that have been questioned. The “equal
environments assumption” is that that the environment for MZ and DZ twins can be treated as
identical. Some researchers have objected to this based on the observation that identical twins
may elicit different social responses than nonidentical twins. Several studies have attempted
to determine to what extent the equal environments assumption is valid, finding that, in general,
the discrepancy between social environments does not seem to play a significant role, although
its potential impact may need to be looked at individually for specific traits (Derks, Dolan, &
Boomsma, 2006; Kendler & Gardner, 1998; Plomin, Willerman, & Loehlin, 1976). Chorionic
differences can be thought of as another type of environmental factor, and there has been some
evidence that chorionic type may influence variance within MZ twins for some phenotypes
(Jacobs et al., 2001), although not all (Hur & Shin, 2008; Loos, Beunen, Fagard, Derom, &
Vlietinck, 2001).

Recent advances in the field of genetics have shown that there may be limitations regarding a
second assumption of the twin model, which is that MZ twins actually have identical genetic
material. Examples of genetic differences have been described (Machin, 1996), and more
recently epigenetic features such as methylation status have been shown to become increasingly
divergent between MZ twin pairs with age (Fraga et al., 2005). More recently, researchers
found a significant incidence of differences in copy number variations in MZ twin pairs,
providing evidence for the presence of somatic mosaicism and the possible contribution of
posttwinning structural variation in chromosomal architecture to phenotypic differences
between identical twins (Bruder et al., 2008). Such work speaks to the potential utility of
integrating modern genome-wide scans with quantitative statistical methods to begin
identifying specific sources of variation.

Heritability of Brain Anatomy
There have now been several studies exploring heritability of different aspects of brain structure
(Baare et al., 2001; Posthuma et al., 2000; Tramo et al., 1998; Wright, Sham, Murray,
Weinberger, & Bullmore, 2002). Results in adult populations have consistently shown that
variation in most brain volumes is highly driven by genetic factors. Topological features such
as gyrification have been less studied, but available reports indicate that cortical folding has
strong environmental influences (White, Andreasen, & Nopoulos, 2002). A study of cortical
gray matter density in 10 MZ and 10 DZ adult twin pairs found regional variation in heritability,
with highest values in frontal and temporal areas (Thompson, Cannon, et al., 2001). An
interesting MRI study of brain volumes in an extended kinship of baboons also found similar
areas to be the most heritable (Rogers et al., 2007).
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The finding that differences in anatomy between individuals are more because of genetic
influences in some brain regions and environmental influences in others raises questions
regarding implications for the associated cognitive functions. In the study by Thompson,
Cannon, et al. (2001), the same regions that were highly heritable were also those that correlated
most strongly with cognitive ability. A multivariate analysis of IQ and brain gray and white
matter volumes in a sample of 24 MZ pairs, 31 DZ pairs, and 25 additional siblings found that
the association between IQ and gray and white matter volumes was because of genetic rather
than environmental factors (Posthuma et al., 2002). A second study by the same group using
voxel-based morphometry described more focal heritable regions of both gray and white
matter, which appeared to be affected by common genetic factors with IQ (Hulshoff Pol et al.,
2006).

These results demonstrate that functionally relevant effects of genetic variation can be detected
in brain structure, an important step toward supporting the validity of brain anatomy as an
intermediate phenotype between genes and behavior. The regional variation of heritability is
also intriguing regarding implications of the relative balance of genetic and environmental
factors for specific cognitive functions. In the studies described above, primary motor and
sensory cortices fell within regions shaped most strongly by environmental factors, possibly
congruent with the role of these regions in adapting to the varying sensory experiences and
motor activities of daily life. By contrast, regions of association cortex which integrate
information from other brain regions and support higher cognitive activities such as language
and executive function were those that more clearly showed effects of genetic variation.

The observation of a high degree of heritability of brain structure is reinforced by the
preliminary findings regarding the effects of genetic polymorphisms on brain structure within
healthy populations (Glahn, Thompson, & Blangero, 2007; van Haren et al., 2008). Brain-
derived neurotrophic factor (BDNF) is a gene that has been linked with susceptibility to
schizophrenia, and has also shown effects on brain morphometric features in healthy controls
(Agartz et al., 2006; Ho et al., 2006). The disrupted in schizophrenia 1 (DISC1) gene, another
susceptibility gene for schizophrenia (Porteous, Thomson, Brandon, & Millar, 2006), was
recently shown to be associated with decreased gray matter volumes in the prefrontal and
anterior cingulate regions in both patients with schizophrenia and healthy volunteers (Szeszko
et al., 2007). However, studies of effects of single genetic polymorphisms are often negative
(van Haren et al., 2008). One of the reasons for this may be lack of attention to the role of
interaction with the environment in gene expression. Another consideration is that genes do
not act in isolation, particular in the generation of complex traits such as brain volumes, and
so statistical methods that are able to model the effects of multiple genes simultaneously may
prove more informative.

An interesting question is whether the heritability values reported in healthy individuals are
similar in individuals with neurodevelopmental disorders. The difficulty of amassing a suitable
sample of affected individuals and family members necessary for this type of analysis is
considerable, and only a few studies have attempted to assess this. The limited data available
suggests that relative contributions of genetic and environmental factors may be different for
some brain structures in affected twins. The most common study design is comparison of MZ
twins who are discordant for the disorder with healthy pairs. Because the genetic contribution
is hypothesized to be the same within MZ twin pairs, increased variation within the discordant
pair suggests the impact of additional environmental or disease-related factors, whereas brain
differences found in both twins of the affected pair compared with the healthy twins imply a
genetic risk factor independent of disease state. Studies have reported increased environmental
contributions to the volumes of the lateral ventricles (Suddath, Christison, Torrey, Casanova,
& Weinberger, 1990; van Haren et al., 2004) and the hippocampus (van Erp et al., 2004) in
twins discordant for schizophrenia.Hulshoff Pol and colleagues (2004) studied gray and white
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matter volumes, and found that gray matter was different between the affected twin and their
sibling, whereas white matter was decreased in both twins compared to controls, suggesting
that white matter differences may be a clearer correlate of genetic vulnerability. A study of
twins discordant for autism also found several structures to be similarly affected in both twins,
whereas cerebellar volumes were only abnormal in the affected individuals (Kates et al.,
2004). The recent findings of epistatic modifications and copy number variation within MZ
twin pairs may make interpretation of brain differences in discordant pairs more complex.

Are the relative roles of genetic and environmental influences on brain structure during
childhood and adolescence static? A recent meta-analysis found that heritability increased for
a range of cognitive and behavioral features, including IQ, externalizing behaviors, anxiety,
and depressive symptoms, although not ADHD (Bergen, Gardner, & Kendler, 2007). The post-
pubertal onset of schizophrenia has raised the question of whether its manifestation could be
related to developmental changes in brain gene expression (Cannon et al., 2003). Studies
directly studying developmental changes in gene expression in animal models have found
marked changes during both pre- and postnatal development. An intriguing study by Stead and
colleagues (2006) compared gene expression across different regions of the brain in mice at
different developmental stages. They found that developmental stage explained more of the
variance in gene expression of different regions than any other factor, speaking to the
importance of considering developmental effects on gene expression. Similar data from human
brain development has been relatively sparse, in part due to the rarity of appropriate postmortem
tissue samples from healthy pediatric subjects. However, a gradually accumulating body of
literature has provided evidence of postnatal changes in genes, including dopamine transporter,
BDNF, and its receptor tyrosine kinase B, among others (Webster, Herman, Kleinman, &
Shannon Weickert, 2006; Weickert et al., 2007).

The noninvasive nature of MRI has now made it possible to quantify genetic and environmental
influences on brain development during childhood and adolescence through the study of
pediatric twins. A challenging aspect of large-scale, multicenter or longitudinal MRI studies
is avoiding potential biases introduced by differences in equipment at different sites or different
times during the study. Measurements such as the volume of subcortical nuclei or the thickness
of the cerebral cortex are dependent on both the resolution of the image and the clarity of the
contrast between gray matter, white matter, and cerebrospinal fluid, and thus methodologic
differences can introduce variation in measurement results (Filippi et al., 1997). For example,
in many older MRI studies, brain images were acquired in slices that were 3–5 mm thick.
Because 3–5 mm is also the depth of the cerebral cortex, studies done at this resolution would
have limited ability to detect changes in cortical thickness, and may even result in different
volumes of brain compartments due to partial volume effects at borders between tissue types.
More subtle confounds can arise from image distortions specific to each individual MRI
scanner, which can result in measurement differences despite otherwise similar image
parameters (Jovicich et al., 2006). A strength of the NIMH investigation has been the stability
of the MRI platform and acquisition parameters throughout the duration of the study.

Although several studies are currently underway, as yet there have been few published reports
of MRI results from pediatric subjects, and the NIH study is the only to date to have had
sufficient sample size across a broad enough age range to explore the issue of effects of age
on the heritability of different brain regions. We therefore will be concentrating on results from
this study.

The NIMH Pediatric Twin Study
Healthy pediatric MZ and DZ twins ages 4–24 years are recruited nationwide as part of a larger
longitudinal study of normal brain development (Giedd et al., 1999). Siblings of twin pairs are
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included in the study as they are able to add to the power to detect shared environmental or
dominance effects (Posthuma & Boomsma, 2000). Following a telephone screen, families are
brought to NIH where participants receive physical examination and interview, participate in
a neurocognitive testing, provide blood to confirm zygosity and for further genetic analysis,
and undergo an MRI. Participants return for follow-up cognitive testing and MRI at
approximately 2-year intervals.

We first studied brain structures including volumes for lobar gray and white matter, caudate
and lateral ventricle, and area of the corpus callosum in 90 MZ twin pairs, 38 same-gender DZ
twin pairs, and 158 singletons (average age = 11.5, SD = 3.5; Wallace et al., 2006). All brain
regions with the exception of the lateral ventricles and cerebellum were significantly heritable,
with genetic factors responsible for between 70 and 90% of variance, similar to previous reports
in adults. When we then looked at the interaction of age with heritability, we found that variance
due to genetic effects increased with age in both gray and white matter. However, in white
matter the environmental variance decreased, whereas in gray matter it increased, leading to a
decrease in the heritability ratio. These findings suggested that heritability indeed changes
during the age span within our study, and that effects are specific for different types of brain
tissue.

We next analyzed heritability of cortical thickness in an expanded pediatric sample (214 MZ
twins, 94 same-gender DZ twins, 64 siblings of twins, and 228 singletons, average age = 11.08,
SD = 3.5; Lenroot, Schmitt, et al., 2007). Cortical thickness measurements were obtained and
at each of 40,062 individual vertices using an automated method developed by colleagues at
the Montreal Neurologic Institute (Lerch & Evans, 2005). Variance parameters were then
estimated with structural equation modeling both for each individual vertex and for the average
thickness in 54 separate cortical regions (Kabani, Le Goualher, MacDonald, & Evans, 2001).

When parameters were calculated with the effects of age accounted for in the model, we found
significant genetic effects in the dorsal prefrontal and superior temporal regions, areas also
reported as heritable in the earlier study done with a different methodology in adults (Figure
3; Thompson, Cannon, et al., 2001).

Additional regions under strong genetic influence in our sample included the superior parietal
lobes, orbitofrontal cortex, and inferior surfaces of the temporal lobes. However, despite the
increased power, the magnitude of heritability estimates was smaller in the pediatric sample
than in the previous adult study. These disparities raised the question of whether they were
because of the larger sample size in the pediatric study, methodologic considerations, or age
differences.

When we looked at how age interacted with heritability values in the pediatric sample, we
found that the pattern depended on the region of the cortex. Regions such as the primary motor
and sensory cortices that were not highly heritable in adults were significantly heritable in
younger children but became progressively less so with time. Conversely, areas that were
strongly heritable in adults were less so earlier in development. Instead, heritability in these
regions gradually increased over childhood and adolescence. In the oldest ages heritability in
the frontal and temporal regions was of comparable magnitude to that reported in the adult
study, suggesting that the lower heritability seen when the sample was taken as a whole may
have related to the lower average age of the sample (Figure 4).

Examination of how individual variance components changed with age showed that the
strongest trend was a decrease in total variance across the cortex, primarily due to decreases
in environmental variance. An opposite trend was seen in some areas, in that genetic variance
increased in the dorsolateral prefrontal and superior parietal lobes, while variance due to
environmental factors also increased in portions of the primary motor and sensory cortices.
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Areas in which nongenetic factors were the chief contributors to variance were extensive. It is
not possible with this study design to separate true unique environmental influences from any
other nongenetic sources of variance, including error, making interpretation more difficult.
However, it is intriguing that these areas included those regions associated with primary motor
and sensory functions, whereas stronger genetic effects were seen more prominently in regions
of association cortex.

Potential Mechanisms for Changes in Heritability With Age
Current theories describe the creation of cortical areas as occurring through the establishment
of a series of genetically controlled anchor points which serve as loci for overlapping gradients
of growth factors (Grove & Fukuchi-Shimogori, 2003). Characteristics of specific cortical
areas develop over time in response to the local combination of growth factors and activation.
It has been argued that primary motor and sensory cortices may serve as core anchor regions
whose earliest development is strongly genetically determined (Rosa & Tweedale, 2005). The
pattern observed here of genetic effects predominating in these core regions early in childhood
may be consistent with their relatively early development, followed by a mature state in which
a high degree of plasticity reflects their roles as the direct intermediaries with the external
environment.

The reason for a decrease in total variance over development, particularly that due to
environmental factors, is not obvious. It may seem more logical that variance because of
environmental factors should increase with age as opportunities for exposure to unique
environmental events extend. For the early-developing cortical regions in which environmental
variance does increase during the age range of our study, this may be the case. However, for
the later developing areas, the heritable phenotype is something that itself is being created over
time. As described earlier, there is an increasing body of literature regarding changes in gene
expression continuing over the course of postnatal development. If genes with particularly
strong effects come on line, they may potentially substantially impact the variance because of
genetic factors. The interaction of genetic with environmental factors over time may also
increase heritability.

One mechanism that has been suggested for this is gene–environment correlation (rGE). rGE
occurs when the same genes affect both a trait and relevant features of the environment, and
also acts to increase the amount of variance ascribed to genetic factors (Kendler & Baker,
2007; Scarr & McCartney, 1983). rGE can be divided into three types. The passive form of
rGE occurs when parents provide both genes and early environmental conditions for their
children. The active form concerns the tendency for individuals to seek environments that
reinforce genetic predispositions The third type, evocative/reactive rGE, refers to the way in
which genetically driven behaviors can result in the creation of specific environmental
responses (Plomin, DeFries, & Loehlin, 1977). The relative prominence of these factors is
likely to change over development, and may increase as children become more independent
and able to choose their own environments.

Other models of gene–environment (G×E) interactions include experience-expectant and
experience-dependent processes, outlined by Greenough and colleagues as mechanisms by
which environmental factors affect brain development (Andersen, 2003; Greenough, Black, &
Wallace, 1987). Experience-expectant refers to the integration of environmental stimuli into
normal patterns of brain development, the classic example being the effects of monocular visual
deprivation on the developing visual cortex as described by Hubel and Wiesel (1998). Specific
times during the development of a particular neural system when certain types of environmental
stimulation must occur for normal development to take place are called critical periods.
Experience-dependent processes are defined in contrast as means by which unique
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environmental factors may affect the developing nervous system in distinctive ways. In this
case the brain may have particular sensitivities to environmental factors such as a trauma at
specific developmental stages, resulting in differing effects on the long-term trajectory
depending on when an event occurred. The prolonged developmental course of the human
brain suggests that these processes may continue to play a role in reaching the mature phenotype
well after birth.

Canalization refers to the frequently observed robustness of mature phenotypes against minor
genetic or environmental perturbations during development, as in the example of compensatory
growth (Flatt, 2005; Schmalhausen, 1949; Tanner, 1963; Waddington, 1942). G×E interactions
have been proposed as one path by which canalization may occur. For example, genetic
determinants of plasticity in response to the environment may constrain structures to develop
along a heritable trajectory from an undifferentiated beginning to a genetically determined
mature state (Garlick, 2002). Repetitive patterns of activity may also sculpt plastic developing
structures. An example of this was described by Zelditch, Lundrigan, and Garland (2004), who
found that variance in murine skull morphometry decreased during early postnatal
development. They hypothesized that high initial variance decreased as initial unorganized
immature patterns of motor activity took on the predictable characteristics of adulthood. Such
a process is reminiscent of those thought to underlie activity-dependent changes in the cerebral
cortex.

This model would suggest that heritability values in mature individuals may be different for
those whose environment was deficient in the necessary environmental features. Studies
regarding the effects of deficient environmental conditions on the heritability of brain structures
in adults are not to our knowledge currently available, and identifying and directly measuring
relevant environmental factors is highly challenging. However, one might speculate that if an
environmental feature during development was an integral component of developing a mature
heritable phenotype, departure from the optimal range for family members would result in an
increase in variance due to their shared environment. Some indirect evidence for this may be
found in the IQ literature. As previously mentioned, IQ increases in heritability over childhood
and adolescence, and shared environmental effects are typically nonsignificant (Plomin,
Fulker, Corley, & DeFries, 1997). Studies of heritability of cognition have found that there is
a G×E interaction such that shared environmental factors become more prominent relative to
genetic factors as socioeconomic conditions worsen (Harden, Turkheimer, & Loehlin, 2007;
Turkheimer, Haley, Waldron, D’Onofrio, & Gottesman, 2003).

Delineating how genetic and environmental factors interact during development is essential to
improve our understanding of causes of psychopathology (Thapar, Harold, Rice, Langley, &
O’Donovan, 2007). The familiar “stress-diathesis” framework arose from the recognition that
individuals possess varying degrees of vulnerability or resilience to environmental stressors.
Twin studies have supported the role of G×E interaction in several different disorders. For
example, studies have found that adverse life events are more likely to result in depression in
both adults and adolescent girls who are also at genetic risk (Kendler et al., 1995; Silberg,
Rutter, Neale, & Eaves, 2001). Children are more likely to exhibit antisocial behavior if they
have both a genetic risk and a history of adverse early experiences, compared to children with
either risk factor separately (Cadoret, Cain, & Crowe, 1983).

Such findings are consistent with a growing body of work on the impact of interactions of
specific genetic polymorphisms with specific environmental risk factors (Moffitt, Caspi, &
Rutter, 2006). Emerging data from large-scale studies that measure genotypes, relevant
environmental factors, and behavioral or health outcomes are indicating that identifying
specific G×E interactions is possible. One of the first examples was the finding that maltreated
children were more likely to develop behavioral problems if they also had a specific functional
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polymorphism in the gene encoding a neurotransmitter-metabolizing enzyme, monoamine
oxidase A (Caspi et al., 2002). The effects of polymorphism in the promoter region for the
gene encoding the serotonin receptor have also been demonstrated to contribute to G×E
interactions (Caspi et al., 2003; Kaufman et al., 2004; Kendler, Kuhn, Vittum, Prescott, &
Riley, 2005).

In the twin model described earlier, the effects of this type of interaction would be subsumed
under genetic effects, and it is likely that such G×E interactions over time are contributing to
the increase in heritability of some brain regions. Identifying which environmental conditions
affect outcome for individuals with specific genetic variations will be a major advance toward
the ultimate goal of knowing how to tailor interventions to facilitate healthy brain development.

Conclusion
Our studies to date have demonstrated regionally specific changes in heritability. Previous
studies have shown that the nonlinear characteristics of brain developmental trajectories only
become prominent when longitudinal data and large samples are available (Giedd et al.,
1999; Lenroot, Gogtay, et al., 2007), and that trajectories may be more informative regarding
neurodevelopmental differences between groups than cross-sectional measures (Shaw et al.,
2006). Longitudinal analyses will be necessary to determine whether these trajectories
themselves are heritable, and our group and others have embarked on following pediatric twins
over time to be able to address such questions. Another implication of the findings by ourselves
and others that the brain continues to show dynamic changes over the life span is that heritability
may also continue to change after early adolescence. Studies of age effects on heritability at
the other end of the life span are also sparse. A longitudinal study in elderly male twins
described ongoing strong genetic effects despite age-related changes in cortical features such
as increased size of the lateral ventricles, supporting that age-related changes during senescence
may also be genetically mediated (Pfefferbaum, Sullivan, & Carmelli, 2004).

The contrast between findings of increased heritability of cortical thickness with age seen here
and decreased heritability of lobar gray matter volumes reported in a subset of this population
(Wallace et al., 2006) appears to be driven chiefly by differences in the interaction of
environmental variance with age, which increased for gray matter volume but decreases for
cortical thickness. Cortical gray matter volume is affected both by the thickness of the cortex
and its surface area, which are determined by different types of cell division during the original
formation of the cortex (Rakic, 1988). The surface area is also dependent on factors such as
gyrification, which have been found to increase during this age range (Sowell et al., 2002).
Although developmental changes in both cortical thickness and surface topology during
childhood and adolescence have been reported (Gogtay et al., 2004; Sowell et al., 2002), little
is known about how longitudinal changes in these measurements may relate to each other.

It will also be important to begin to look more closely at how the interactions between brain
regions are affected by genetic and environmental factors. Behaviors arise from the interactions
of many different brain regions, and a variety of neuropsychiatric disorders have demonstrated
the presence of impaired functional or structural connections between brain regions (Friston,
2005; Minshew & Williams, 2007; Rich et al., 2008). Studies have found measures of brain
connectivity such as EEG coherence to be highly heritable (van Beijsterveldt, Molenaar, de
Geus, & Boomsma, 1998) and to show developmental changes (Thatcher, North, & Biver,
2007; van Baal, Boomsma, & de Geus, 2001). Resting state fMRI studies have also found
increased correlations between activity in different brain regions with maturation (Fair et al.,
2008). In a previous study of a subset of this population, we found that variance decreased and
strength of intracortical correlations increased in several of the same association areas that
demonstrate increasing heritability in the current study (Lerch et al., 2006). It is tempting to
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speculate that increasing heritability in these late-developing regions may be also be related to
the increasing functional integration of these areas in maturing cortical networks.

Following on the question of the relative roles of genes and environment during brain
development is determining which specific genetic and environmental factors are most
responsible. Multivariate analyses begin to open the way to asking whether the same factors
are affecting different components of brain structure or function. For example, a principal
components analysis of a cross-sectional sample within our data has shown that a single genetic
factor appears to be responsible for 60% of the variance in cortical thickness, and that regions
that are functionally and/or structurally connected also tend to be affected by similar genetic
factors (Schmitt et al., 2008). A next step will be to determine if or how these factors change
with age.

The increased heritability of later maturing areas such as the prefrontal cortex, superior
temporal gyri, and superior parietal lobes parallels the increase of heritability in cognitive
features such as IQ and language abilities associated with these areas (Plomin et al., 1997).
One implication is that studies using brain morphometry as an endophenotype to link genes
and behavior will need to consider age in the analysis, as brain structural elements may be
suitable at one developmental stages but not another. Our findings are also congruent with
evidence from other fields that different brain regions may be particularly sensitive to
environmental factors at specific periods during childhood and adolescence.
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Figure 1.
Factors contributing to variance. Dominance effects: AA and aa are homozygous alleles. If the
genotypic effects were completely additive, the phenotype of the heterozygous allele Aa would
be the mean value between them. The degree to which the heterozygote departs from this is
the degree of dominance (d).
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Figure 2.
The ACE model. The rectangles contain the observed variables, and the circles contain the
latent variables. Single- and double-headed arrows indicate the causal and correlational
(variance is correlation with self) relationships, respectively. [A color version of this figure
can viewed online at journals.cambridge.org/dpp]
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Figure 3.
The regions of significant heritability. Voxels are color coded for the level of significance
following applications of the FDR threshold. Red voxels are significant at p ≤ .05, green voxels
are significant at p = .05–.10, and blue voxels are significant at p = .10–.15, corresponding to
uncorrected p values of .002, .016, and .042, respectively.
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Figure 4.
Age as a continuous variable: heritability (a2) at ages 5, 12, and 18 years for superior, inferior,
right, and left cortical surfaces. Values at each age were derived from the modeled interaction
of age as a continuous variable with estimates of genetic and environmental variance
components. The color bar shows the scale of heritability values from 0.0 to 1.0.
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