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Abstract
Humans differ in their initial response to, and subsequent abuse of, addictive drugs like cocaine.
Rodents also exhibit marked individual differences in responsiveness to cocaine. Previously, we
classified male Sprague-Dawley rats as either low or high cocaine responders (LCRs or HCRs,
respectively), based on their acute low-dose cocaine-induced locomotor activity, and found that with
repeated drug exposure LCRs exhibit greater cocaine locomotor sensitization, reward and
reinforcement than HCRs. Differential cocaine-induced increases in striatal dopamine help to explain
the LCR/HCR phenotypes. Differential levels of stress and/or anxiety could also contribute but have
not been explored. Here we measured open-field activity and plasma corticosterone levels both pre-
and post-cocaine treatment in LCRs, HCRs, and saline-treated controls. The three groups did not
differ in baseline locomotor activity or corticosterone levels. Importantly, LCR/HCR differences in
corticosterone levels were also not observed following acute cocaine (10 mg/kg, i.p.), when cocaine
induced approximately 3.5-fold greater locomotor activity in HCRs than LCRs. Additionally, there
were no LCR/HCR differences in plasma corticosterone levels following five days of once-daily
cocaine, during which time LCRs developed locomotor sensitization such that their cocaine-induced
locomotor activity no longer differed from that of HCRs. Likewise, there were no group activity
differences in any of four concentric zones within the open-field chamber. In summary, neither
plasma corticosterone levels nor thigmotaxis-type anxiety appears to be a factor that contributes to
the observed cocaine-induced LCR/HCR behavioral differences.
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Humans display individual differences in cocaine responsiveness [7,8,10]. Only a subset of
the population reports lifetime cocaine use, and ~15% of these users will transition to an
addiction [33]. Among various contributing factors, stress and/or anxiety may predispose
individuals to initiate drug use or renew drug-seeking/relapse behavior [31]. Understanding
the bases for individual differences may allow clinicians to focus specific treatments on a
subpopulation of drug users.

Dysregulation of both dopamine (DA) neurotransmission and the hypothalamic-pituitary-
adrenal (HPA) axis contribute to cocaine abuse [15]. Cocaine increases DA levels by inhibiting
DA transporter (DAT)-mediated DA uptake [28]. Cocaine can also increase plasma levels of
corticosterone or cortisol, the stress-related hormone released from rat or human adrenal
glands, respectively [4,21]. Conversely, stress, and subsequently corticosterone, can increase
DA neuronal firing and levels [27,32]. In humans, increasing cortisol levels increases
subjective feelings of stress, which predict a greater propensity for cocaine relapse [3].
Collectively, these studies motivate investigation of individual differences in drug-
responsiveness as they relate to stress-hormone levels.

Animal models of individual differences in stress responsiveness have been developed [6,12,
24]. An open-field can be used to assess exploratory behavior, novelty responsiveness, and
anxiety [5]. The low and high responder model (LR and HR, respectively) classifies drug-naïve
animals based on their locomotor response to a novel open-field environment [24]. LR/HR
classification predicts cocaine self-administration acquisition [20], but does not as reliably
predict psychostimulant-induced activity or conditioned place preference [16,24]. Higher
sustained corticosterone levels in drug-naïve HRs, compared to LRs, have been associated with
greater susceptibility to self-administer psychostimulants [25,26]. Despite higher
corticosterone, HRs also exhibit greater activity in anxiogenic environments, compared to LRs
[14]. Likewise, outbred rats with more elevated plus maze open-arm explorations exhibit higher
cocaine self-administration break points [6]. However, rats with high, compared to low, stress-
induced self-grooming levels have greater cocaine self-administration break points and
corticosterone levels, but also greater elevated plus maze-measured anxiety [12]. Thus, the
varied results using these animal models motivated our investigation of whether individual
differences in stress and/or anxiety could help explain individual differences in initial cocaine
responsiveness.

Our model for individual differences is focused on initial low-dose cocaine responsiveness.
Previously, we have classified male Sprague-Dawley rats as low or high cocaine responders
(LCRs or HCRs, respectively), based on the median split of their acute cocaine-induced
locomotor activity [17,22,29]. LCR/HCR classification predicts cocaine-induced locomotor
sensitization, cocaine-conditioned place preference, and motivation to self-administer cocaine
[1,17,30], and is related to individual differences in striatal DAT number/function and
extracellular DA levels [22,29,30]. To assess the potential contribution of stress and/or anxiety
to the LCR/HCR phenotypes, here we collected intravenous blood samples for plasma
corticosterone determinations before and after acute and repeated cocaine, while concurrently
measuring central and peripheral zone locomotor activity in open-field chambers.

The male outbred Sprague-Dawley rats (n=24; Charles Rivers Laboratories, Wilmington, MA)
weighed 240–260 g on arrival. Rats were housed on a 12-hr light-dark cycle (0700–1900) with
ad libitum water and chow. The University of Colorado Denver IACUC approved these studies.
This research program operates in accordance with the National Institutes of Health’s
guidelines (NIH Publication No. 80-23, revised 1996).

(−)-Cocaine hydrochloride was a gift from the National Institute on Drug Abuse (RTI
International, Research Triangle Park, NC). Ketamine, xylazine, heparinized saline,

Nelson et al. Page 2

Neurosci Lett. Author manuscript; available in PMC 2011 May 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



bupivacaine, and Penicillin-G® were obtained from the University of Colorado Hospital
Pharmacy or Office of Laboratory Animal Resources (Aurora, CO).

Intravenous catheters were constructed and inserted into the right jugular vein under ketamine
(100 mg/kg, i.m.) and xylazine (10 mg/kg, i.m.) anesthesia [17]. Published pre- and post-
operative care and handling protocols were used [17]. Catheters were flushed with 200 µL of
0.9% sodium chloride containing 30 USP U/mL heparin.

Locomotor activity and LCR/HCR classification protocols were adapted from published
methods [22,29,30]. All testing was conducted during the light phase of the circadian cycle
(0900–1200), when endogenous corticosterone levels are stable. At least 6 days post-surgery,
animals were habituated first to the behavioral testing room (60 min) and then to the open-field
activity chamber (90 min; San Diego Instruments, San Diego, CA). After habituation, animals
were removed from the chamber, injected with cocaine (10 mg/kg, i.p.) or saline (1 mL/kg,
i.p.) and placed back into the chamber for 60 min. Locomotor activity was recorded as
horizontal beam breaks, converted to distance traveled, and summed into bins (cm/10 min).
The chamber (40×40×30 cm) was divided into four concentric zones: Zone 1 (‘Center’; middle
100 cm2), Zone 2 (‘Inner’; a 10-cm wide rectangle surrounding Zone 1), Zone 3 (‘Outer’; next
10-cm wide rectangle), and Zone 4 (‘Edge’; 10 cm-wide edge). Horizontal beam breaks within
each zone were used to calculate ‘Zone Activity.’ Rats received five once-daily injections of
cocaine or saline. On Days 1 and 5, locomotor activity was recorded and repeated blood
sampling was performed. Animals received their injection in their home cage on Days 2 and
4 and in the activity chambers on Day 3 (data not shown).

Venous blood samples (200 µL) were collected into tubes containing 5 µL each of EDTA (100
mg/mL) and aprotinin (5,000 KIU/mL). Samples were centrifuged (4°C, 13,000 rpm, 8 min)
and stored (−80°C). ‘Baseline’ samples were collected on Days 0 and 4 (1000 hr). On Days 1
and 5, samples were collected 30 min before (1000 hr) and 20, 40, and 60 min after injection.
Following blood collection, 200 µL of saline was infused for volume replacement. Plasma
corticosterone was measured using the ACTIVE® Rat Corticosterone enzyme immunoassay
(Diagnostic Systems Laboratories, Webster, TX), per the manufacturer’s instructions. The
intra- and inter-assay variations were 5 and 4%, respectively.

Each day’s activity and corticosterone data were analyzed with two-way repeated measures
analysis of variance (RMANOVA; SPSS-16.0, Chicago, IL). Significant main effects were
analyzed with one-way ANOVA or RMANOVA. When Mauchly’s test of sphericity failed,
significance was tested using the Hunyh-Feldt corrected degrees of freedom, indicated by an
asterisk (*). Paired or unpaired t-tests were used to compare locomotor activity or
corticosterone levels between Days 0 and 4 or 1 and 5. Pearson r values (GraphPad Prism, La
Jolla, CA) were used to compare relationships between cocaine-induced activity and
corticosterone. Activity counts in each zone, and then each group, were analyzed on Day 1 or
5 using one-way ANOVAs. Data are expressed as mean ± standard error of the mean (SEM).
Significance was set at p<0.05.

Following the initial cocaine injection, rats exhibited individual variability in cocaine-induced
locomotor activity. Rats were readily classified as LCRs or HCRs using the median split of
cocaine-induced locomotor activity 20 min post-injection (Fig.1a), prior to the first post-
injection blood sample. None of the rats subsequently defined as LCRs or HCRs or the saline-
treated controls differed in their locomotor response to the novel environment, after 20 (Fig.
1a; HCR = 2089±113 cm/20 min, LCR = 1938±99, Saline = 2179±180) or 60 (HCR = 4361
±391 cm/60 min, LCR = 3913±297, Saline = 4914±500) min of chamber exposure. Likewise,
there were no group differences in baseline activity 20 min prior to injection (Fig.1a,
‘Baseline’). Conversely, 20 min post-cocaine, HCRs exhibited ~3.5-fold greater cocaine-
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induced locomotor activity compared to LCRs (Fig.1a; HCR = 1251±133 cm/20 min, LCR =
354±56). Fig.1b shows the locomotor activity time course. Two-way RMANOVA revealed
main effects of time [*F(8.36,175.6) = 44.49, p<0.001] and group [*F(2,21) = 4.22, p=0.03], and
a time by group interaction [*F(16.73,175.6) = 2.11, p=0.009]. One-way ANOVA revealed
significant differences between LCRs and HCRs 30 and 50 min post-injection (p<0.01 and
p<0.001, respectively; Fig.1b). HCRs also differed from saline-treated controls 20 min post-
injection (p<0.05); LCRs differed significantly from controls only at 30 min post-injection
(p<0.05).

All rats received five once-daily injections of cocaine or saline. Similar to Day 1, there were
no group differences in pre-injection activity (Fig.1c). On Day 5 (Fig.1c), two-way
RMANOVA revealed a main effect of time [*F(9.99,209.7) = 20.0, p<0.001], but not a group or
time by group interaction. Importantly, LCRs developed locomotor sensitization such that their
activity on Day 5 was significantly higher than on Day 1 [Fig.1d; t(7) = 2.60, p<0.05] and no
longer differed from HCRs. Post-injection locomotor activity did not differ between Days 1
and 5 for either HCRs or saline-treated controls (Fig.1d).

Chronically-implanted catheters allowed for rapid, repeated blood collection over multiple
days. Baseline plasma corticosterone levels were measured on Days 0 and 4, one day prior to
each locomotor activity/blood sampling experimental day (Days 1 and 5), and no differences
were observed between LCRs, HCRs, or saline-treated controls on either day (Fig.2a or 2b,
respectively). Means on Days 0 and 4 were ~500 and 730 ng/mL, respectively. On Day 1, 30
min prior to injection, group plasma corticosterone levels also did not differ significantly (Fig.
2a). On Day 1, two-way RMANOVA revealed a main effect of time [F(3,60) = 24.08, p<0.001]
but not group, and a time by group interaction [F(6,60) = 2.38, p=0.04]. One-way RMANOVA
revealed main effects of time for LCRs, HCRs, and saline-treated controls (p≤0.001). However,
notably, one-way ANOVAs at all time points revealed no between group differences (Fig.2a),
suggesting the corticosterone responses reflect primarily effects of injection stress. Therefore,
on Day 1, LCRs and HCRs had similar plasma corticosterone levels at time points when their
locomotor activity profiles differed significantly.

On Day 5 of repeated cocaine or saline treatment, again no significant group differences were
detected in corticosterone levels (Fig.2b). Two-way RMANOVA revealed a main effect of
time [*F(2.37,49.8) = 10.5, p<0.001], but not a group or time by group interaction. To further
assess post-injection corticosterone levels, group means for all post-injection corticosterone
levels (20, 40, and 60 min) were calculated; however, no LCR/HCR differences were revealed
on either Day 1 or 5 (data not shown). Further, irrespective of LCR/HCR classification,
cocaine-induced locomotor activity and plasma corticosterone levels in individual rats were
not correlated on either Day 1 (r = 0.22) or 5 (r = 0.17; data not shown).

Novel environments can induce anxiety in a variety of behavioral paradigms, including an
open–field. We measured the activity counts of each rat in four concentric zones. There were
no group differences in activity counts in any zone, before or after cocaine or saline injection,
on either Day 1 or 5 (Table 1). However, all groups spent more time in the zone closest to the
chamber walls (Zone 4) compared to the center (Zone 1), an indication of similar levels of
thigmotaxis-type anxiety (Table 1; p<0.001). Despite the limitations of this ‘anxiety’ measure
[5], this paradigm was selected because it could be employed concurrently with LCR/HCR
classification, sensitization measures, and blood collection.

Collectively, our results support the conclusion that neither plasma corticosterone nor
thigmotaxis-type anxiety is a major contributor to LCR/HCR differences in cocaine
responsiveness. First, all drug-naïve animals, including those subsequently classified as LCRs
or HCRs, exhibited similar locomotor responses to a novel environment and basal plasma
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corticosterone levels. Second, following acute low-dose cocaine, when HCRs exhibited ~3.5-
fold greater cocaine-induced activity than LCRs, plasma corticosterone levels did not differ.
Third, this lack of group differences in hormone levels persisted after five days of repeated
cocaine treatment, during which time LCRs developed locomotor sensitization, whereas HCRs
and saline-treated controls did not. Paralleling their similar corticosterone levels, LCRs, HCRs,
and saline-treated controls also had similar thigmotaxis-type anxiety responses.

It was important to address the possibility that individual differences in stress and/or anxiety
could help explain LCR/HCR differences in cocaine responsiveness [17,22] because results
from other animal models support this idea. For example, individual differences in stress
responsiveness, measured behaviorally or via corticosterone levels, have been linked to
variability in drug responsiveness [6,12,24]. Furthermore, individual differences in plasma
corticosterone levels of drug-naïve rats, which correlate with their novelty responsiveness (i.e.
LR/HR phenotype) and plus maze open-arm explorations, predict psychostimulant self-
administration [14,25,26]. Additionally, inbred Fischer 344 and Lewis rats, which differ in
cocaine responsiveness, exhibit strain differences in behavioral and biochemical measures
following corticosterone treatment [23]. In other models, rats with variable levels of anxiety-
related behaviors, including stress-induced self-grooming and proclivity for elevated plus maze
open-arm explorations, have inter-individual differences in self-administration behavior and
corticosterone levels [6,12].

The literature also suggests, however, that corticosterone levels need not contribute to LCR/
HCR behavioral differences because: (1) locomotor activity and corticosterone levels are not
always correlated, (2) corticosterone is not the sole mechanism by which stress can induce DA-
related neuronal/behavioral changes, and (3) corticosterone-mediated changes in DA can be
‘state-dependent.’ First, despite the overall correlation between novelty-induced activity and
corticosterone levels in LRs and HRs, no group differences in hormone levels were observed
30 minutes after novelty exposure when LR/HR activity differences were greatest [26]. Other
studies report a lack of cocaine-induced corticosterone sensitization following repeated cocaine
[18]. Likewise, our experiments demonstrated no corticosterone sensitization and no
correlations between locomotor activity and corticosterone levels. Second, stress can modulate
drug self-administration, DA neuronal firing, and extracellular DA levels via corticosteroid
receptors on DA neurons [11,27,32]. However, corticosterone is not the sole mechanism by
which stress can induce increases in extracellular DA, as this effect is not blocked by a
glucocorticoid receptor antagonist and extracellular DA and plasma corticosterone levels are
not necessarily correlated [13]. Recently, transgenic mice were used to demonstrate that unique
populations of glucocorticoid receptors influence anxiety behaviors and cocaine self-
administration, suggesting a dissociation of the mechanisms by which corticosterone mediates
these behaviors [2]. Third, the phenomenon of corticosterone-mediated changes in DA levels,
locomotor activity, and self-administration behavior appears to be ‘state-dependent.’ For
example, the corticosterone-induced amplification of the behavioral effects of HRs, compared
to LRs, is related to basal LR/HR dopaminergic and corticosterone differences [25].
Specifically, there is a basal corticosterone threshold that is met by HRs, but not LRs, that
contributes to their individual differences in self-administration [9]. Additionally, cocaine-
induced locomotor activity can depend on baseline corticosterone levels, not cocaine-induced
corticosterone levels, and is reduced following adrenalectomy or glucocortocoid antagonist
administration [19].

In the case of the LCR/HCR model, we demonstrated here that all of the rats tested had
equivalent baseline and post-injection corticosterone levels. It warrants mentioning that blood
sampling for the corticosterone measurements may have affected locomotor activity, but its
influence did not appear to vary between groups, as their activity profiles were similar to those
previously published [1,22]. Clearly, there is a disconnect between equivalent corticosterone
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levels and significant variability in cocaine-induced locomotor activity, such that one does not
predict the other. Therefore, while corticosterone can have a modulatory effect on the
psychomotor and reinforcing effects of cocaine, the results from our LCR/HCR model of
individual differences in cocaine responsiveness support the idea that this can be secondary to
cocaine’s direct actions at DATs and subsequent differences in DAT-mediated DA clearance
and extracellular DA [22,29,30].

Significant research has focused on individual differences in drug responsiveness and drug
abuse susceptibility in humans [7,8] and drug reward and reinforcement in rodents [17,22,
29], as well as the contributions of stress and anxiety through HPA-axis dysregulation [3,15,
19,26]. While LCRs exhibit low initial responsiveness to cocaine compared to HCRs, LCRs
develop cocaine-induced locomotor sensitization, conditioned place preference, and greater
motivation to self-administer cocaine [1,17,29]. Here, we determined that LCRs and HCRs do
not differ in either basal or post-cocaine levels of plasma corticosterone, suggesting that this
stress hormone is not a major contributing factor to the observed LCR/HCR phenotypes. Our
present results underscore a unique feature of the LCR/HCR model and, importantly, further
differentiate this model from the other rat models previously discussed. Specifically, we
observed no LCR/HCR differences in corticosterone levels or thigmotaxis-type anxiety.
Without these additional individual differences in stress and/or anxiety, the LCR/HCR model
appears to have more specific utility for elucidating the role of individual variability in (1)
DAT function and DA levels, and (2) how initial drug-responsiveness relates to subsequent
abuse liability, which vary between humans [7,8,10].
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Figure 1.
Differential cocaine-induced open-field locomotor activity and sensitization. (a) Summed
novelty (first 20 min), baseline (20 min before injection), and post-injection (20 min) locomotor
activity on Day 1 in saline-treated control rats (n=8) and cocaine-treated rats (n=16; 10 mg/kg,
i.p.), subsequently classified as LCRs (n=8; white bar) or HCRs (n=8; black bar) based on the
group median (horizontal line). (b,c) Time courses of locomotor activity on Days 1 (b) and 5
(c). Arrows represent time of blood samples (see Fig.2); dotted line indicates time of cocaine
or saline injection. (d) Cocaine- and saline-induced locomotor activity (20 min) on Days 1 and
5 prior to the first post-cocaine blood sample. ++p<0.01, +++p<0.001, LCR vs. HCR; #p<0.05,
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###p<0.001, HCR vs. Saline; *p<0.05, LCR vs. Saline; &p<0.05, LCR Day 1 vs. LCR Day 5.
Mean ± SEM.
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Figure 2.
Similar plasma corticosterone levels in LCRs, HCRs, and saline-treated controls. Plasma
corticosterone levels were measured (a) on Day 0 (baseline) and then on Day 1 before (−30
min) and after (20, 40, and 60 min) injection of cocaine or saline (see Fig.1b) and (b) similarly
on Days 4 and 5 of the repeated cocaine or saline protocol (see Fig.1c). n=8 (HCR), n=8 (LCR),
n=8 (Saline), except on Days 1 and 4 when blood samples could not be collected from one
Saline animal due to a temporarily clogged catheter. Mean ± SEM.
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Table 1

Activity counts in zones 1 (center), 2 (inner), 3 (outer) and 4 (edge) of the open-field chamber as a percent of
total activity counts. Mean ± SEM.

Treatment
Day

Zone HCR (n=8) LCR (n=8) Saline (n=8)

% of Total % of Total % of Total

Day 1

Zone 1
(Center) 8 ± 1 6 ± 1 8 ± 1

Zone 2
(Inner) 25 ± 2 29 ± 2 25 ± 2

Zone 3
(Outer) 30 ± 1 29 ± 2 32 ± 1

Zone 4
(Edge) 37 ± 3 36 ± 3 35 ± 1

Day 5

Zone 1
(Center) 8 ± 1 8 ± 1 7 ± 1

Zone 2
(Inner) 25 ± 1 24 ± 1 24 ± 1

Zone 3
(Outer) 31 ± 2 30 ± 2 32 ± 2

Zone 4
(Edge) 36 ± 3 38 ± 1 37 ± 2

Neurosci Lett. Author manuscript; available in PMC 2011 May 26.


