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Abstract
During vesicular transport between the endoplasmic reticulum and the Golgi, members of the TMED/
p24 protein family form hetero-oligomeric complexes that facilitate protein cargo recognition as well
as vesicle budding. In addition, they regulate each other's level of expression. Despite analyses of
TMED/p24 protein distribution in mammalian cells, yeast, and C. elegans, little is known about the
role of this family in vertebrate embryogenesis. We report the presence of a single point mutation in
Tmed2/p24β1 in a mutant mouse line, 99J, identified in an ENU mutagenesis screen for recessive
developmental abnormalities. This mutation does not affect Tmed2/ p24β1 mRNA levels but results
in loss of TMED2/p24β1 protein. Prior to death at midgestation, 99J homozygous mutant embryos
exhibit developmental delay, abnormal rostral-caudal elongation, randomized heart looping, and
absence of the labyrinth layer of the placenta. We find that Tmed2/ p24β1 is normally expressed in
tissues showing morphological defects in 99J mutant embryos and that these affected tissues lack
the TMED2/p24β1 oligomerization partners, TMED7/p24γ3 and TMED10/p24δ1. Our data reveal a
requirement for TMED2/p24β1 protein in the morphogenesis of the mouse embryo and placenta.
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Introduction
Vesicular transport mediates molecular trafficking between the various membrane-bound
compartments in a cell and thus underlies all major cellular activities. During vesicular
transport members of the Transmembrane emp24 domain (TMED) or p24 protein family of
trafficking proteins regulate protein-cargo selection and vesicle budding (Carney and Bowen,
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2004; Kaiser, 2000; Strating and Martens, 2009). Transmembrane and secreted proteins
synthesized in the endoplasmic reticulum (ER) depend on vesicular transport for proper
localization to the Golgi where they are further modified before being transported to their final
destinations. Properly folded proteins synthesized in the ER interact with adaptors or
chaperones, such as TMED/p24 proteins, which enable them to be packaged into coat protein
(COP) II vesicles at ER exit sites (Bremser et al., 1999; Gurkan et al., 2006). After budding
off the ER membrane, the vesicles move towards the Golgi via bulk flow or along microtubules
(Cai et al., 2007). ER-resident proteins delivered to the Golgi along with cargo proteins are re-
packaged into COPI vesicles and returned to the ER. Secretory cargo proteins deposited by
COPII vesicles are transported through the Golgi stacks by COPI vesicles or by a process of
cisternal maturation to the plasma membrane, endosomal/lysosomal system, or extracellular
space.

Members of the TMED/p24 family are structurally related, sharing four distinct functional
domains. A short signal sequence targets them to the ER membrane during translation; an N-
terminal Golgi dynamics (GOLD) domain carries out cargo recognition; a coiled-coil domain
mediates interactions between family members; and a short cytoplasmic tail contains conserved
motifs for binding to coat complexes in COPI and COPII vesicles (Anantharaman and Aravind,
2002; Bethune et al., 2006; Blum et al., 1999; Bremser et al., 1999; Carney and Bowen,
2004; Dominguez et al., 1998; Goldberg, 2000; Lavoie et al., 1999; Sohn et al., 1996). Members
of the TMED/p24 family fall into four subfamilies based on shared protein identity: α, β, δ and
γ. Although these subfamilies are conserved in all animals and fungi, species-specific
duplications and/or losses have resulted in varying numbers of genes in each TMED/p24
subfamily (Bouw et al., 2004; Carney and Bowen, 2004; Dominguez et al., 1998; Strating and
Martens, 2009; Strating et al., 2009). Ten Tmed/p24 genes are present in mammals: five in the
γ subfamily, Tmed1/p24γ1, Tmed3/p24γ4, Tmed5/p24γ2, Tmed6/p24γ5, and Tmed7/p24γ3;
three in the α subfamily, Tmed4/p24α3, Tmed9p24α2 and Tmed11/p24α1; one in the δ subfamily
Tmed10/p24δ1; and one in the β subfamily, Tmed2/p24β1 (Strating et al., 2009). TMED
proteins, which are herein referred to by their assigned MGI nomenclature, are reported to exist
as monomers, dimers, oligomers or hetero-oligomers (Barr et al., 2001; Carney and Bowen,
2004; Jenne et al., 2002; Luo et al., 2007; Marzioch et al., 1999). According to other
experimental evidence, hetero-oligomers comprising one member of each of the four
subfamilies form the functional units required for vesicular transport (Blum et al., 1999;
Marzioch et al., 1999)

Genetic and biochemical experiments reveal that interactions between TMED proteins regulate
their stability: knockdown or deletion of one TMED protein led to decrease or loss of expression
of TMED proteins from different subfamilies (Blum et al., 1999; Carney and Bowen, 2004;
Denzel et al., 2000; Fullekrug et al., 1999; Marzioch et al., 1999; Takida et al., 2008; Wen and
Greenwald, 1999). A null mutation in Tmed10 resulted in developmental arrest before
blastocyst formation and decreased expression of two interacting TMED proteins, TMED9 and
TMED3, in livers of heterozygous mice (Denzel et al., 2000). In both yeast and mammalian
cell lines, TMED2, the sole member of the β subfamily, is found in a complex containing
TMED10 and/or TMED7, as well as TMED9 and it is required for their stability (Barr et al.,
2001; Fullekrug et al., 1999; Jenne et al., 2002; Marzioch et al., 1999).

Members of the TMED family localize to membranes of the ER, ERGIC (endoplasmic
reticulum-Golgi intermediate compartment) and cis-Golgi as well as to COPI and COPII
vesicles. Biochemical and genetic experiments demonstrate that TMED proteins bind to both
COPI and COPII proteins and likely function in anterograde and retrograde transport between
the ER and the Golgi (Bethune et al., 2006; Bremser et al., 1999; Dominguez et al., 1998;
Goldberg, 2000). In yeast, mutations of the Tmed2 homolog, emp24, result in delayed
maturation of Gas1p, a GPI-anchored protein, and defective transport of invertase, a soluble
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secreted protein (Marzioch et al., 1999; Muniz et al., 2000). In mammalian cells, reduction of
TMED10 levels by RNAi delayed trafficking of GPI anchored proteins to the plasma
membrane (Takida et al., 2008). Thus, TMED proteins appear to be required in both yeast and
mammalian cells specifically for movement of GPI anchored proteins to the plasma membrane.

In addition to impairing anterograde protein trafficking, mutations in TMED proteins trigger
the ER stress-associated unfolded protein response. Loss of TMED proteins in yeast activates
splicing of XBP1 pre-mRNA, leading to synthesis of the transcription factor that regulates the
unfolded protein response. Loss of TMED also resulted in increased expression and abnormal
secretion of Kar2, the yeast orthologue of Hspa5/Grp78, an ER resident chaperone belonging
to the heat shock protein 70 (HSP 70) family (Belden and Barlowe, 2001). Similarly, In
mammalian cells knockdown of TMED4 led to upregulation of HSP 70 and to decreased
apoptosis (Hwang et al., 2008). In Drosophila, mutation of Logjam, the Tmed3 homolog,
caused activation of the NF-κB pathway without the associated splicing of Xbp1 (Boltz and
Carney, 2008). Thus, TMED proteins may modulate multiple cellular stress pathways.

In C. elegans, a screen for suppressors of lin-12/Glp alleles encoding Notch receptors with
reduced activity, identified mutations in the C.elegans Tmed2 homolog, sel-9 (Wen and
Greenwald, 1999). All of the lin-12/Glp alleles suppressed by sel-9 mutations carried missense
mutations in their extracellular domain. Whereas in wild type strains altered Notch proteins
accumulate within the cell, in the sel-9 mutants altered Notch assembled at the cell membrane
where it was functional (Wen and Greenwald, 1999). Trafficking of wild type Notch/Glp did
not require sel-9; thus Tmed2 likely functions in quality control, specifically selecting defective
Notch/Glp as cargo. Studies in primary rat astrocytes and human endothelial kidney cells found
that TMED2 interacts with PAR-2, a G protein-coupled receptor that is activated at the plasma
membrane by protease cleavage (Luo et al., 2007). Downstream signaling triggered by PAR-2
activation released TMED2-bound PAR-2, freeing it to traffic from the Golgi to the plasma
membrane. In this case, TMED2-cargo selectivity appears to regulate post-Golgi protein
trafficking.

Here we report the identification of a null allele of Tmed2 in an N-ethyl N-nitrousurea (ENU)
screen for recessive mutations perturbing the morphology of the developing mouse embryo.
The mutation was discovered in a mouse line designated 99J and the mutant allele named
Tmed299J (herein referred to as 99J). 99J homozygous mutant embryos exhibit developmental
delay by E8.5, fail to undergo embryonic turning, and display posterior truncations, abnormal
heart looping, and absence of the labyrinth layer of the placenta. The mutant embryos are
reabsorbed by mid-gestation. Using positional cloning and sequencing we determined that the
Tmed299J allele carries a G:C to T:A transversion in the first exon, generating an alanine to
glutamic acid substitution in the TMED2 signal sequence, blocking the production of any
TMED2 protein. Failure to complement a gene trap allele of Tmed2 confirmed that the mutation
in Tmed299J underlies the phenotypic defects. The levels of TMED7 and TMED10 protein
were decreased in 99J heterozygous embryos and absent in the homozygous mutants embryo,
revealing that TMED2 regulates the stability of these γ and δ subfamily members. The mid-
gestation defects of Tmed299J suggest that the cargos selected and trafficked by TMED2
participate in the morphogenetic processes of early development.

Materials and Methods
1. Mouse strains

The 99J line was generated by ENU mutagenesis of C57BL/6J mice (Anderson, 2000; Garcia-
Garcia and Anderson, 2003; Kasarskis et al., 1998) and backcrossed to C3HeB/FeJ females.
The PST809 cell line, with insertion of a gene trap cassette in the 3rd intron of Tmed2,
Tmed2GT, was identified on ENSEMBL (http://baygenomics.ucsf.edu/). The insertion was
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sequenced and verified before injection into C57 blastocysts. The chimeric offspring were bred
to C57BL/Crc females and heterozygous F1 (C57/129) mice were bred to 99J heterozygous
carriers for complementation analysis. CD1 (Charles Rivers, Canada) females mated to CD1
male were used to generate embryos for wholemount in situ hybridization. All mouse breedings
and manipulations were performed in accordance with the Canadian Council on Animal
Research. To generate embryos, females were placed with a male overnight and checked for
the presence of a vaginal plug in the morning. The day that a plug was detected was considered
embryonic day (E) 0.5. Mice and embryos from the 99J ENU line were genotyped by PCR
with primers to D5MIT65 and D5MIT213. Mice and embryos from the Pst809 gene-trap line
were genotyped with primers from JaxMice that recognize the LacZ gene or with primers which
were designed to distinguish the wild type Tmed2 allele from the gene trapped allele. Primers
Tmed2In4F and Tmed2In4R amplified the wild type Tmed2 allele, and primers Tmed2In4F and
Genetrap1R amplified the genetrap allele.

Tmed2In4F: AAGTGCACAGCTGAGTGGT

Tmed2In4R: CACAGTGTCTGACCCCCTTT

Genetrap1R: AAGGGTCTTTGAGCACCAGA

2. Mapping of the 99J mutation
The mutation was mapped using linkage to flanking simple sequence length polymorphism
(SSLP) markers from the MIT database or new markers that we generated
(http://mouse.ski.mskcc.org/). Exons, splice site acceptors and splice site donors of 35 genes
in the 99J minimal region were sequenced at the McGill Genome Center. Genomic DNA from
99J homozygous mutant embryos (n=6), carrier mice (n=2), and two wild type strains C3H/
HeJ (n=1) and C57bL/6J mice (n=1) were analyzed with SeqMan II (DNASTAR).

3. RT- PCR
RNA isolation was performed according to standard Trizol (Invitrogen) protocol. The RNA
was treated with DNAse prior to reverse transcription reaction. Reverse transcription was done
using the Superscript III RT kit (Invitrogen). The Tmed2F and Tmed2R primers were designed
to amplify wild type Tmed2, the Tmed2E3F and GenetrapR primers were used to amplify the
genetrap mutation in the PST809 cell line, and two primers were used to amplify Gapdh:

Tmed2E1F: 5’-GATGGGCCTCATCTTCGAG-3’

Tmed2E4R: 5’-ACCAAAGGACCACTCTGCTG-3’

Tmed2E3F: CAATGACAGCCGTAAAGCAC

GenetrapR: GTGATCCAGGACTGGGAAGA

GapdhF: 5’-ATGACATCAAGAAGGTCCTG-3’

GapdhR: 5’-CATACCAGGAAATGAGCTTG-3’

4. In situ hybridization, immunohistochemistry
Wholemount in situ hybridization was performed on E6.5, E7.5, E8.5, E9.5, E10.5 and E11.5
embryos and placentas. The yolk sacs were collected for genotyping and the placentas and
embryos were fixed in PFA, dehydrated and processed for wholemount in situ hybridization
according to standard protocols (Wilkinson et al., 1990). Wholemount embryos were examined
on a Leica stereomicroscope MZFL III (Leica, Germany) microscope and photographed using
a SPOTcam (RT-Slider, USA) camera after wholemount.
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For section in situ hybridization and immunohistochemistry, E8.5, E9.5 and E10.5 deciduas
were fixed in PFA, embedded in paraffin, and sectioned at 7 μm. Embryonic tissue was scraped
off the slides and used to genotype the embryos. Slides containing 99J homozygous mutant
embryos and normal controls were used for in situ hybridization or immunohistochemistry. In
situ hybridization was performed as described by Neubuser et al. (1995).

We generated two Tmed2 probes. The exon1 specific probe was made by PCR amplification
of exon 1 of the Tmed2 gene from E8.5 decidual cDNA using primers that were designed to
be complementary to Ensembl sequence ENSMUSG000000293902 (Forward primer:
CGAGGAGTGCTTCTTCGAG; Reverse primer: TCCCGGACTTCCATGTACTC). The full
length probe was generated by PCR amplification of exon 1 – 4 of the Tmed2 gene from E9.5
embryonic cDNA using primers (Forward primer: GATGGGCCTCATCTTCGAG and
Reverse primer: ACCAAAGGACCACTCTGCTG). PCR amplicons of the correct size were
subcloned using the dual promoter TA cloning kit (Invitrogen). The Tmed2-TA clones were
sequenced on the ABI Prism 310 Genetic analyzer (Perkin Elmer) before probe generation. To
generate digoxigenin labeled probe Tmed2-TA constructs were linearized and transcribed
using the T7 promoter or Sp6 promoters to generate antisense and sense probes, respectively.
Since the exon1 specific probe reported the same expression pattern as the full length probe,
the two probes were used interchangeably. RNA probes for Mash2, Gcm1, Esx1, Pl1 and
Tpbp were kind gifts from Dr. J. Cross (U. Calgary).

Immunohistochemistry was performed according to standard protocols (2003). Antibodies
against VCAM 1 (Santa Cruz) and α4 integrin (Santa Cruz) were used at 1:100 dilutions for
immunohistochemistry on sections of E8.5 normal and 99J homozygous mutant embryos.
Experimental slides were imaged on an Axiovert Imager. Z1 (Zeiss, Germany) and pictures
were captured on an Axiocam MrC5 (Zeiss, Germany).

5. Western blot analysis
Individual E9.5 and E10.5 embryos were dissected out of their extra-embryonic membranes
and either lysed immediately or flash frozen at -80°C before western blot analysis. Groups of
wild type (2 embryos), 99J heterozygous (2 embryos) or 99J homozygous mutant embryos (4
embryos) were homogenized with a syringe and lysed in buffer containing: 50 mM Tris, 150
mM NaCl, 1% NP-40, 1.5 mM Mgcl2, 10% Glycerol, 1 mM EDTA, 25 mM NaF and 1 mM
Na3VO4. After protein quantification, 20 μg of protein was separated on a 10% SDS-PAGE
gel and electroblotted onto a PVDF Nitrocellulose membrane (Bio-Rad). The blots were
blocked in 5% milk and incubated with primary antibodies recognizing the cytosolic tails of
TMED2, TMED7, TMED9, TMED10 (Denzel et al., 2000), HSPA5/GRP78 (Abcam, MA),
GRP94 (Abcam, MA) and GAPDH (Abcam, MA) diluted in blocking buffer. The blots were
washed and incubated with HRP-conjugated goat anti-rabbit IgG (Jackson ImmunoResearch)
secondary antibody. The blots were developed with an ECL plus chemiluminescence kit
(Amersham).

6. ER Stress
To determine if the unfolded protein response pathway is activated in 99J homozygous mutant
embryos we designed primers for RT-PCR to amplify the Xbp1 mRNA (Forward primer:
GATCCTGACGAGGTTCCAGA and Reverse primer: GGTCCCCACTGACAGAGAAA).
The PCR product was digested with Pst1 restriction enzyme which yields two bands (240 bp
and 110 bp) in the absence of ER stress and a single 350 bp band in the presence of ER stress.
Primary embryonic fibroblast cells (PMEFs) were cultured in the presence or absence of
thapsigargin (Sigma), according to standard protocols (Leclerc and Rozen, 2008).
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Results
Developmental delay in 99J homozygous mutant embryos

The ENU mouse line 99J was identified in a phenotypic screen for recessive mutations that
disrupt embryonic morphology at E9.5 (Garcia-Garcia et al., 2005). 99J homozygous mutant
embryos displayed several phenotypic abnormalities at midgestation (Fig. 1) and failed to
survive embryogenesis (Table 1). To determine the developmental stage at which 99J
homozygous mutant embryos first exhibited morphological defects, litters from 99J
heterozygous intercrosses were examined between E7.5 and E12.5. At E7.5, 99J homozygous
mutant embryos were indistinguishable from their normal littermates and were present at the
predicted Mendelian ratio (Table 1). Starting at E8.5, 99J homozygous embryos appeared
developmentally delayed relative to wild type and 99J heterozygous embryos. At this stage,
expression of Sonic Hedghehog (Shh) a morphogen that is normally expressed in the node and
midline of normal E8.5 embryos was also altered. In fact, Shh was only expressed in the head
process of 99J homozygous embryos (n=2; Fig. 1A, B), similar to the characterized expression
domain of this gene at E7.5 (Bai et al., 2002). Furthermore, E8.5 mutants also contained fewer
somites than normal littermates (0-4 pairs of somites; Table 2). By E9.5, 0-10 somite pairs had
formed in 99J homozygous mutants, whereas 20-22 somite pairs had formed in their wild type
littermates (Fig. 1C; Table 2). 99J homozygous mutant embryos presented a number of
additional abnormalities, including a failure to turn, an open neural tube, a small, irregularly
shaped tail-bud and a bulbous allantois (Fig. 1D). The heart in 10 % of E9.5 99J homozygous
mutant embryos (n=5/48) lacked detectable beating, indicating that some 99J mutants arrested
before E9.5 (Table 1).

99J homozygous mutant embryos exhibited discordant development along the rostral-caudal
body axis and abnormal heart formation (Table 1; Fig. 1). The rostral half of an E10.5 99J
homozygous mutant embryo resembled that of a normal E9.5 embryo; it contained closed
headfolds, otic and optic vesicles with morphological signs of differentiation, and forelimb
buds (Fig. 1D, E). In contrast, the caudal end of an E10.5 mutant embryo was reduced in size
and consisted primarily of a small, malformed tail bud that was devoid of tissue (Fig. 1E).. In
normal E8.5 embryos the linear heart-tube loops in a rightward direction to ensure proper
positioning of the future ventricles and atria. Only 23.1% of E10.5 99J homozygous mutant
embryos (n = 3/13) showed rightward heart looping, while 53.8% showed irregular looping (n
= 7/13; Fig 1G, I) and the heart failed to loop in the remaining 23.1% (n= 3/13; Fig 1H) (Table
1B). Abnormal heart looping is associated with delayed or absent expression of the TGF-β
family member, Nodal, at the node (Krebs et al., 2003). However, in situ hybridization revealed
Nodal expression in the node of 99J homozygous mutants analyzed between E8.5 and E9.5
(n=4, data not shown). Thus, abnormal heart looping was not due to a failure to initiate
Nodal expression at the node. No homozygous mutant offspring were recovered at E11.5 and
E12.5 (Table 1).

Abnormal placental development in 99J homozygous mutant embryos
Embryonic survival after E10.5 requires a functional placenta (Watson and Cross, 2005);
therefore we examined the development of extraembryonic regions in 99J homozygous mutant
embryos to determine if placental defects contributed to the observed embryonic lethality.
Chorioallantoic attachment, the joining of the chorion to the tip of the allantois, marks the
morphological appearance of the developing placenta at E8.5 (Cross et al., 2003). Analysis of
whole mount embryos at E8.5 revealed that 99J mutants failed to undergo chorioallantoic
attachment. However, immunohistochemistry detected normal expression in both mutant and
wild type embryos of two proteins known to mediate chorioallantoic attachment: VCAM1, in
the allantois and its receptor α4 integrin in the chorion (Kwee et al., 1995; Yang et al., 1995)
(data not shown). Thus, the normal distribution of VCAM1 and α4 integrin does not require
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TMED2; delayed chorioallantoic attachment in the 99J mutant likely reflects an overall
developmental delay.

Following spreading of the allantois over the surface of the chorion and subsequent
chorioallantoic attachment, branching morphogenesis to form the villi of the labyrinth layer of
the placenta is initiated at E9.0 (Fig. 2A, C & E). The labyrinth layer, which mediates nutrient
and waste exchange between the maternal and fetal environments, consists of allantois-derived
fetal blood vessels, as well as maternal blood sinusoids embedded in a trilaminar trophoblast
(Rossant and Cross, 2001; Simmons et al., 2008). Fetal blood vessels can be distinguished from
maternal sinusoids on the basis of red blood cell morphology: embryonic red blood cells are
nucleated, while maternal red blood cells lack nuclei. Due to developmental delay in the 99J
homozygote, we examined mutant embryos at E10.5 to determine whether they had initiated
formation of the labyrinth layer. The placenta in normal E10.5 embryos exhibited the expected
histological giant cell, spongiotrophoblast, and labyrinth layers (Fig. 2C, E). Although the
allantois had begun to spread over the surface of the chorion in 99J homozygous mutant
embryos, it showed no evidence of invagination into the chorion to form the labyrinth layer
(Fig. 2D, F). Unlike wild type embryos, 99J homozygous mutants contained fetal blood vessels
only in the allantois and at the boundary between the allantois and the chorion. The observed
absence of the labyrinth layer in the 99J homozygous mutant embryo, and thus of a mechanism
for nutrient-waste exchange between the fetal and maternal blood supplies, likely underlies
their death at midgestation.

The initiation of branching morphogenesis and the ensuing population of the forming villi with
allantois- derived vessels depend on proper expression of the transcription factor Gcm1 in the
chorion (Anson-Cartwright et al., 2000; Schreiber et al., 2000). In situ hybridization detected
comparable levels of Gcm1 expression in the chorionic plate of normal and 99J homozygous
mutant embryos at E8.5 (Fig 3A, B), indicating appropriate differentiation of chorionic
ectoderm in 99J. However, only a subset of 99J homozygous mutant embryos between E9.5
and E10.5 expressed Gcm1 (n=2/4). In those embryos, Gcm1 expression was restricted to a
small region of the chorionic plate (Fig 3D), while in similarly staged wild type embryos,
Gcm1 expression was distributed throughout the chorionic component of the labyrinth layer
(Fig. 3C). These data suggest that lack of labyrinth layer formation in the 99J mutant does not
result from deficient or inappropriate Gcm1 expression.

Formation of a functional placenta also depends on the differentiation of other trophectoderm-
derived cell layers, such as giant cells and the spongiotrophoblast. Histological examination
identified giant cells in the placenta of E9.5 mutant embryos (Fig. 2D, F). In situ hybridization
to placental lactogen (Pl)1, a marker for trophoblast giant cells (Simmons and Cross, 2005)
detected Pl1 expression in a layer of cells immediately below the maternal decidua in both
E9.5 normal and 99J homozygous mutant embryos, confirming the presence of giant cells in
mutant placentas (Fig 3E, F). Similarly, in situ hybridization to Trophoblast specific protein
(Tpbp) alpha, a gene expression marker for spongiotrophoblast cells (Simmons and Cross,
2005), found Tpbpa transcripts in the placenta of both normal and 99J homozygous mutant
embryos at E9.5, suggesting that spongiotrophoblast cells differentiate appropriately in the 99J
mutant (Fig. 3G, H). However, whereas the Tpbpa positive cells resided immediately above
the labyrinth layer in the placenta from normal embryos, they were located immediately
adjacent to the apparently undifferentiated chorion in the placenta from 99J homozygous
mutant embryos (Fig 3 G-H). These data suggest that the 99J mutant might be specifically
impaired in the formation of the labyrinth layer. On the other hand, since distinct differentiated
trophoblast cell types arise from precursors present in the E8.5 chorion, prior to elaboration of
the labyrinth layer (Simmons et al., 2008), the absence of this layer in the 99J mutant might
simply reflect developmental delay.
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Identification of a point mutation in Tmed2 in Line 99J
We initially mapped the 99J mutation to mouse chromosome 5 within a 2 Mb interval flanked
by MIT markers D5 MIT65 and D5 MIT139. An evaluation of the 35 genes within this interval
revealed that targeted deletion/knockout of four of these genes did not generate embryonic
lethality, eliminating them from further consideration as the mutated gene in line 99J
(Akhmanova et al., 2005; Hughes et al., 2004; Hyun et al., 2004; Lu et al., 2001; Okada et al.,
2002; Reiter and Skarnes, 2006). To further reduce the list of potential candidates, we examined
the expression of the remaining 31 genes in the 99J critical interval by RT-PCR. Transcripts
from three genes were not detected in either normal or 99J homozygous mutant embryos at
E9.5, removing them as viable candidates for the 99J mutation (Table 3). Whole mount in
situ hybridization for 24 of the now 28 candidate genes determined that three of them Tmed2,
Eif2b1, and D5Bwg0834e- were expressed in both the embryo and placenta at E9.5 (Table 3).
Parallel experiments to sequence the coding regions and donor and acceptor splice sites of all
35 genes in the 99J interval identified a single point mutation, a G:C to T:A transversion, in
the first exon of Tmed2 in 99J homozygous mutant (n=4) and 99J heterozygous (n=3) embryos
(Fig. 4A). The G:C to T:A transversion produced a missense mutation that replaced a highly
conserved alanine residue in the signal peptide sequence of TMED2 with glutamic acid (A13E)
(Fig. 4A). Mutations in the hydrophobic core of signal sequences are associated with loss or
decreased protein levels due to abnormal translocation into the ER and/or protein stability
(Karaplis et al., 1995; Kendall et al., 1990; Lanza et al., 2002; Nicchitta et al., 2005; Pidasheva
et al., 2005; Symoens et al., 2009; Wiren et al., 1989). Thus, we anticipated that the A13E
substitution would result in decreased expression or loss of TMED2 protein. Consistent with
this prediction, Tmed2 transcripts were present at relatively normal levels in mutant embryos
at E9.5 (Fig. 4B), whereas levels of TMED2 protein were reduced in 99J heterozygotes and
undetectable in 99J homozygotes at E9.5-E10.5 (Fig. 4C and data not shown).

To confirm that the Tmed299J allele underlies the recessive midgestation lethality in line 99J,
we generated a second mutant allele of Tmed2 for complementation analysis. Using the PST
809 ES cell clone (BayGenomics), we generated a line of mice carrying a gene trap allele of
Tmed2, Tmed2GT. The gene trap is inserted into the third intron of Tmed2 (Fig. 5A) where it
promotes the synthesis of a fusion protein between the first 71 amino acids of TMED2,
including the cargo recognition domain (GOLD), and β-galactosidase. A similarly truncated
TMED2 protein has been shown to function as a dominant negative mutant in vitro (Luo et al.,
2007). Examination of E10.5 embryos produced from matings between Tmed2GT/+ females
and Tmed299J/+ males demonstrated a lack of complementation between the gene trap and ENU
alleles of Tmed2. Recovered trans-heterozygous Tmed2GT/99J embryos morphologically
resembled Tmed299J/99J mutant embryos: they displayed a reduced size compared to normal
littermates, abnormal heart looping and a small, irregularly shaped tail bud (Fig. 5C and data
not shown).

Tmed2 expression during embryonic and placental development
To establish the temporal pattern of Tmed2 expression during mouse development, we
performed RT-PCR on wild type embryos recovered at different times of gestation between
E3.5 and E10.5. Robust and continuous transcription of Tmed2 was observed from implantation
at E4.5 through the onset of organogenesis at E10.5 (Fig 6). We investigated the spatial
distribution of Tmed2 transcription in E5.5 – E10.5 embryos and placentas by in situ
hybridization. Two distinct cDNA probes (see Materials and Methods) revealed specific and
identical patterns of Tmed2 expression between E5.5 and E10.5 (Fig. 7 and S1). In E5.5
embryos, we detected uniform Tmed2 expression throughout the embryonic and
extraembryonic components of the egg cylinder (Fig. S1A.). In more developmentally
advanced E5.5 embryos Tmed2 expression was highest in the extraembryonic regions,
including the ectoplacental cone, parietal endoderm, and visceral endoderm (Fig. S1B-D).
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Nonetheless, Tmed2 expression was still detected in the embryonic ectoderm of all embryos
analyzed at this stage (Fig. S1A-D).

The initial ubiquitous expression of Tmed2 became spatially restricted by E6.5. During
gastrulation Tmed2 was expressed in a very dynamic pattern. E6.5 embryos expressed
Tmed2 at the highest levels in ectoplacental cone and extraembryonic ectoderm and at lower
levels in visceral endoderm and epiblast (Fig. 7A and Fig. S1E– H)). In late headfold stage
E7.5 embryos Tmed2 was found in ectoplacental cone, amnion, anterior neural folds and
underlying head mesoderm as well as in the proximal region of the primitive streak (Fig 7C-
D and S1I-L). At E8.5 Tmed2 was broadly expressed throughout the embryo, including a region
around the node, the neural folds, and allantois (Fig. 7E). In situ hybridization to sections of
E8.5 embryos revealed Tmed2 in lateral plate mesoderm, the somites, the tailbud, the heart and
aortic arteries (Fig 7E, S1M-P). Overall Tmed2 was expressed in derivatives of all three germ
layers - ectoderm, mesoderm and endoderm - although it was at higher levels in the mesoderm
and its derivatives. In the endoderm, Tmed2 expression was detected in the foregut but not in
the midgut and hindgut (Fig. S1, M-P). As the embryo completed turning between E8.5-E9.0,
the highest levels of Tmed2 were found in the forebrain, otic vesicle, first pharyngeal arch and
tail bud (Fig 7E, F). E9.5, embryos expressed Tmed2 in the forebrain, otic and optic vesicles,
liver anlage, limb buds, neural tube, and tail bud (Fig 7G). At E10.5 Tmed2 was broadly
expressed in most embryonic structures, including the ventricles of the heart (data not shown).

Tmed2 expression was maintained throughout placental development. E6.5 and E7.5 embryos
expressed Tmed2 in extraembryonic ectoderm and chorion, respectively (Fig. 7A-D), while
E8.5 embryos expressed Tmed2 in the allantois, chorionic plate and giant cells of the now
forming placenta (Fig. 8A). At E9.5 the placenta exhibited Tmed2 expression in the labyrinth,
spongiotrophoblast and giant cell layers, but not in the attached allantois (Fig. 8B). By E10.5
Tmed2 expression was detected in a subset of giant cells (Fig. 8C), in trophoblast cells
surrounding the maternal sinusoids, and in fetal blood vessels in the placenta (Fig. 8D).

Reduced protein levels of TMED7 and TMED10 in 99J homozygous mutant embryos
Previous studies revealed interdependence among TMED proteins for regulation of their
expression levels (Jenne et al., 2002; Luo et al., 2007). Therefore, we performed western blot
analysis to assess whether the levels of TMED proteins known to interact with TMED2,
TMED7, TMED9 and TMED10 (Jenne et al., 2002; Marzioch et al., 1999), were altered in 99J
mutants. We found that the levels of TMED7, TMED9 and TMED10 were reduced in 99J
heterozygous embryos at E9.5 and E10.5 (Fig. 9 A-C). While expression levels of TMED9
were further reduced in 99J homozygous mutant embryos at E9.5-E10.5 (Fig. 9A), expression
of TMED7 and TMED10 was undetectable in mutant embryos at these same stages. However,
mRNA levels for Tmed7, Tmed9, and Tmed10 did not vary between normal and 99J mutant
embryos at E9.5-E10.5 (Fig. 5B and data not shown). These data suggest that loss of TMED2
directly affects the stability of TMED7, TMED9 and TMED10 at the protein level.

Failure to activate the unfolded protein response pathway in Tmed299J/99J mutant embryos
In yeast, deletion of the Tmed2 and Tmed10 homologs activates the unfolded protein response
pathway. The mutant yeast strains upregulate expression of the ER chaperone protein HSPA5/
GRP78 and also splicing of Hac-1 RNA, encoding a functional homolog of the transcription
factor XBP1 (Belden and Barlowe, 2001; Kuznetsov et al., 1997; Rose et al., 1989; Yoshida
et al., 1998; Yoshida et al., 2001). Therefore, we hypothesized that the 99J mutant embryos
would display increased secretion of HSPA5/GRP78 and splicing of Xbp1 RNA. However, we
failed to detect abnormal activation of the unfolded protein response pathway in 99J mutant
embryos. Expression of the ER chaperone proteins HSPA5/GRP78 and HSP90β1/GRP94 did
not increase in E10.5 99J mutant embryos (Fig. 10A). In addition, expression and splicing of
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the Xbp1 transcript appeared unaltered in 99J mutants compared to wild type embryos (Fig
10B). In control assays, efficient splicing of Xbp1 was detected in PMEFs after treatment with
the ER stress-inducing agent, thapsigargin (Fig 10B). Thus, our data suggest that the loss of
TMED2, TMED7, and TMED10 does not activate the unfolded protein response in mouse
embryos.

Discussion
Tmed2 is expressed during embryonic and placental development

TMED proteins are highly conserved in eukaryotes and are implicated in vesicular transport.
We report that Tmed2 is expressed in embryonic and extraembryonic tissues of the developing
mouse embryo and is required for morphogenesis of both the embryo and the placenta.
Tmed2 mutant embryos fail to form the labyrinth layer of the placenta and die by midgestation,
revealing a previously uncharacterized requirement for vesicular transport in placental
development. Minimal information exists on the expression of Tmed genes in mammalian
tissues and our study represents the first effort to systematically document expression of a
Tmed gene during embryonic development. Of potential significance to TMED function, our
study reveals that Tmed2, the single member of the β-subfamily, is expressed tissue-specifically
during embryonic development.

It has been proposed that TMED family members form hetero-oligomers, consisting of one
member of each subfamily, to facilitate formation of COPI and COPII vesicles (Marzioch et
al., 1999). While Tmed2 is expressed at all stages of postimplantation development analyzed
in this study, it assumes a tissue-specific expression pattern by E6.5, suggesting a temporally
and spatially restricted role in vesicle-trafficking.

Tmed2 is required for labyrinth layer formation
Tmed2 mutant embryos exhibit developmental delay and are smaller than their normal
littermates. These defects could reflect, in part, abnormal and/or reduced vesicular transport
in the yolk sac, a structure that expresses Tmed2 and that mediates nutrient uptake by the early
post-implantation embryo (Conway et al., 2003). By E10.5, the nutritional requirements of the
embryo can no longer be met exclusively by the yolk sac and the continuation of development
requires a functional placenta (Conway et al., 2003; Rossant and Cross, 2001). The labyrinth
layer of the placenta, which is composed of fetal blood vessels and maternal blood spaces, now
takes over as the primary site for nutrient and waste exchange between the growing fetus and
its maternal environment (Watson and Cross, 2005). Mutants that fail to form this labyrinth
layer arrest at mid-gestation, likely due to nutritional deficiency (Watson and Cross, 2005).
We propose that Tmed2 homozygous mutant embryos die at mid-gestation because of impaired
labyrinth layer development.

Chorioallantoic attachment initiates the formation of the labyrinth layer. Downs and Gardner
(1995) suggest that chorioallantoic attachment occurs in at least three steps: contact between
the allantois and the posterior end of the chorion, translocation of the allantois to the center of
the chorion, and invasion of the allantois into the chorion. In Tmed2 mutant embryos, the
allantois contacts but does not invade the chorion. Failure of allantois cell invasion into the
chorion results in a weak attachment between the two tissues. Moreover, the absence of a
labyrinth layer in Tmed2 mutants suggests that allantois cell invasion may function as the
trigger for reorganization of chorion cells into the labyrinth layer. Failure of allantois invasion
into the chorion of Tmed2 mutant embryos might be a non-specific effect of developmental
delay. Alternatively, it may point to the requirement for the delivery of specific cargo proteins
to the allantois-chorion interface by TMED2-mediated trafficking.
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TMED2 is required for normal expression of TMED7 and TMED10
A large number of studies have shown that the expression of individual TMED proteins is
interdependent (Bouw et al., 2004; Denzel et al., 2000; Jenne et al., 2002; Luo et al., 2007;
Marzioch et al., 1999; Muniz et al., 2000). Our own studies provide further support for this
interdependency; however, the significance and requirement for this remain unclear. We found
that loss of TMED2 results in loss of TMED7 and TMED10 expression and a decrease in
expression of TMED9. Since mutant embryos lacking TMED10 arrest and die prior to
implantation at E4.5 (Denzel et al., 2000), whereas Tmed2 mutants survive up to E10.5,
TMED10 expression and function must be independent of stable, zygotic expression of
Tmed2 in the pre-implantation mouse embryo. These findings indicate that individual members
of the TMED protein family are essential for distinct stage and tissue-specific functions during
development.

Vesicular transport proteins are required for normal morphogenesis
A large family of molecular motor proteins consisting of cytoplasmic dyneins, axonal dyneins
and kinesins are required for transport in the cytoplasm and cilia; reviewed in (Hirokawa and
Noda, 2008). In addition, two subunits of the COPII coat complex interact with Dynactin1, the
cofactor of the dynein molecular motor (Watson et al., 2005), suggesting that vesicular
transport by COPII proteins may require normal expression and function of molecular motor
proteins. Since TMED2 also interacts with COPII coat complexes (Bethune et al., 2006;
Bremser et al., 1999; Dominguez et al., 1998) transport of TMED2 cargo proteins from the
endoplasmic reticulum may be mediated by microtubule based motors. Embryos with
mutations in Dynactin1 as well as several molecular motors -mD2lic, Kif3A, and Kif3B - either
arrest before E8.0 or exhibit a number of morphological phenotypes, including developmental
delay, abnormal heart looping and rostro-caudal truncations, suggesting that these molecules
are required for normal development and morphogenesis (Lai et al., 2007; Marszalek et al.,
1999; Nonaka et al., 1998; Rana et al., 2004; Takeda et al., 1999). Thus it will be important to
explore whether these molecular motors are required for trafficking of TMED2 cargo proteins.

TMED2-Protein trafficking, quality control and post-Golgi exocytosis
In yeast, deletion of Tmed2 results in increased secretion of the ER stress associated protein
HSPA5/GRP78 and upregulation and splicing of the pre-mRNA encoding XBP1, a
transcriptional regulator of the ER stress pathway (Belden and Barlowe, 2001). Hence, we
expected that 99J homozygous mutant embryos would exhibit increased HSPA5/GRP78
protein levels. However, we did not detect increased levels of HSPA5/GRP78 or HSP90β1/
GRP94, indicating that Tmed2 mutations do not contribute to increased ER stress in the
developing mouse embryo. Furthermore, we did not find increased expression or splicing of
Xbp1 (Yoshida et al., 2001). Our data are consistent with a report by Boltz and Carney
(2008) reporting that the loss of TMED proteins in Drosophila does not trigger Xbp1
upregulation and splicing; rather, they observed activation of the NF-κB pathway. Activation
of the NF-κB pathway independently of unfolded protein response has been reported in
mammalian cells as well (Davies et al., 2009; Pahl et al., 1996); therefore future studies will
examine this pathway in Tmed2 homozygous mutant embryos.

TMED2 interacts with COPII vesicles (Bethune et al., 2006; Dominguez et al., 1998; Majoul
et al., 2001), which in vitro form a cage around newly synthesized proteins and regulate their
anterograde transport from the ER. In addition, two studies, one in C. elegans (Wen and
Greenwald, 1999), and one in an astrocyte cell line (Luo et al., 2007), suggest that TMED2
may function at other steps in the secretory pathway, possibly in COPI vesicles within the
Golgi compartments.
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COPII and COPI vesicles, and by extension members of the TMED protein family, play
fundamental roles in the intracellular transport of proteins through the secretory pathway.
Moreover, cell-cell interactions, as well as the execution of most cell behaviors, depend on the
secretory pathway to deliver intact, functional proteins to their appropriate intracellular and
extracellular compartments. Consequently the defects displayed by Tmed2-deficient embryos
potentially reflect the defective transport and localization of one or several developmentally
critical proteins. Recently an examination of genetic interactions between mutant alleles
exhibiting similar phenotypes led to the demonstration that Sec24b, a core component of COPII
vesicles, regulates planar cell polarity in the neural tube through selective sorting of Vangl2
(Merte et al.). A similar approach, combined with the generation of a conditional Tmed2 allele,
will be applied to identify proteins that specifically rely on TMED2 for vesicular transport
during the gastrulation stages of mouse development.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Morphology of normal and 99J homozygous mutant embryos
99J homozygous mutant embryos exhibit developmental delay, posterior truncations and
abnormal heart looping. (A, B) Representative E8.5 embryos after wholemount in situ
hybridization to detect expression of shh; the wild type embryo (A) has five somite pairs (s),
heart (h) and allantois (al) and expresses shh in the node and midline. The homozygous mutant
embryo (B) resembles an egg cylinder, has no somites and expresses shh in the head process.
(C) While the wild type E9.5 embryo (left) has turned and contains 20+ somites, its 99J mutant
littermate (right) remains unturned with small abnormal somites and shows a small, pointy tail
bud (tb) and an unlooped heart tube (arrow). (D) An E10.5 99J mutant embryo (right) has
undergone turning but remains developmentally delayed compared to a wild type littermate
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(left). The mutant embryo possesses a forming forebrain (fb), otic vesicle (ot), heart (h) and a
balled allantois (al). (E) A lateral (right side) view of the normal (top) and mutant (bottom)
embryos shown in panel D. Hind limb (hl) buds are present in both embryos; however the
posterior of the 99J homozygous mutant embryo is truncated and the tail bud (tb) is abnormal.
(F) Rigthward heart looping in a normal embryo. (G, I) 99J homozygous mutant embryos
exhibit leftward and unlooped hearts (h). Abbreviations: normal embryo (N); otic vesicle (ot),
forelimb bud (fl), hind limb bud (hl), Tail bud (tb). Scale bar in A & B = 50 μm.
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Figure 2. Chorioallantoic attachment and branching morphogenesis in placentas from normal and
99J homozygous mutant embryos
(A) A normal E9.5 embryo shows a fan shaped allantois (al) attached to the chorion (ch) and
fetal blood vessels (asterisks *) forming in the chorion. (B) A representative image of a 99J
homozygous mutant embryo with limited contact between the allantois and chorion. (C, E) A
normal E10.5 placenta with distinguishable giant cells (gc, arrowheads), spongiotrophoblast
(sp) and labyrinth (la) layers. (E) A higher magnification view of the placenta shown in C;
maternal blood sinusoids (ms) with enucleated blood cells lie in close proximity to the fetal
blood vessels (fv) with the nucleated blood cells (D, F) In E10.5 99J homozygous mutant
embryos the allantois has spread along the surface of the chorion. Giant cells (arrowhead) but
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no distinct spongiotrophoblast and labyrinth layers are present in the chorionic plate (ch). (F)
A higher magnification image of the placenta shown in D, maternal blood sinusoids are visible
in the chorion, but fetal blood vessels are detectable only in the allantois and at the junction
between the chorion and allantois. Scale bars = 100 μm (A, B), 50 μm (C-D) and 20 μm (E,
F).
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Figure 3. Molecular analysis of placental development in normal and 99J homozygous mutant
embryos
Representative images of wild type and mutant deciduas (A, B) and placentas (C - H) after
wholemount in situ hybridization to an antisense Gcm1 riboprobe (A-D) and in situ
hybridization of histological sections to antisense Pl1 (E, F) and Tpbp (G, H) riboprobes. At
E8.5, Gcm1 is expressed in the chorionic trophoblast cells of normal (A) and 99J homozygous
mutant embryos (B). (C) At E9.5 Gcm1 is expressed in the developing labyrinth layer of the
placenta in a normal embryo. (D) Gcm1 expression is present but reduced and regionally
restricted (arrows) in the placenta of an E9.5 99J homozygous mutant. The dotted lines in
panels A- D delineate the chorionic plate. (E) A normal placenta at E9.5 showing expression
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of the giant cell marker Pl1, above the forming labyrinth (la) layer. (F) Although a labyrinth
layer did not form in the placenta of an E9.5 99J mutant embryo, the expression pattern of
Pl1 is similar to that observed in the normal embryo. (G) Expression of 4331/Tpbpa in
spongiotrophoblast cells below the giant cell layer and above the labyrinth layer (la) in a
representative E9.5 normal embryo. (H) Tpbpa positive cells reside immediately above the
chorionic layer in the placenta of an E9.5 99J mutant embryo. The arrows point to attached
and apposed allantois in normal (E, G) and 99J homozygous mutant embryos (H), respectively.
Abbreviations: fetal blood vessels (fv), chorion (ch), decidua (dec). Scale bars = 100 μm.
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Figure 4. The 99J ENU line has a mutation in Tmed2
(A) The 99J mutation, a C to A transversion in the first exon of Tmed2, results in substitution
of an alanine residue with a glutamic acid in the highly conserved signal sequence. (B) RT-
PCR analysis revealed normal expression of Tmed2, Tmed7, Tmed9 and Tmed10 in wild type
and 99J homozygous mutant embryos. A 100 bp marker, the β-actin positive control and RT-
controls are also shown. (C) A representative Western blot shows TMED2 protein is present
in protein lysates from E9.5 wild type and 99J heterozygous embryos. TMED2 is not detected
in two different pools of four 99J homozygous mutant embryos (99J/99J). GAPDH was used
as a loading control.
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Figure 5. Gene trap insertion in Tmed2 fails to complement the 99J mutation
(A) Schematic of the Tmed2 genomic locus depicting insertion of the β-geo gene trap cassette
in the third intron. (B) The fused Tmed2 and β-geo transcript generated in the PST809 cell line
was detected by RT-PCR with primers in Tmed2 and the β-geo cassette. Primers 1F + 4R
amplified the expected Tmed2 transcript in wild type and Tmed2GT heterozygous embryos. In
wild-type embryos, primers 3F + GTR did not generate any product (first lane). However, these
same primers amplified the fused Tmed2βgeo transcript in heterozygous embryos. Gapdh was
used as a positive control. (C) Representative images of E10.5 wild type and 99J/GT trans-
heterozygous embryos. The Tmed2GT/99J trans-heterozygous mutant embryo (right) is smaller
than its normal littermate (left), and has relatively normal anterior development with evident
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forebrain (fb) and pharyngeal arches (pa); however, similar to that observed in 99J homozygous
mutant embryos, the heart (h) is unlooped and the posterior tail bud (tb) is reduced in size.
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Figure 6. Tmed2 is expressed throughout mouse embryonic development
RT-PCR showing the presence of the Tmed2 as well as Gapdh transcripts in E3.5–E10.5 wild
type embryos (E). Tmed2 is also expressed in E8.5 deciduas (D) and E9.5 – E10.5 placentas
(P).
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Figure 7. Tmed2 expression during embryonic development
Representative images of wild type embryos after wholemount in situ hybridization with an
antisense riboprobe to Tmed2. (A) Lateral view of an E6.5 embryo; Tmed2 is expressed in the
ectoplacental cone (epc) and the extraembryonic ectoderm (exe). (B) Lateral view of a mid-
streak embryo; Tmed2 is expressed in the chorion (ch). Lateral (C) and anterior (D) views of
an early headfold stage embryo; Tmed2 is expressed in the chorion (ch), yolk sac (ys), anterior
mesoderm, and the proximal portion of the primitive streak. (E) Dorsal view of a representative
E8.5 embryo; Tmed2 is broadly expressed with high levels found in neural epithelium (ne), the
peri-nodal region (arrow), presomitic mesoderm, tailbud and allantois (al); expression was low
in the lateral plate (lp) and somites (s) and not found in the midline. (F) Lateral view of a
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representative E8.5 embryo; Tmed2 expression is highest in the forebrain (fb), pharyngeal arch
(pa) and tail bud (tb). No expression was detected in heart (h). (G) Representative images of
the right and left side of two E9.5 embryos showing high levels of Tmed2 expression in tail
bud (tb), pharyngeal arches (pa), otic vesicle (ot), forelimb bud (fl), liver anlage (lv), neural
tube (nt), and optic vesicle (op).
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Figure 8. Expression of Tmed2 during placental development
Representative images of wild type decidua (A) and placentas (B, C, D) after wholemount
(A) and section (B, C, D) in situ hybridization with an antisense Tmed2 riboprobe. (A) In an
E8.5 decidua Tmed2 is expressed in the chorion (ch) and giant cells (gc). (B) Tmed2 is expressed
throughout the placenta with the exception of the allantois. (C) Tmed2 is expressed throughout
the cells in the labyrinth layer (lab), as well as in the spongiotrophoblast (sp) and in a subset
of giant cells (* and gc). Tmed2 expression is also detected in a subset of cells in the maternal
decidua (dc). No signal was detected with the sense probe (not shown) (D) Higher
magnification view of boxed region in (C). Scale bars = 20 μm.
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Figure 9. TMED2 is required for normal expression of TMED7, TMED9 and TMED10 at E9.5 and
E10.5
(A) TMED9 is detected at reduced levels in 99J heterozygous and homozygous mutant embryos
at E9.5. (B) At E9.5 TMED7 is present at reduced levels in 99J heterozygous embryos but is
undetectable in 99J homozygous mutant embryos. (C) At E10.5 embryos, TMED10 is
expressed at reduced levels in 99J heterozygous embryos but is undetectable in 99J
homozygous mutant embryos. (A-C) β-actin was used as a loading control.
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Figure 10. 99J homozygous mutant embryos do not show increased levels of ER stress-associated
proteins
(A) No difference was detected in the levels of the ER resident proteins GRP78 and GRP94 in
2 different pools of 99J homozygous mutant, 99J heterozygous, and wild type embryos at
E10.5. (B) RT-PCR showing the presence of un-spliced Xbp1 as two bands of 240 and 110bp
in unstressed PMEF cells, wild type, 99J heterozygous and 99J homozygous mutant embryos.
A single 350 bp band representing spliced Xbp1 is detected in PMEFs after stress with
thapsigargin. The Gapdh transcript was also detected in all samples.
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Table 1
Genotype distribution of embryos collected between E7.5 and E12.5 from mating of 99J
carrier X 99J carrier

The number of embryos that genotyped as 99J homozygote mutant is in parenthesis.

Embryonic days of Development (E) Phenotypically Normal Observed (99J
homozygous mutant)

Phenotypically Abnormal Observed (99J
homozygous mutant)

E7.5 13 (4) 0

E8.5 44 (1) 28 (20)!

E9.5 100 58 (48)^

E10.5 63 45 (35)*

E11.5 20 8 (4)#

E12.5 39 11 (4)o

Total 279 (5) 150 (111)

!
2 abnormal embryos had a recombination event between D5MIT65 and D5MIT213, 3 abnormal embryos were heterozygous, 1 abnormal embryo

was wild type and 2 abnormal embryos were not typed

^
5 of the homozygous mutant embryos were dead, 4 abnormal embryos had a recombination event between D5MIT65 and D5MIT213, 4 abnormal

embryos were heterozygous, and 2 embryos were not genotyped.

*
2 99J homozygous mutant and 1 99J heterozygous embryos were dead, 1 abnormal embryo had a recombination event between D5MIT65 and

D5MIT213, 6 abnormal embryos were 99J heterozygous and 2 embryos were not typed

#
All abnormal embryos were found dead, 2 were 99J heterozygous and 2 had a recombination event between D5MIT65 and D5MIT213.

o
All abnormal embryos were dead, 1 embryo was 99J heterozygous and DNA could not be collected from 6 embryos.
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Table 1B

The distribution of 99J homozygous mutant embryos with right (R), or left (L) looping, or malformed (M) hearts
in 5 99J intercross dissected at E10.5. Normal embryos had rightward looping heart in these litters. (n= 51)

R L M

99J -/- 3 7 3

99J +/- or +/+ 38 0 0
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Table 2
Somite distribution in 99J homozygous mutant embryos at E8.5 and E9.5

99J homozygous mutant embryos were delayed and had fewer somites than wild type littermates at E8.5 and
E9.5.

Age Genotype 0-2 3-15 16+

E8.5* 99J homozygous mutant 95% (n=20/21) 5 % (n=1/21)

E8.5 Wild type 9 % (n= 1/11) 91 % (n=10/11)

E9.5# 99J homozygous mutant 21% (n=9/43) 79 % (n=34/43)

E9.5 Wild type 0 11 % (n-2/19) 89 % (n=14/19)

*
t (30) = 5.65, p<0.0001

#
t (61) = 14.1 p<0.0001
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Table 3
Summary of the analysis of the candidate genes in the 99J minimal region

Mutations in 4 genes did not resemble the 99J homozygous mutant phenotype (*). 3 genes were not expressed
in normal or mutant embryos (N= not expressed, Y= expressed). 3 genes including Tmed2 (Yellow) were
expressed (E) in both the embryos and placentas (P) at E9.5 (Green). A single mutation was identified in the
signal sequence of Tmed2 (Y= mutation present, N= no mutation identified).

Gene Name Expressed in normal and
mutant embryos by RT-PCR
analysis

Expressed in embryos or placentas by
wholemount in situ hybridization
analysis

Mutations in the gene sequence

Interleukin 31 N N

B3gnt4 Y E N

Diablo* N

Vsp37 b Y E N

Rsn* E N

Zcchc8 Y E N

1500011J06Rik Y N

Kntc1 Y E N

Gpr109b Y N

Gpr81 N N

Denr Y E N

Abcb9 Y E N

Hip1r* N

5730405M13Rik Y E N

Arl6ip4 Y E N

Pitpnm2* N

Mphosph9 Y N

2810006K23Rik Y E N

NM_013812.2 N N

Sbno1 Y E N

2410195B05Rik (set 8) Y E N

BC003324 Y E N

6330548G22Rik Y E N

2900002H16Rik Y E N

Tmed2 Y E, P Y

Ddx55 Y N

Eif2b1 Y E, P N

Gtf2h3 Y E N

4432405B04Rik Y E N

Atp6v0a2 Y N

Dnahc10 Y E N

D5Bwg0834e Y E, P N

D930038J03Rik Y E N
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Gene Name Expressed in normal and
mutant embryos by RT-PCR
analysis

Expressed in embryos or placentas by
wholemount in situ hybridization
analysis

Mutations in the gene sequence

3110032G18Rik (Cfm2) Y E N

Ncor2 Y E N
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