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Abstract

Background: The epicardium has key functions during myocardial development, by contributing to the formation of
coronary endothelial and smooth muscle cells, cardiac fibroblasts, and potentially cardiomyocytes. The epicardium plays a
morphogenetic role by emitting signals to promote and maintain cardiomyocyte proliferation. In a regenerative context, the
adult epicardium might comprise a progenitor cell population that can be induced to contribute to cardiac repair. Although
some genes involved in epicardial function have been identified, a detailed molecular profile of epicardial gene expression
has not been available.

Methodology: Using laser capture microscopy, we isolated the epicardial layer from the adult murine heart before or after
cardiac infarction in wildtype mice and mice expressing a transgenic IGF-1 propeptide (mIGF-1) that enhances cardiac
repair, and analyzed the transcription profile using DNA microarrays.

Principal Findings: Expression of epithelial genes such as basonuclin, dermokine, and glycoprotein M6A are highly enriched
in the epicardial layer, which maintains expression of selected embryonic genes involved in epicardial development in
mIGF-1 transgenic hearts. After myocardial infarct, a subset of differentially expressed genes are down-regulated in the
epicardium representing an epicardium-specific signature that responds to injury.

Conclusion: This study presents the description of the murine epicardial transcriptome obtained from snap frozen tissues,
providing essential information for further analysis of this important cardiac cell layer.
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Introduction

The epicardium is a single epithelial cell layer overlying the

vertebrate heart. It derives from the proepicardium that gives rise

to the vasculature and interstitial cells of the heart during

embryogenesis, a process that is mandatory for normal develop-

ment [1,2,3,4]. It is still under debate if the epicardium also gives

rise to endothelial cells of the vasculature [5,6] and if it contributes

to the myocardium directly [1,2,7]. Deletions of selected genes

expressed in the epicardium (i.e. VCAM-1, a4-integrin) or

signalling from the myocardium to the epicardium (i.e. Tb4,

FOG-2) lead to severe defects in the developing heart and its

vasculature [3,6].

Beyond its role during cardiac development, the epicardium

also mediates cardiac regeneration after injury in lower verte-

brates. Specifically, the zebrafish epicardium supports cardiac

regeneration through epithelial to mesenchymal transition (EMT)

and subsequent migration into the myocardium to form new

vasculature [8]. In mammals, these regenerative processes are not

active to the degree that they support recovery of infarcted

myocardial tissue. Instead, myocardial infarction is followed by

inflammation and scarring. The fibrotic tissue is not able to

support normal cardiac function, which in many cases leads to

cardiac failure. However, the epicardium does retain some

capability to be involved in repair processes also in mammals, in

that for example Thymosin beta-4 can activate adult epicardial

cells [9] acting through reactivation of embryonic signalling

pathways [10]. This thymosin mediated activation of epicardial

cells can in fact support revascularization of the injured

mammalian heart by forming endothelial and vascular smooth

muscle cells [11]. Further, a sub-population of adult epicardial

cells retains the potential to give rise to cardiac precursors or

endothelial cells [12]. The regenerative potential of the epicardium

has also prompted several other strategies to improve mammalian

cardiac regeneration, including the injection of epicardium-

derived cells (EPDCs) into the injured myocardium, which was
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reported to enhance cardiac repair, highlighting their potential

clinical importance [13]. In newer studies cardiomyocyte progeni-

tors were cotransplanted with EPDCs into infarcted myocardial

tissues, which improved functional repair when compared to single

cell type supplementation [14]. The effect however was shown to

be caused by paracrine effects from both cell types.

Although some of the genes involved in epicardial function have

been identified and characterised [15,16,17], comprehensive

transcriptional analyses of the adult mammalian epicardium have

been lacking. In this study, we employed laser capture microscopy

(LCM) on snap frozen tissues to obtain unaltered epicardial

sample. This micro-dissection technique afforded a very precise

excision of the epicardial layer without prior modification, such as

labelling of epicardial cells, which may compromise RNA quality;

without cell sorting, which might isolate only a particular cell

fraction; and without cell culturing, thereby avoiding inevitable

changes in gene expression.

Using this approach, we identified numerous genes that have

not previously been implicated in the function, homeostasis, or

regeneration of the epicardium or the heart. Our results provide

several markers of the steady state adult epicardium, and changes

of epicardial signature gene expression in response to LCA injury

that underscore the involvement of the epicardium after cardiac

damage. Epicardial signature gene expression patterns were

altered in a model of enhanced cardiac regeneration by delivery

of a localized transgenic IGF-1 propeptide, which reactivated

genes implicated in the effective regenerative response of other

vertebrate species. This study provides a wealth of information on

gene expression patterns in this important tissue, which will prove

potentially valuable in future studies of epicardial function in

cardiac homeostasis and infarction models.

Results

Transcripts encoding several genes are enriched in the
epicardium

Using LCM technology, we isolated the left ventricular

epicardial layer of frozen murine hearts as described in Materials

and Methods (Figure S1), resulting in an epicardium-enriched

sample. RNA isolated from epicardial and underlying myocardial

tissue samples were compared by DNA microarray analysis (Array

Express: E-MEXP-2446). To gain an overview of differential gene

expression between the epicardial and muscle control samples, we

performed an unsupervised analysis of the gene array data (SOM

262). This resulted in four clusters (Figure 1-A). The first cluster

was populated by genes that were higher in epicardial samples

than in muscle samples, the second and third cluster were mainly

unchanged among the samples, and the fourth cluster contained

genes that were higher in the non-epicardial muscle control

samples. To establish criteria for epicardial genes we applied

conditions based on Cluster 1, to define genes that are highly

expressed in the epicardium but not in the muscle controls thus

representing the epicardial signature genes, as described in

Materials and Methods (Table 1, Table S1). These genes are also

shown as a heat map (Figure 1-B).

As a separate quality control, we also compared the epicardial

sample to left ventricle or whole heart tissues [18], by comparing

existing gene array data and applying the criteria for epicardial

genes (starting from all genes, t-test, multiple testing correction, 4

fold upregulation, raw in epicardium above 20) to the pairs:

epicardium/heart, epicardium/left ventricle, and epicardium/

muscle control. We then compared the resulting lists of epicardial

signature genes. Although the lists were not identical, especially for

the highly epicardium specific genes, the results were consistent, in

that the genes from our original epicardial signature genes in Table 1

(epicardial with .25 fold induction in the epicardium) were all

found in all three lists of epicardial genes (Figure S2, Table S2).

Differences were mainly observed in genes with lower induction.

This analysis uncovered numerous epicardial signature genes

such as uroplakin 1b, 3b, glycoprotein m6a, dermokine or

basonuclin that have not previously been implicated in the

function, homeostasis or regeneration of the epicardium or the

heart. Importantly, our list of epicardial signature genes also

contained several genes whose expression have previously

documented in the epicardium, playing key roles in epicardial

development. Among these were RALDH2 (9 fold increase) the

earliest retinoic synthetic enzyme in the embryo and implicated in

mammalian epicardial contribution to the coronary vasculature

and myocardial repair in the zebrafish system [8,19,20,21]. The

previously documented expression of Tbx18 in epicardial cells as

well as epicardial progenitors [2], also validates the epicardial

identity of our signature gene collection. Selective quantitative

RT-PCR analysis for dermokine, basonuclin-1, Efemp-1, proline

rich 15, sulfatase 1, and uroplakin-3b transcripts, confirmed

epicardial enrichment (Figure 2-A). To confirm these observations

on the protein level, immunohistochemical analysis localized

dermokine, basonuclin-1, and GPM6A to the epicardium

(Figure 2-B,C).

Systematic analysis of tissue expression profiles by comparing

the list of epicardium-enriched transcripts to relevant gene

ontology lists (GO: 8150; biological process, see Materials and

Methods), revealed mainly immune system-related lists (i.e. GO:

2526, 2541, 6956, 6692, 45087, 6959) with very low p-values.

Notably, the list for extracellular matrix organization (GO: 30198)

as well as the cell adhesion and biological adhesion lists (GO:

7155, 22610) also had a high similarity (p,0.0005) to the

epicardial gene list from normal (un-injured) hearts (Table 2,

Table S3).

Epicardial genes are differentially regulated after
myocardial infarction

To assess the early changes in epicardial gene expression in

response to injury, we collected hearts from a mouse model of

myocardial infarction induced by left coronary artery ligation

(LCA) and compared to those of non-infarcted (sham operated)

mice. Epicardial samples and muscle controls for both conditions

were obtained using LCM as described above, and changes in

expression levels were analyzed six days after myocardial

infarction using gene arrays. SOM cluster analysis as described

in Materials and Methods for the previously determined epicardial

genes (Figure 3-A), are summarized in a heat map (Figure 3-B).

Among the six obtained clusters, Cluster 3 contained 53 epicardial

signature genes that decreased steeply after infarction, with only

slight changes in the underlying cardiac muscle control samples.

Conversely, Cluster 4 contained 82 signature genes whose

expression was relatively stable for the epicardial samples, while

their expression in underlying muscle increased significantly after

infarction. The remaining clusters contained mainly slight

variations of these two patterns, or no significant changes. We

carried out statistical analysis for Clusters 3 and 4, resulting in a list

of 23 signature genes from Cluster 3 that were significantly

downregulated in the epicardial samples (Table 3) and a list of 21

signature genes from Cluster 4 that were significantly upregulated

in the muscle samples post-infarction (Table 4). When carrying out

GO ontology analysis on the list of Cluster 3 signature genes

downregulated in the infarcted epicardium, we observed similar

enrichment of GO lists as for the initial epicardial gene analysis,

such as acute inflammatory response (GO:2526), complement

Epicardial Transcriptomics

PLoS ONE | www.plosone.org 2 June 2010 | Volume 5 | Issue 6 | e11429



activation (GO:6956), innate immune response (45087), and

inflammatory response (GO:2541) (Table S4). These lists were

consistently populated by complement-related genes and many of

the signature genes enriched in the uninjured epicardium (11

downregulated genes were among those 26 signature genes with a

fold difference above 25, while the other 12 were among the

remaining 171 signature genes with a lower fold induction).

Interestingly, GO ontology analysis for epicardial signature

genes upregulated in the muscle control revealed a distinctly

different set of lists (Table S5) resembling mainly developmental

and vascularisation processes. Among these, some of the highest

ranking lists were collagen fibril organization (GO:301099),

extracellular matrix organization (GO:30198), skin morphogenesis

(GO:43589), vasculature development (GO:1944), epidermis

Figure 1. Unsupervised analysis of epicardial gene expression. A self organizing map was used as an unsupervised analysis tool to simplify
complex expression information. B) x-axis are relative normalized expression of epicardium samples, y-axis are relative normalized expression of
muscle samples. The four resulting clusters represent generally different expression patters rather than their absolute expression values. Cluster 1
contains genes that were higher in the epicardial samples than in the muscle controls. Clusters 2 and 3 contains genes that were similar in expression
in epicardium and muscle. Cluster 4 contains genes that were higher in the muscle controls than in the epicardial samples. B) Starting from Cluster 1,
we applied conditions as described in Materials and Methods to select 197 epicardial signature genes shown as a heat map. The top four rows are
epicardial samples, and the lower four rows are muscle control samples, where green colour represents upregulation and red colour represents
downregulation of a given gene.
doi:10.1371/journal.pone.0011429.g001
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morphogenesis (48730), or blood vessel development (GO:1568).

Among the highly specific epicardium signature genes, which were

downregulated post-infarct, only one of the epicardial signature

genes was increased in the muscle post-infarct (Riken

1500015O10, induction of 31 fold).

We also examined a selected subset of epicardial genes most

significantly affected by infarction for further analysis at an earlier

time point (three days post-infarction). RT-PCR analysis of three

and six day post-infarction epicardial samples showed a consistent

downregulation of uroplakin 3b, proline rich 15, dermokine,

Efemp-1, sulfatase-1, and basonuclin compared to sham operated

hearts (Figure S3). Conversely, CD5L was strongly upregulated 3

days post infarction but subsided at six days, highlighting the

importance of immune system related genes in early infarct

response processes, and confirming the specificity of changes are in

the post-infarct epicardium.

Regarding less dramatically affected genes than the epicardial

signature subset, we observed a trend towards up-regulation of

vimentin, fibronectin, snail2, and MMP-2 as well as a modest

down-regulation of desmoplakin in the epicardial transcriptome

after injury (data not shown), all of which are associated with cells

undergoing epithelial-to-mesenchymal transition [22]. Thymosin

b-4, a protein implicated in the activation and mobilization of

adult epicardial cells [9], and Thymosin b-10, a potent inhibitor of

angiogenesis [23], were both slightly increased (data not shown).

Similar changes were observed in the underlying cardiac muscle

samples, indicating a general response of these genes to injury.

Epicardial expression changes in mIGF-1 enhanced
cardiac regeneration

We have previously shown that supplemental transgenic expres-

sion of a locally acting Insulin-like Growth Factor-1 propeptide

(mIGF-1) in cardiomyocytes improved repair of the heart after

infarction. Restoration of cardiac form and function in post-infarct

mIGF-1 transgenic mice was facilitated by modulation of the

inflammatory response [30]. To determine how cardiac mIGF-1

expression changes the transcription profile of the pre- and post-

infarct epicardium, we compared the expression of mIGF-1

Table 1. Epicardial Genes.

Fold difference Gene Bank accesion Gene Symbol Gene Description

269.6 BQ084786 Upk3b uroplakin 3B

199.4 BB348674 Gpm6a glycoprotein m6a

129.8 BI452905 Dmkn dermokine

88.97 AV290571 C2 complement component 2 (within H-2S)

81.48 BB427704 Upk1b uroplakin 1B

76.86 NM_026228 Slc39a8 solute carrier family 39 (metal ion transporter), member 8

68.68 AK004699 Cyp2s1 cytochrome P450, family 2, subfamily s, polypeptide 1

56.12 BB118542 Slc26a3 solute carrier family 26, member 3

53.11 BB325766 Lrrn4 leucine rich repeat neuronal 4

45.18 NM_031170 Krt8 keratin 8

45.14 NM_011315 Saa3 serum amyloid A 3

42.83 NM_008471 Krt19 keratin 19

37.65 AW556821 2610018G03Rik RIKEN cDNA 2610018G03 gene

36.93 NM_013473 Anxa8 annexin A8

35.12 K02782 C3 complement component 3

33.93 AJ132433 Prr15 proline rich 15

33.63 BB805362 Slc9a3r1 solute carrier family 9 (sodium/hydrogen exchanger), member 3 regulator 1

31.76 BC005611 Chi3l1 chitinase 3-like 1

31.32 BB392676 1500015O10Rik RIKEN cDNA 1500015O10 gene

30.71 U88064 Bnc1 basonuclin 1

29.94 AK003577 Muc16 mucin 16

28.49 NM_008344 Igfbp6 insulin-like growth factor binding protein 6

28.24 BC023060 Efemp1 epidermal growth factor-containing fibulin-like extracellular matrix protein 1

26.95 NM_021426 Nkain4 Na+/K+ transporting ATPase interacting 4

26.57 BC015076 Mpzl2 myelin protein zero-like 2

26.08 AI852300 Ildr2 immunoglobulin-like domain containing receptor 2

… … … …

8.79 NM_00902 Aldh1a2 Aldehyde dehydrogenase family 1

5.15 AK012980 Tbx18 T-box18

List of epicardial genes expressed in epicardial samples isolated by LCM as described in Materials and Methods. Genes from Cluster 1 (from Figure 1), were selected for
statistically significant upregulation in the epicardial samples, a normalized .4-fold increased expression in the epicardial sample compared to the muscle control and
raw expression of at least 20 in the epicardial samples. This selection identified 197 unique epicardial signature genes. This Table includes top hits with a cut off at 25
fold induction in epicardial samples plus two selected epicardial genes with lower induction.
doi:10.1371/journal.pone.0011429.t001
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transgenic to wildtype epicardial samples in normal and infarcted

hearts. In analyses of the mIGF-1 signature gene list (Table S6) by

GO ontology, genes that were found only in the mIGF-1 epicardium

were represented in RNA processing GO lists such as mRNA

processing (GO: 6397) or mRNA metabolic processes (GO: 16071),

in contrast to genes only in the wildtype epicardium represented in

acute inflammatory response (GO:2526), complement activation

(GO: 2541), or innate immune response (GO: 45087).

Although the most highly expressed genes of the unperturbed

epicardium were common to both genotypes, several genes were

selectively upregulated in the epicardium of mIGF-1 animals.

Comparing wildtype and mIGF-1 samples revealed a number of

genes that were highly epicardium specific in the mIGF-1 samples but

that were not part of the epicardial signature in the wildtype mice

(Table 5). Furthermore, two known epicardial genes were increased

in the epicardium of mIGF-1 transgenic mice when compared to

wildtype samples, namely Tbx18 (8.5 fold increase) and RALDH2

(40 fold increase). Thus, the epicardium of mIGF-1 transgenic mice

differs in its normal gene expression profile from the wildtype hearts,

suggesting a role for the epicardium in the regenerative effects of

mIGF-1 expression from the underlying myocardium.

To test this possibility, we compared the expression profiles of

the wildtype and mIGF-1 hearts six days post infarction.

Interestingly, the post-infarction gene expression changes seen in

wildtype animals were less evident in the mIGF-1 hearts:

unsupervised analysis of mIGF-1 epicardial genes using SOM

revealed no cluster with significant changes of expression

(Figure 4), indicating that the action of mIGF-1 alleviates the

transcriptional perturbations caused by myocardial infarction.

Discussion

The relative paucity of cell-restricted markers represents a

current constraint on physiological and pathophysiological studies

Figure 2. Confirmation of epicardial gene expression. A) qRT-PCR was used to confirm gene array data, normalized against 18 S expression.
Statistical significance was tested using the student t-test. Expression levels for uroplakin 3b, basonuclin 1, proline rich 15, dermokine, Efemp1, and
sulfatase were significantly upregulated in the epicardial samples. GAPDH, RMPS2, and CD5L serve as controls; GAPDH was expressed higher in
muscle tissue while RMPS2 and CD5L showed no statistically relevant expression in the different samples as expected. B,C) Using
immunohistochemical localization of glycoprotein M6A (B), dermokine (C), and basonuclin-1 (D) proteins in the epicardial or subepicardial layer.
(* denotes statistical significance with p,0.05, **: p,0.005, ***: p,0.0005; Error bars are S.E.M., scale bars are 100 microns).
doi:10.1371/journal.pone.0011429.g002
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of the adult murine epicardium. A transcriptomic approach to

elucidating epicardial marker genes is a powerful way to obtain

better insight into the expression profile and characteristics of the

epicardial layer. Using laser capture microscopy, we developed an

analytical approach for the identification of novel epicardial genes,

yielding a list of potentially interesting genes for epicardial function

that has not been possible with more traditional, less high-

throughput approaches. The use of LCM affords the unbiased

collection of the entire cell population of the epicardium/

subepicardium as opposed to more selective cell sorting or

staining-based technologies. Although we confirmed the micro-

array results for an epicedial signature gene subset at the protein

level, any analysis based on RNA-transcripts has its limitations,

and more extensive validation of protein expression will be

necessary when examining other genes contained in these lists.

Other approaches have compared gene expression of epicardial

regions to endocardial regions of the ventricular wall of the rat

[24], in this study we focus on the comparison of gene expression

of the murine epicardium to the ventricular wall before or after left

coronary artery ligation (LCA).

The epicardial transcriptomic analysis presented here high-

lighted cell adhesion genes characteristic of epithelia, confirm-

ing a characterization of the epicardium as an epithelial cell

layer covering the heart. On a broader scale, the GO ontology

analysis confirms the epithelial character of the epicardium, as

exemplified by numerous candidates in the cell adhesion list.

Other high scoring GO lists were mainly related to immune

response, populated with complement-related genes that are

normally expressed in epithelial cells such as keratinocytes of the

skin [25] or intestinal epithelial cell lines [26]. The down-

regulation of these epicardial related immune system genes after

infarction further suggests that the epicardium normally

expresses immune system-related genes to form a barrier

protecting the heart. Of note, an enrichment of GO ontology

lists based on the epicardial genes in the infarcted muscle tissue

related to developmental processes and particularly in vascular-

isation and epithelial formation.

Of the novel epithelial genes identified in this study, dermokine

and basonuclin are particularly noteworthy in the context of the

adult epicardium. Importantly, these genes have been described as

epithelial genes in the literature, but heretofore have not been

annotated as such in the GO ontology. Dermokine, a gene of

unknown function, has been suggested to have a cytokine function,

which supports an epicardial signalling role [27]. A recent report

that dermokine is up-regulated in canine muscle after sustained

endurance exercise [28] suggests a possible involvement in muscle

adaptation. Its differential expression in the epicardium after

cardiac injury makes dermokine an interesting target for functional

studies in acute cardiac response to injury as well as to physiological

or pathological hypertrophy.

The transcription factor basonuclin-1 plays a role in epithelial

cell differentiation and proliferation and has been studied in a

corneal epithelium damage model [29]. Basonuclin-1 null mice

display reduced epithelial cell proliferation with thin epidermis

and delayed healing of the corneal epithelium. A likely role for this

epithelial stem cell marker in epicardial function is the support of

cell proliferation [30], a feature necessary for epicardial develop-

ment and homeostasis. Although basonuclin-null mice are viable,

Table 2. GO ontology analysis of epicardial signature genes.

GOID Term q m p

GO:0002526 acute inflammatory response 9 141 5.44*10‘–7

GO:0002541 activation of plasma proteins involved in acute inflammatory response 6 70 1.36*10‘–5

GO:0006956 complement activation 6 70 1.36*10‘–5

GO:0006692 prostanoid metabolic process 4 23 2.15*10‘–5

GO:0006693 prostaglandin metabolic process 4 23 2.15*10‘–5

GO:0045087 innate immune response 8 168 2.72*10‘–5

GO:0048869 cellular developmental process 36 3337 5.51*10‘–5

GO:0006959 humoral immune response 6 90 5.73*10‘–5

GO:0051605 protein processing by peptide bond cleavage 7 138 6.89*10‘–5

GO:0006958 complement activation, classical pathway 5 59 8.15*10‘–5

GO:0002455 humoral immune response mediated by circulating immunoglobulin 5 64 0.000123

GO:0007155 cell adhesion 18 1092 0.000123

GO:0022610 biological adhesion 18 1094 0.000123

GO:0002253 activation of immune response 7 154 0.00013

GO:0006954 inflammatory response 10 381 0.000287

GO:0030154 cell differentiation 33 3208 0.00035

GO:0002684 positive regulation of immune system process 10 393 0.000371

GO:0016485 protein processing 7 183 0.000395

GO:0048856 anatomical structure development 40 4332 0.000411

GO:0030198 extracellular matrix organization 7 188 0.000465

GO:0032502 developmental process 47 5527 0.00048

Epicardial GO ontology list included various innate immune system lists as well as the cell adhesion list, confirming the epithelial character of the epicardium. An FDR
cut off of 0.0005 was used. (q: number of epicardial genes present in the given GO list; m: total number of genes in a given GO list; p: FDR value for a given GO list
enrichment among the epicardial genes).
doi:10.1371/journal.pone.0011429.t002
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the knockout leads to a decreased level of e-cadherin protein in

corneal epithelium, generally associated with increased rates of cell

invasiveness and EMT [31]. Should basonuclin play a similar role

in the epicardium, regulation of EMT during repair processes of

the heart may be compromised in these mice. We are currently

investigating this possibility.

Figure 3. Unsupervised analysis of epicardial gene expression post infarction. A) Self- organizing maps were used to derive six clusters two
of which, (3 and 4) contain genes that are strongly regulated. Cluster 3, includes epicardial signature genes whose expression decreases sharply in the
epicardium but remains low in muscle post-infarction. Cluster 4 contains epicardial signature genes that are largely unchanged in the epicardium but
are increased in muscle post-infarction. B) Heat map of data in A).
doi:10.1371/journal.pone.0011429.g003
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Downregulation of epicardial genes as well as the loss of

adhesiveness after induction of cardiac infarct is consistent with

cells undergoing EMT in the epicardium before myocardial

invasion, migration and differentiation into endothelial or smooth

muscle cells to form new vasculature. The upregulation of

vascularisation and epithelial genes in the muscle tissue further

supports this interpretation. Indeed, several markers for EMT

were affected in the epicardial as well as cardiac transcriptome

after injury. Together with activation of thymosin b-4 expression

in the epicardium samples [9], these data suggest that epicardial

cells may undergo global activation post-infarction. Without

further lineage tracing studies, the fate of epicardial cells after

infarction remains uncertain, as epicardial cells might alter their

gene expression profile without actually undergoing EMT.

Despite some similarities to gene programs activated in the

initial repair processes after resection of zebrafish hearts, the

mammalian epicardium cannot support effective regeneration of

cardiac damage. In this regard, the shift in epicardial gene

expression patterns in mice expressing supplemental mIGF-1

propeptide in the myocardium may support the improved

regenerative capacities documented in these transgenic hearts

[32]. Specifically, elevated RALDH2 expression in the epicardium

in response to supplemental mIGF-1 from the underlying

myocardium points to a novel homeostatic re-activation of

embryonic programs, in which the pivotal role of retinoic acid

in epicardial development is redeployed to prime the tissue for

more effective mobilization upon injury. A related study has been

published reporting epicardial transcriptional profiling of material

obtained by tissue digestion and subsequent physical removal of

the epicardial cell layer, confirming post-infarction reactivation of

RALDH2 and other embryonic genes that correlate well with the

present study [33].These observations will inform further investi-

gation of the altered gene programs elicited by supplemental

mIGF-1 propeptides to unravel their role in the enhancement of

mammalian cardiac repair. The epicardial signatures presented

here provide important tools for such analyses, as well as

important information for comparative studies to determine which

of the epicardial genes play crucial roles in the development,

homeostasis, or repair processes of the heart in other more

regenerative organisms.

Materials and Methods

Ethics Statement
All mouse procedures were approved by the EMBL Monter-

otondo Ethical Committee (Monterotondo, Italy) and were in

accordance with national and European regulations.

Animal keeping and Myocardial Infarction model
WT male C57/Bl6 mice were purchased from Charles River

Laboratories. Male mIGF-1 transgenic animals were used as

described before [32]. All animals used were mus musculus of

C57/Bl6 background. Animals were kept in IVC mouse racks

at a 12 h/12 h light-dark cycle and were fed with pellet food

and drinking water. Bedding material was changed once a

week.

Table 3. Downregulated epicardial signature genes after myocardial infarction.

p-value GenBank accession Gene Symbol Gene Description

0.0474 U88064 Bnc1 basonuclin 1

0.045 NM_021719 Cldn15 claudin 15

0.0356 AV347903 Gng4 guanine nucleotide binding protein (G protein), gamma 4

0.0286 AK004699 Cyp2s1 cytochrome P450, family 2, subfamily s, polypeptide 1

0.0241 BE945607 Cybrd1 cytochrome b reductase 1

0.0241 NM_008198 Cfb complement factor B

0.0208 AV288135 Atad4 ATPase family, AAA domain containing 4

0.0208 BB348674 Gpm6a glycoprotein m6a

0.0208 NM_026228 Slc39a8 solute carrier family 39 (metal ion transporter), member 8

0.0208 BB325766 Lrrn4 leucine rich repeat neuronal 4

0.0208 AK003577 Muc16 mucin 16

0.0208 NM_021426 Nkain4 Na+/K+ transporting ATPase interacting 4

0.0208 BC023060 Efemp1 epidermal growth factor-containing fibulin-like extracellular matrix protein 1

0.0142 K02782 C3 complement component 3

0.00681 BC022950 1600029D21Rik RIKEN cDNA 1600029D21 gene

0.00681 BC010782 Tm4sf5 transmembrane 4 superfamily member 5

0.00616 NM_008365 Il18r1 interleukin 18 receptor 1

0.00616 NM_138683 Rspo1 R-spondin homolog (Xenopus laevis)

0.00616 BB075402 Zdbf2 zinc finger, DBF-type containing 2

0.00249 AV012073 Rarres2 retinoic acid receptor responder (tazarotene induced) 2

0.00217 BB118542 Slc26a3 solute carrier family 26, member 3

0.00215 NM_007753 Cpa3 carboxypeptidase A3, mast cell

0.00196 AV144145 Chrdl1 chordin-like 1

Epicardial signature genes of Cluster 3 (Figure 3) were tested for statistically significant downregulation in the epciardium samples as described in Materials and
Methods. This list shows those genes that were downregulated (p value cut off: 0.005) in the epicardium samples.
doi:10.1371/journal.pone.0011429.t003
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Male animals between three and four months of age were

anesthetized using 2% isoflurane and endo-tracheal intubation was

carried out to ventilate the lungs while the chest was open. An

incision of several mm length away from the sternal border towards

the left armpit was made. Underlying connective tissue was opened

and the two muscle layers underneath were spread and held by

retractors without incision into the muscle. The rib cage was then

visualized and opened at the 4th intercostal space. The retractors

were inserted and the pericardium was cut open to allow access to

the heart. The left coronary artery was visualized running form the

left atrium towards the apex as a red pulsating vessel [34]. The

ligation was placed about 1 mm from the atrium to reach an

infarction size of 40–50% of the ventricle. Next an 8–0 ligature was

passed underneath the LAD and tied with three knots. For Sham

Table 4. Epicardial signature gene expression changes in muscle after myocardial infarction.

p-value GenBank accession Gene Symbol Gene Description

0.0497 BB558905 Bace2 beta-site APP-cleaving enzyme 2

0.0495 NM_033314 Slco2a1 solute carrier organic anion transporter family, member 2a1

0.0473 NM_009242 Sparc secreted acidic cysteine rich glycoprotein

0.0433 BF235516 Ptprf protein tyrosine phosphatase, receptor type, F

0.0433 AK011545 Basp1///LOC100045716 brain abundant, membrane attached signal protein 1///similar to 22 kDa
neuronal tissue-enriched acidic protein

0.0359 BB065799 Sulf1 sulfatase 1

0.0329 U08020 Col1a1 collagen, type I, alpha 1

0.0329 L36062 Star steroidogenic acute regulatory protein

0.0329 NM_010329 Pdpn podoplanin

0.0259 BF227507 Col1a2 collagen, type I, alpha 2

0.0211 AW550625 Col3a1 collagen, type III, alpha 1

0.0211 NM_011254 Rbp1 retinol binding protein 1, cellular

0.0211 NM_009636 Aebp1 AE binding protein 1

0.0175 BB392676 1500015O10Rik RIKEN cDNA 1500015O10 gene

0.0175 NM_011985 Mmp23 matrix metallopeptidase 23

0.0175 NM_013586 Loxl3 lysyl oxidase-like 3

0.0175 X16834 Lgals3 lectin, galactose binding, soluble 3

0.0174 BC022666 Mfap4 microfibrillar-associated protein 4

0.0147 BC008107 Timp1 tissue inhibitor of metalloproteinase 1

0.00893 M65143 Lox lysyl oxidase

0.00742 BC025600 Tmem119 transmembrane protein 119

Epicardial signature genes of Cluster 4 (from Figure 3) were tested for statistically significant upregulation in the muscle control samples as described in Materials and
Methods. This Table shows those genes that were upregulated (p value cut off: 0.005) in the muscle control samples.
doi:10.1371/journal.pone.0011429.t004

Table 5. New epicardial genes induced in mIGF-1 hearts.

Fold Difference Gene Symbol Gene Description

43.96 Pik3cd phosphatidylinositol 3-kinase catalytic delta polypeptide

34.41 Ptprk protein tyrosine phosphatase, receptor type, K

30.04 Rbbp8 retinoblastoma binding protein 8

27.13 Polr3k Polymerase (RNA) III (DNA directed) polypeptide K (Polr3k), mRNA

26.19 Nrip2 nuclear receptor interacting protein 2

25.8 Cryl1 crystallin, lambda 1

25.67 1700003E16Rik RIKEN cDNA 1700003E16 gene

22.52 H2-T10 histocompatibility 2, T region locus 10

22.26 1110069O07Rik RIKEN cDNA 1110069O07 gene

20.27 EG620313///Tbca predicted gene, EG620313///tubulin cofactor A

20.05 Marcksl1 MARCKS-like 1

IGF-1 and WT epicardial samples were compared to the underlying myocardium to examine variations in epicardial signature genes (as defined in Materials and
Methods). Several genes that had a .20 fold induction in the epicardium of mIGF-1 hearts were not at all represented in epicardial genes in WT hearts.
doi:10.1371/journal.pone.0011429.t005
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operated animals, the pericardium was opened but no suture was

inserted into the heart. The retractors were removed and the chest

was closed by bringing together the 4th and 5th ribs using 6–0 nylon

sutures. The muscles were placed into their original position and the

skin incision was closed using a 6–0 nylon suture. Mice were

monitored until awakening and body temperature was kept up by

red light. After surgery mice were kept individually in double cages

and sacrificed three or six days after surgery.

Laser Capture Microscopy (LCM). Hearts were excised

after perfusion with 40 ml Phosphate Buffer Saline (PBS) and

immediately frozen in OCT at 280uC. PEN membrane coated

slides (Carl Zeiss MicroImaging GmbH, Bernried, Germany) were

activated and prepared as suggested by the supplier. Seven mm

thick tissue sections of the left ventricle were obtained and washed

for 10 seconds in DEPC-treated water, precooled 70% EtOH and

100% EtOH. Slides were air dried for 1–2 min. and stored at

280uC until processing. For laser dissection, slides were thawed

briefly and excess liquid was removed. The epicardial samples, as

well as cardiac muscle controls, were independently dissected out

using a P.A.L.M. LCM (Carl Zeiss MicroImaging GmbH,

Bernried, Germany) as shown in Figure S1.

For non-infarcted samples (sham operated), epicardial cells were

obtained by dissecting the epicardial and subepicardial layer of the

left ventricle. For infarcted samples, the infarction was carried out

as described in the corresponding section and animals were

sacrificed for dissection three or six days after induced infarction.

Epicardial cells were dissected partly above and partly below the

site of infarction using the infarct-suture site as landmark. Laser

capture dissection represents the most reproducible way of

collecting epicardial sample without introducing a bias towards

certain cell populations (FACS sorting) or compromising RNA

quality through prolonged tissue handling (staining). Fragments

were catapulted into microtube lids filled with 65 ml RLT buffer

(Qiagen, Milano, Italy) and 5 ml of carrier RNA (4 ng/ml solution).

RNA isolation
After dissection, total RNA of the epicardial layer of individual hearts

were isolated using a standard RNeasy micro kit (Qiagen, Milano, Italy)

protocol. Quality of RNA was tested using Agilent Bioanalyzer 2100

(Agilent Technologies Inc., Santa Clara, USA). RIN values were at

least above 6 while most samples had a RIN between 7 and 8. For each

sample between 0.2 and 2 ng of RNA could be collected.

Figure 4. Unsupervised analysis of epicardial gene expression changes post infarction in IGF-1 animals. Self- organizing maps were
used to derive six clusters of epicardial genes for IGF-1 overexpressing mice. Unlike for the wildtype animals, no cluster contained extensive
expression changes post infarction.
doi:10.1371/journal.pone.0011429.g004
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Gene Arrays
RNA was processed for Affymetrix GeneChip analysis by the

gene core facility at the European Molecular Biology Laboratory

(EMBL) using a two cycle cDNA synthesis protocol as suggested by

the supplier (Affymetrix, Santa Clara, CA) and a mouse430-2.0

chip (Affymetrix, Santa Clara, CA) was used for the analysis.

Gene array data analysis and statistics
Data was processed and analysed using GeneSpring GX 7.3.1

(Agilent, Waldbronn, Germany). Gene array raw data was first

normalized in order to make multiple chip data comparable using

the pre-processing algorithm ‘‘GeneChip - Robust Multi-Array

Average’’ (GC-RMA) method to account for background correc-

tion, normalization, and summarization. For further normal-

ization values below 0.01 were set to 0.01. Each measurement was

divided by the 50.0th percentile of all measurements in that

sample. Each gene was divided by the median of its measurements

in all samples. If the median of the raw values was below 10 then

each measurement for that gene was divided by 10 if the

numerator was above 10, otherwise the measurement was

excluded. For each experimental group of tissues, samples from

four or five animals were used. All array data is MIAME

compliant and raw data has been deposited with ArrayExpress

(Accession number: E-MEXP-2446).

Cluster Analysis
Gene clusters representing similar expression profiles between

uninjured epicardial and muscle control samples were identified

using unsupervised, SOM clustering (Radius 7.0) with a maximum

of 4500000 iterations. SOM clustering can be used to partition

genes into clusters of similar gene expression changes across

samples. In this analysis, only relative changes in expression levels

are considered. Dimensions of 262 were chosen as this results in 4

clusters with discernible differences. Unsupervised SOM clustering

for post infarction expression changes were carried out using an

expanded 263 matrix, 10000 iterations, and a radius of 4.0. This

expansion was necessary to account for the increased number of

possible gene expression patterns that one can envision in the

infarcted animals.

Analysis of epicardial genes and differentially regulated
genes post infarction

A list of WT epicardium-enriched genes was created by a

parametric t-test using the Benjamini-Hochberg method to correct

for multiple testing with a false discovery rate of 0.05 starting from

SOM cluster 1 (from Figure 1). An epicardial signature gene list

was derived from genes with a normalized .4-fold increased

expression in the epicardial sample compared to the muscle

control and a raw expression of at least 20 in the epicardial

samples. We identified 197 unique genes that fulfilled these criteria

and were thus considered epicardial signature genes. When

comparing directly the mIGF-1 epicardial genes to WT signature

genes, we applied statistical analysis for both as described above

without prior use of unsupervised testing in order to maximize

comparability between the two genotypes. For analysis of

differentially regulated epicardial genes after infarction, clusters

(3,1) and (1,2) were used. All statistical parameters and tests were

used as described above.

GO Analysis
For GO analysis, gene lists were analysed using the GOEAST

online tool [35]. Hypergeometric testing was used with Benjamini

& Yekutieli method for multiple testing correction using a

maximum FDR of 0.005. For the analysis of the epicardial

samples, the complete list of 197 epicardial signature genes was

used as input (Table S1). For GO analysis of expression changes

post infarction, the lists of statistically significantly regulated genes

were used as input (Tables 3 and 4).

For further classification of the expression changes after

infarction, KEGG analysis was also attempted, but no significantly

enriched pathways could be identified.

qRT-PCR
Isolated RNA was reverse transcribed using TaqMan Reverse

transcription reagents (Applied Biosystems, Foster City, CA).

Quantitative PCR was carried out using Applied Biosystems gene

expression Taqman assays on a ABI PRISM 7700 Sequence

Detector (Applied Biosystems, Foster City, CA). Samples were

incubated at 50uC for 10 min, 95uC for 2 min and amplified for

40 cycles (95uC: 15 sec, 60uC: 1 min). Results were normalized

against expression of the 18 S ribosomal RNA.

Statistics and calculation for qRT-PCR
For quantitative reverse transcription PCR, expression was

analysed by normalizing against expression levels of 18 S

transcripts. To transform Ct values to relative expression values,

the following formula was used :

Relative expression = 2‘ -(DCt - Ct[stable]).

Where: DCt : Ct[Gene of Interest] – Ct[18 S]

Ct[stable]: Ct of one constant sample across all Ct’s for the same

gene.

Statistical significance was tested using student t-test (tail 2, type

2). Expression values are mean relative expression or mean fold

induction 6 standard error of the mean (SEM). A p value ,0.05

was considered statistically significant unless noted otherwise.

(*: p,0.05; **: p,0.005; ***: p,0.0005).

Immunohistochemistry
Unfixed mouse heart sections were immersed at room

temperature in 100% precooled Acetone for 10 minutes. Samples

were washed three times with PBS for 3 minutes each and blocked

with blocking solution containing 3% BSA in PBS for 30 minutes.

Antibodies were applied at the appropriate dilution (rabbit anti-

dermokine at 1:250 (Abcam, Cambridge, MA), rat anti-GPM6A at

1:100 (MBL International, Woburn, MA)) diluted in 3% BSA in

PBS. Sections were incubated with primary antibodies overnight

at 4 uC and washed three times in PBS for 5 minutes. Secondary

antibody (Dermokine : Alexa goat anti rabbit 594 (Invitrogen,

Carlsbad, CA); GPM6A - Alexa rabbit anti rat 594 (Invitrogen,

Carlsbad, CA) was diluted in PBS at 1:1000 dilution and

incubated for 1 hr at room temperature. Slides were washed

twice with DAPI (1:20,000) in PBS for 5 minutes and mounted

with Permafluor mounting medium (Beckman Coulter, Fullerton,

CA). Basonuclin stains were carried out on paraffin embedded

sections. Isolated tissues were fixed overnight at 4uC in 4%

Formaldehyde/H2O solution. Tissues were gradually dehydrated

(washes in PBS, 0.85% saline, 1:1 saline/100%EtOH, 2670%

EtOH, 85% EtOH, 95% EtOH, 100% EtOH at 4uC). For further

dehydration slides were incubated twice at room temperature in

100% Xylene and then 1:1 xylene/paraffin, before they were

subjected to 6 changes of 100% paraffin. Tissues were then placed

into tissue block molds filled with paraffin. After letting stand over

night to harden, 10 mm thick sections were cut using a microtome

and placed on SuperFrost Plus microscope slides (Thermo

Scientific, Germany). Slides were then left to dry at 42uC
overnight. Before starting the staining protocol, slides were

rehydrated through an ethanol series (100%.70%). They were
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then washed for one minute in dH2O. For antigen retrieval, the

slides were placed in BG antigen retrieval solution (PickCell

Laboratories, USA) and processed in a pressure cooker ‘‘Retriever

2100’’ (PickCell Laboratories, USA) as described in the protocol

and left to cool down over night. Sections were incubated in 0.5%

H2O2/dH2O for 10 minutes and then incubated in 5% normal

horse serum for one hour at RT. After removing the serum, anti-

basonuclin antibody (Santa Cruz) was applied at 1/50 dilution and

incubated (1 h at RT for basonuclin antibody) in a moisturized

chamber and washed three times in PBS. As secondary antibodies,

peroxidase conjugated antibodies were used for 1 h at RT. Slides

were then washed three times in PBS and were incubated in DAB

substrate (SK4100, Vector Laboratories, USA) as described in the

protocol. Slides were then rehydrated through an ethanol series

(70%,100%) and mounted after three washes in Xylene.

Supporting Information

Figure S1 Isolation of the epicardial cell layer of murine hearts

using laser capture microscopy. A) Hearts were frozen and cut in a

cryostat at 7mJm thickness, washed in DEPC treated water, 70%

EtOH and finally 100% EtOH. B) The epicardial surface of the

sections was laser excised (dissected area denoted E) and

catapulted into RNA stabilizing solution for later RNA isolation.

C) Cardiac muscle (excised area denoted M) was excised to

compare gene expression of the epicardial layer to the rest of the

heart. (Scale bar: 200mm).

Found at: doi:10.1371/journal.pone.0011429.s001 (4.49 MB

TIF)

Figure S2 Comparative analyses of epicardial signature genes.

Epicardial data was compared to muscle control, left ventricle or

whole heart gene array data. For each of the three control groups,

a list of epicardial genes was generated using the same conditions.

These lists were compared using a Venn diagram, showing that

most genes were overlapping between the different comparison

approaches (see Table S2). Especially highly expressed epicardial

signature genes were found in all three approaches (white area),

confirming our findings of epicardial genes.

Found at: doi:10.1371/journal.pone.0011429.s002 (0.16 MB

TIF)

Figure S3 Confirmation of post-infarction gene expression

changes. RT-PCR analysis of epicardial signature gene expression

changes post-infarct confirmed expression differences between

three and six days post infarction were mostly negligible. In

contrast, CD5L was upregulated three days post infarction but

returned to basal expression levels after six days, highlighting the

importance of immune response genes in early post infarction

processes. GALDH was used as control. (S: Sham operated, 3:

three days post infarction, 6: six days post infarction; *: p,0.05;

***: p,0.0005; errors are S.E.M.).

Found at: doi:10.1371/journal.pone.0011429.s003 (0.36 MB TIF)

Table S1 Full List of epicardial signature genes.

Found at: doi:10.1371/journal.pone.0011429.s004 (0.04 MB

XLS)

Table S2 Comparative analyses of epicardial signature genes.

Data supporting Figure S2.

Found at: doi:10.1371/journal.pone.0011429.s005 (0.05 MB

XLS)

Table S3 Full GO analysis of epicardial signature genes.

Analysis of genes with a p-value cut off of 0.005.

Found at: doi:10.1371/journal.pone.0011429.s006 (0.02 MB

XLS)

Table S4 GO analysis of downregulated epicardial signature

genes after myocardial infarction. Analysis of genes with a p-value

cut off of 0.005.

Found at: doi:10.1371/journal.pone.0011429.s007 (0.01 MB

XLS)

Table S5 GO analysis of upregulated epicardial signature genes

in muscle after myocardial infarction. Analysis of genes with a p-

value cut off of 0.005.

Found at: doi:10.1371/journal.pone.0011429.s008 (0.03 MB

XLS)

Table S6 List of mIGF-1 epicardial signature genes.

Found at: doi:10.1371/journal.pone.0011429.s009 (0.09 MB

XLS)
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