
Two-Tensor Tractography Using a Constrained Filter

James G. Malcolm1, Martha E. Shenton1,2, and Yogesh Rathi1
1 Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School,
Boston, MA
2 VA Boston Healthcare System, Brockton Division, Brockton, MA

Abstract
We describe a technique to simultaneously estimate a weighted, positive-definite multi-tensor fiber
model and perform tractography. Existing techniques estimate the local fiber orientation at each voxel
independently so there is no running knowledge of confidence in the estimated fiber model. We
formulate fiber tracking as recursive estimation: at each step of tracing the fiber, the current estimate
is guided by the previous. To do this we model the signal as a weighted mixture of Gaussian tensors
and perform tractography within a filter framework. Starting from a seed point, each fiber is traced
to its termination using an unscented Kalman filter to simultaneously fit the local model and propagate
in the most consistent direction. Further, we modify the Kalman filter to enforce model constraints,
i.e. positive eigenvalues and convex weights. Despite the presence of noise and uncertainty, this
provides a causal estimate of the local structure at each point along the fiber. Synthetic experiments
demonstrate that this approach significantly improves the angular resolution at crossings and
branchings while consistently estimating the mixture weights. In vivo experiments confirm the ability
to trace out fibers in areas known to contain such crossing and branching while providing inherent
path regularization.

1 Introduction
The advent of diffusion weighted magnetic resonance imaging has provided the opportunity
for non-invasive investigation of neural architecture. Using this imaging technique,
neuroscientists can investigate how neurons originating from one region connect to other
regions, or how well-defined these connections may be. For such studies, the quality of the
results relies heavily on the chosen fiber representation and the method of reconstructing
pathways.

To begin studying the microstructure of fibers, we need a model to interpret the diffusion
weighted signal. Such models fall broadly into two categories: parametric and nonparametric.
One of the simplest parametric models is the diffusion tensor which describes a Gaussian
estimate of the diffusion orientation and strength at each voxel. While robust, this model can
be inadequate in cases of mixed fiber presence or more complex orientations, and so to handle
more complex diffusion patterns, various alternatives have been introduced: weighted mixtures
[1,2,3,4], higher order tensors [5], and directional functions [6]. In contrast, nonparametric
techniques estimate an orientation distribution function (ODF) describing an arbitrary
configuration of fibers. For this estimation, several techniques have been proposed, among
them Q-ball imaging [2], spherical harmonics [7,8], spherical deconvolution [9,10,11,6], and
diffusion orientation transforms [12].

Based on these models, several techniques can be used to reconstruct pathways. Deterministic
tractography using the single tensor model simply follows the principal diffusion direction,
while multi-fiber models use various techniques for determining the number of fibers present
or when pathways branch [3,13]. While parametric methods directly describe the principal
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diffusion directions, interpreting the ODFs from model independent representations typically
involves a separate algorithm to determine the number and orientation of diffusion patterns
present [14,9,8,15]. Several filtering approaches have been proposed. For example, Kalman
and particle filters [16,17,18], as well as a moving least squares approach [19], have been used
with single tensor streamline tractography, but these have been used for path regularization
and not to estimate the underlying fiber model. One approach has used a linear Kalman filter,
although this method was applied to estimate each voxel independently during acquisition
[20].

1.1 Our Contributions
Of the approaches listed above, nearly all fit the model at each voxel independent of other
voxels; however, tractography is a causal process: we arrive at each new position along the
fiber based upon the diffusion found at the previous position. In this paper, we treat model
estimation and tractography as such by placing this process within a causal filter. As we
examine the signal at each new position, the filter recursively updates the underlying local
model parameters, provides the variance of that estimate, and indicates the direction in which
to propagate tractography.

To begin estimating within a finite dimensional filter, we model the diffusion signal using a
weighted mixture of two tensors. This enables estimation directly from the raw signal without
separate preprocessing or regularization. Because the signal reconstruction is nonlinear, we
use the unscented Kalman filter to perform local model estimation and then propagate in the
most consistent direction (Fig. 1). Further, we use a constrained version of the unscented
Kalman filter to ensure the tensor eigenvalues are positive and the mixture weights are non-
negative and convex. Using causal estimation in this way yields inherent path regularization,
consistent partial volume estimation, and accurate fiber resolution at crossing angles not found
with independent optimization.

2 Approach
Section 2.1 provides the necessary background on modeling the measurement signal using
tensors and defines the specific weighted two-fiber model employed in this study. Then,
Section 2.2 describes how this model can be estimated using an unscented Kalman filter and
further how the constraints are enforced.

2.1 Modeling Local Fiber Orientations
In diffusion weighted imaging, image contrast is related to the strength of water diffusion, and
our goal is to accurately relate these signals to an underlying model of putative fibers. At each
image voxel, diffusion is measured along a set of distinct gradients, u1,…, um ∈ 2 (on the
unit sphere), producing the corresponding signal, s = [s1, …, sm]T ∈ ℝm. For voxels containing
a mixed diffusion pattern, a general weighted formulation is expressed as,

, where s0 is the baseline signal intensity, b is an acquisition-specific
constant, wj are convex weights, and Dj are tensors, each representing a diffusion pattern.

From that general mixture model, we choose a restricted form with only two weighted
components. This choice is guided by several previous studies which found two-component
models to be sufficient at b = 1000 [2,3,13,14,4,21]. Also, we assume the shape of each tensor
to be ellipsoidal, i.e. there is one dominant principal diffusion direction m with eigenvalue
λ1 and the remaining orthonormal directions have equal eigenvalues λ2 = λ3 (as in [4,6]). These
assumptions leave us with the following model used in this study:
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(1)

where w1, w2 are convex weights and D1, D2 are each expressible as D = λ1mmT + λ2 (ppT +
qqT), with m, p, q ∈ 2 forming an orthonormal basis aligned to the principal diffusion
direction m. The free model parameters are then m1, λ11, λ21, w1, m2, λ12, λ22, and w2. Lastly,
we wish to constrain this model to have positive eigenvalues and convex weights (w1, w2 ≥ 0
and w1 + w2 = 1).

2.2 Estimating the Fiber Model
Given the measured signal at a particular voxel, we want to estimate the underlying model
parameters that explain this signal. As in streamline tractography, we treat the fiber as the
trajectory of a particle which we trace out. At each step, we examine the measured signal at
that position, use that measurement to update our model parameters within the filter, and
propagate forward in the most consistent direction. Fig. 1 illustrates this filtering process.

To use a state-space filter for estimating the model parameters, we need the application-specific
definition of four filter components:

Algorithm 1. Unscented Kalman Filter

1: Form weighted sigma points  around current mean xt and covariance Pt with scaling factor ζ

2: Predict the new sigma points and observations

3: Compute weighted means and covariances, e.g.

4: Update estimate using Kalman gain K and scanner measurement yt

1. The system state (x): the model parameters

2. The state transition function (f): how the model changes as we trace the fiber

3. The observation function (h): how the signal appears given a particular model state

4. The measurement (y): the actual signal obtained from the scanner

For our state, we directly use the parameters for the two-tensor model in Eq. 1:

(2)

For the state transition we assume identity dynamics; the local fiber configuration does not
undergo drastic change as it moves from one location to the next. Our observation is the signal
reconstruction, y = h[x] = s = [s1,…, sm]T using si described by the model in Eq. 1, and our
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measurement is the actual signal interpolated directly on the diffusion weighted images at the
current position.

Since our signal reconstruction in Eq. 1 is nonlinear, we employ an unscented Kalman filter
to perform estimation. Similar to classical linear Kalman filtering, the unscented version seeks
to reconcile the predicted state of the system with the measured state and addresses the fact
that these two processes–prediction and measurement–may be nonlinear or unknown. In
Algorithm 1 we present the standard version of this filter; for more thorough treatments, see
[22,23]. It is important to note that while particle filters are a common approach to nonlinear
estimation, we chose instead the unscented Kalman filter primarily for its low computational
complexity. With respect to state dimension, particle filters require the number of particles to
be exponential to properly explore the state space. In contrast, the unscented filter requires
2n + 1 particles (sigma points) for a Gaussian estimate of the n-dimensional state.

In this standard formulation, we have ignored the constraints on our model. This results in
instabilities: the diffusion tensors may become degenerate with zero or negative eigenvalues,
or the weights may become negative. To enforce appropriate constraints, one can directly
project any unconstrained state x onto the constrained subspace [23]. In other words, we wish
to find the state xˆ closest to the unconstrained state x which still obeys the constraints, Axˆ ≤
b. Using Pt as a weighting matrix, this becomes a quadratic programming problem:

(3)

This projection procedure is applied within unscented Kalman filter procedure to correct at
every place where we move in the state-space: after spreading the sigma points Xt, after
transforming the sigma points Xt+1∣t, and after the final estimate xt+1.

In this study, for voxels that can be modeled with only one tensor, we found it preferable to
have both the tensor components similarly oriented. Upon encountering a region of dispersion,
the second component is poised and ready to begin branching instead of having zero weight
and arbitrary orientation. To favor such solutions, we require the weights of each of the
components to be not just non-negative but also greater than 0.2, and so, in our current
implementation, D and b are constructed to encode the following state constraints:

(4)

3 Experiments
We first use experiments with synthetic data to validate our technique against ground truth.
We confirm that our approach accurately recognizes crossing fibers over a broad range of
angles and consistently estimates the partial volumes (Section 3.1). We then examine a real
dataset to demonstrate how causal estimation is able to pick up fibers and branchings known
to exist in vivo yet absent using other techniques (Section 3.2).

In these experiments, we compare against two alternative techniques. First, we use sharpened
spherical harmonics with peak detection as described in [8] (order l = 8, regularization L =
0.006). This provides a comparison with an independently estimated nonparametric
representation. Second, when performing tractography on real data, we also compare against
single-tensor streamline tractography for a baseline.
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3.1 Synthetic Validation
Following the experimental method of generating multi-compartment synthetic data found in
[2,8,15], we averaged the eigenvalues of the 300 voxels with highest fractional anisotropy (FA)
in our real data set: {1200, 100, 100}μm2/msec. We used these eigenvalues to generate
synthetic MR signals according to Eq. 1 at b = 1000 with 81 gradient directions on the
hemisphere and introduced Rician noise (SNR ≈ 5 dB).

While the independent optimization techniques can be run on individually generated voxels,
care must be taken in constructing reasonable scenarios to test the causal filter. For this purpose,
we constructed a set of two-dimensional fields through which to navigate. In the middle is one
long pathway where the filter starts at one end estimating a single tensor but then runs into
voxels with two crossed fibers at a fixed angle and weighting. In this crossing region we
calculated error statistics to compare against sharpened spherical harmonics.

From these synthetic sets, we examined detection rate, angular resolution, and estimated
volume fractions and we plot the results in Fig. 2. Each column looks at a different primary-
secondary weighting combination, and each row looks at a different metric. In the top row, we
count how many times each technique distinguishes two separate fibers. The filtered approach
(black) is able to detect two distinct fibers at crossing angles far below that using spherical
harmonics (red). Further, the filtered approach maintains such relatively high detection rates
even at 80/20 partial voluming (far right column). In the middle row, we look at where each
technique reported two fibers and we record the error in estimated angles. From this, we see
that spherical harmonics result in an angular error of roughly 15° at best and fails to detect a
second component at angles below 60°. In contrast, the filtered approach has an error between
5-10° and is able to accurately estimate down to crossing angles of 30°. In the bottom row, we
look at the primary fiber weight estimated by the filter. As expected, this estimate is most
accurate closer to 90° (blue line indicates true weight).

3.2 In Vivo Tractography
This study focuses on fibers originating in the corpus callosum. Specifically, we sought to trace
out the lateral transcallosal fibers that run through the corpus callosum out to the lateral gyri.
It is known that single-tensor streamline tractography only traces out the dominant pathways
forming the U-shaped callosal radiation while spherical harmonics only capture some of these
pathways [8,15].

We begin by seeding each algorithm up to thirty times in voxels at the intersection of the mid-
sagital plane and the corpus callosum. To explore branchings found using the proposed
technique, we considered a component to be branching if it was separated from the primary
component by less than 40° with FA≥0.15 and weight above 0.3. Similarly, with sharpened
spherical harmonics, we considered it a branch if we found additional maxima over the same
range. We terminated fibers when either the generalized fractional anisotropy [2] of the
estimated signal fell below 0.1 or the primary component FA fell below 0.15 or weight below
0.3.

We tested our approach on a human brain scan using a 3-Tesla magnet to collect 51 diffusion
weighted images on the hemisphere at b = 900 s/mm2, a scan sequence comparable those of
[8,15]. Fig. 3 shows tracts originating from within a few voxels intersecting a chosen coronal
slice. Confirming the results in [8,15], sharpened spherical harmonics only pick up a few fibers
intersecting the U-shaped callosal radiata. In contrast, our proposed algorithm traces out many
pathways consistent with the apparent anatomy. Fig. 4 shows a view of the whole corpus
callosum from above. The filtered approach is able to pick up many transcallosal fibers
throughout the corpus callosum as well as infiltrating the frontal gyri to a greater degree than
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either alternate technique. To emphasize transcallosal tracts, we color as blue those fibers
exiting a corridor of ±22 mm around the mid-sagittal plane.

4 Conclusion
In this work, we demonstrated that using the unscented Kalman filter provides robust estimates
of the fiber model with much higher accuracy than independent estimation techniques.
Specifically, the proposed approach gives significantly lower angular error (5-10°) in regions
with fiber crossings than using sharpened spherical harmonics (15-20°), and it reliably
estimates the partial volume fractions.
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Fig. 1.
System overview illustrating relation between the neural fibers, the scanner signal, and the
unscented Kalman filter as it is used to estimate the local model. At each step, the filter uses
its current model state to reconstruct a synthetic signal and then compares that against the actual
signal from the scanner in order to update its internal model state.
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Fig. 2.
Comparison of sharpened spherical harmonics (red) against filtered approach (black) over
several different metrics: detection rate, angular resolution, estimated primary fiber weight
(rows, top to bottom). Each column is a different primary fiber weighting. The filter provides
superior detection rates, accurate angular resolution, and consistent weight estimated.
Trendlines indicate mean while dashed bars indicate one standard deviation.
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Fig. 3.
Filtered tractography picks up many fiber paths consistent with the underlying structures. Both
single-tensor streamline and sharpened spherical harmonics are unable to find the majority of
these pathways. Seed region indicated in yellow.
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Fig. 4.
Tracing fibers originating from the center of the entire corpus callosum viewed from above.
The proposed filtered tractography is able to find many of the lateral projections (blue) while
single-tensor is unable to find any and few are found with sharpened spherical harmonics. Seed
region indicated in yellow.
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