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Abstract
Leptin signaling in the hypothalamus is required for normal food intake and body weight homeostasis.
Recent evidence suggests that besides the signal transducer and activator of transcription-3 (STAT3)
pathway, several non-STAT3 pathways mediate leptin signaling in the hypothalamus. We have
previously demonstrated that leptin stimulates phosphodiesterase-3B (PDE3B) activity in the
hypothalamus, and PDE3 inhibitor cilostamide reverses anorectic and bodyweight reducing effects
of leptin. To establish the physiological role of PDE3B signaling in the hypothalamus, we examined
if leptin signaling through the PDE3B pathway is responsible for the activation of
proopiomelanocortin (POMC) and neurotensin (NT) neurons, which are known to play a critical role
in energy homeostasis. To this end, we assessed the effect of cilostamide on leptin-induced POMC
and NT gene expression in the rat hypothalamus. Results showed that while central injection of leptin
significantly increased both POMC and NT mRNA levels in the medial basal hypothalamus,
cilostamide completely reversed this effect of leptin suggesting a PDE3B-activation dependent
induction of POMC and NT gene expression by leptin. This result further suggests that the PDE3B
pathway plays an important role in mediating leptin action in the hypothalamus.
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Introduction
Cumulative evidence suggests that leptin, a product of the obese gene (54), signals nutritional
status to key regulatory centers in the hypothalamus and it has emerged as an important signal
regulating energy homeostasis [16,18,19,47]. Leptin administration centrally or peripherally
decreases food intake and body weight in a variety of animals [16,49]. The deletion of leptin
receptor (LEPR) in neurons leads to an obese phenotype [9], and transgenic supplementation
of the LEPR in neurons of Leprdb/db mice results in an amelioration of the obese phenotype
[27]. The early recognition of the LEPR as a member of the class 1 super-family of cytokine
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receptors resulted in prompt identification of the Janus-kinase 2 (JAK2)-signal transducer and
activator of transcription-3 (STAT3) pathway as a major leptin-signaling pathway in the
hypothalamus [5,18,19,50,51]. However, we have demonstrated that, in addition to the STAT3
pathway, leptin action in the hypothalamus is also mediated by an insulin-like signaling
pathway involving stimulation of phosphatidylinositol 3-kinase (PI3K) and phosphodiesterase
3B (PDE3B) activities and reduction in cAMP levels in the hypothalamus [55]. In addition,
cilostamide, a selective PDE3 inhibitor, reverses the anorectic and body weight reducing effect
of leptin. While these results suggest a potential role of the PDE3B pathway in mediating leptin
action in the hypothalamus, the physiological role of this pathway of leptin signaling in energy
homeostasis remains unknown.

To demonstrate physiological role of the PDE3B pathway, it is important to demonstrate if this
pathway were involved in mediating action of hypothalamic leptin sensitive neurons that play
critical role in energy homeostasis. In this regard, proopiomelanocortin (POMC) producing
neurons are known to play a significant role in energy homeostasis and in transducing leptin
action in the hypothalamus [2,10,14,33,37,38,47]. In addition, several studies have reported
neurotensin (NT) as an important centrally acting anorectic signal [29,31,48], which acts
partially through histamine 1 receptor [35]. NT neurons are localized in the hypothalamus
[24] and they are the targets of leptin signaling [38]. NT antagonist or antibody reverses the
anorectic effect of leptin [45]. These results suggest that NT may play a role in mediating leptin
action in the hypothalamus. Thus, to begin to establish physiological role of the PDE3B
pathway of leptin signaling we tested the hypothesis that leptin action on POMC and NT
neurons is mediated by activation of PDE3B pathway in the hypothalamus. To this end, we
examined the effect of cilostamide, a selective PDE3 inhibitor, on leptin-induced POMC and
NT gene expression in the hypothalamus.

Materials and methods
Adult male Sprague-Dawley rats, weighing ~250 g, obtained from Taconic Farms
(Germantown, NY) were housed individually in a light (lights on 0500 h to 1900 h) and
temperature (22 °C)-controlled room with food (pelleted Purina rat chow) and water available
ad libitum. After 7 days of acclimatization, rats were subjected to the following experiments
according to an approved Institutional Animal Care and Use Committee protocol.

Rats were implanted stereotaxically with 22-gauge stainless steel cannula into the third
cerebroventricle under pentobarbital anesthesia [46]. After a recovery period of 14 days, rats
were injected icv with cilostamide (10μg/1μl) in dimethyl sulfoxide (DMSO), or DMSO alone,
and recombinant murine leptin (4 μg/2μl, Dr. A.F. Parlow, NHPP, Torrance, CA, USA) in
artificial cerebrospinal fluid (aCSF, pH 7.4, Ref.20), or aCSF alone, at 1700–1800 hr, and food
was withdrawn. One hour later, another injection of cilostamide or DMSO was given to the
rats. After 24 hr, a similar injection protocol was used. Rats were killed by decapitation 15 hr
after the last injection. Brains were removed immediately and the medial basal hypothalamus
(MBH) were dissected out [36,40], frozen in liquid nitrogen, and kept at −80 C until processed
for RNA extraction.

POMC and NT mRNA levels were measured by ribonuclease protection assay (RPA) [36].
Total RNA was isolated from MBH, using RNAzol (RNA STAT 60) followed by precipitation
with isopropanol and ethanol washes according to the manufacturer’s instructions (TEL-TEST,
Inc., Friendswood, TX). Rat POMC [23] and NT [25] cDNAs were kindly provided by Dr. J.
L. Roberts (Mount Sinai School of Medicine, New York, NY) and P. R. Dobner (University
of Massachusetts, Amherst, MA), respectively. A riboprobe generated from a plasmid
containing a rat-specific β-actin cDNA fragment (Ambion Inc., Austin, TX) served as an
internal control in all RPA. [α-32P]UTP-labeled antisense cRNA probes were synthesized using
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T7 RNA polymerases using a transcription kit (Ambion Inc., Austin, TX). Four μg of MBH
RNA, 32P-labeled POMC and NT (150,000 cpm) and β-actin (20,000 cpm) cRNA probes, and
16 μg yeast tRNA (Boehringer Mannheim, Indianapolis, IN, USA) were allowed to hybridize
in solution at 45 °C overnight, followed by combined RNAse A and T1 digestion of non-
hybridized probe at 32 °C for 1 hour. Stable hybrids were extracted with phenol-chloroform
followed by ethanol precipitation and then separated on 6% polyacrylamide-8M urea gels. The
dried gels were exposed in a Bio-Rad Molecular Imaging Screen-K for 6 to 40 hours, and the
image of each gel was acquired using a Molecular Imager FX (Bio-Rad Laboratories, Hercules,
CA, USA). The volume analysis of each band was performed using Quantity One Software
(Bio-Rad). POMC and NT mRNA values were first normalized with β-actin mRNA levels and
then the values were expressed in relation to vehicle control.

All values are expressed as means ± standard error (SE). Statistical significance of differences
was analyzed by randomized one-way analysis of variance followed by Student-Newman-
Keuls multiple range test. Comparisons with p < 0.05 were considered to be significant.

Results
The changes in POMC and NT mRNA levels in the MBH are presented in Fig 1. The bands
representing stable hybrids for POMC, NT or β-actin mRNA levels in the MBH extract from
one of the RNAse protection assays are presented in Figure 1A. It is evident that intensity of
the bands for POMC and NT mRNA was increased in the leptin treated group as compared to
all other groups, while β-actin mRNA remained unchanged among the groups. Quantitative
analysis showed that intra-cerebroventricular injection of leptin significantly increased both
POMC and NT mRNA levels in the MBH when compared with vehicle (aCSF +DMSO) control
group (p < 0.01 for POMC, p < 0.05 for NT). Cilostamide completely reversed the stimulating
effect of leptin on POMC and NT mRNA levels in the MBH. However, cilostamide alone had
no effect on POMC and NT mRNA levels.

Discussion
The present study shows that POMC- and NT-producing neurons in the hypothalamus are
activated by leptin, and PDE3 inhibition reverses this effect of leptin on POMC and NT gene
expression. These results suggest that PDE3B activation plays a significant role in stimulation
of POMC and NT neurons by leptin.

Leptin signaling in the hypothalamus is critical for normal energy homeostasis. The initial
discovery of the leptin receptor as a member of the class 1 cytokine receptor super-family
resulted in prompt identification of the JAK2-STAT3 pathway as a major pathway of leptin
signaling in the hypothalamus [50,51]. Additionally, a defect in the STAT3 pathway has been
identified in diet-induced obese (DIO) rats [28], and DIO mice [13] and brain-specific or leptin
receptor- specific knockout of STAT3 causes obesity [4,17]. While the significance of the
JAK2-STAT3 pathway is unequivocal, cumulative evidence strongly suggests that various
non-STAT3 pathways including AMP-activated protein kinase (AMPK) [32], mammalian
target of rapamycin (mTOR) [11], forkhead protein (FOXO1) [6,26], PI3K [34,55], and SHP2-
GRB2-Ras-Raf-MAPK (mitogen-activated protein kinase) [3,7,8,53] pathways play
significant role in transducing leptin action in the hypothalamus. We have demonstrated that
leptin’s action in the hypothalamus is also mediated through an insulin-like signaling pathway
involving induction of PI3K and PDE3B activities and a reduction of cAMP levels [55].
Furthermore, we have also demonstrated that the PDE3B pathway interacting with the STAT3
pathway constitutes a critical component of leptin signaling in the hypothalamus, in that PDE3
inhibition by cilostamide reversed the leptin-induced STAT3 activation in the hypothalamus
[55]. While these findings clearly suggest a potential role of the PDE3B pathway in transducing
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leptin action in the hypothalamus, the physiological role of this pathway in energy homeostasis
is still unknown.

The present study showed that leptin-induced stimulation of POMC and NT gene expression
is dependent on PDE3B activation because cilostamide, a selective PDE3 inhibitor, completely
reversed the stimulatory effect of leptin on these neurons. This is the first evidence suggesting
a potential role of the PDE3B signaling pathway in mediating leptin action in these neurons.
Because both POMC and NT neurons are implicated in energy homeostasis [9,26,28,41,43,
44], demonstration of a role of PDE3B in mediation leptin action on these neurons provides
further support in favor of a physiological role of this pathway in leptin signaling. In addition,
PDE3B is co-localized in POMC neurons [30], and indirect evidence such as all Ob-Rb (long
form of the leptin receptor) expressing neurons coexpress PDE3B [A. Sahu, unpublished], and
PDE3B is expressed in those hypothalamic areas where NT and Ob-Rb are expressed [15,
41], suggest that NT neurons may coexpress PDE3B. Thus, reversal of leptin-induced POMC
and NT gene expression by cilostamide may suggest a direct role of PDE3B signaling in
mediating leptin action in these neurons.

Whereas evidences such as leptin induces STAT3 in POMC neurons [22], disruption of long-
form of leptin receptor (Ob-Rb)-STAT3 signaling by mutation of Tyr1138 in Ob-Rb results in
reduction of POMC gene expression [4], gene expression of leptin-responsive POMC neurons
in the hypothalamus requires STAT3 activation [33], selective deletion of STAT3 in POMC
neurons causes mild obesity [52], and STAT3 plays a transcriptional role in the regulation of
leptin-induced NT gene expression in N-39 neuronal cell line [12 ], suggest a role of STAT3
in mediating leptin action in these neurons, our study demonstrates that PDE3B pathway also
mediates leptin’s action on POMC as well as NT neurons. Notably, we have previously shown
that the development of leptin resistance in POMC and NT neurons following chronic central
leptin infusion was associated with a defective leptin signaling through the PDE3B pathway
without compromising the STAT3 pathway [36,42,44]. These studies taken together further
suggest that leptin signaling through the PDE3B pathway plays an important role in mediating
leptin action in POMC and NT neurons. Recent studies have also implicated PI3K signaling
in POMC neurons to play a significant role in mediating leptin-mediated suppression of food
intake [1,21]. Additionally, PI3K is an upstream regulator of the PDE3B pathway of leptin
signaling in the hypothalamus [43]. Thus, based on the available literature and current finding
we hypothesize that both STAT3 and PDE3B pathways participate in transducing leptin action
on POMC and NT neurons in the hypothalamus [Fig. 2].

In summary, we have demonstrated that PDE3 inhibition reverses leptin-induced stimulation
of POMC and NT gene expression. This study along with recent evidence of co-localization
of PDE3B in POMC and other Ob-Rb expressing neurons suggest that leptin’s action on POMC
and NT neurons is mediated, at least partly, through the activation of the PDE3B pathway.
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Fig. 1.
Proopiomelanocortin (POMC) and neurotensin (NT) gene expression as determined by
ribonuclease protection assay in the hypothalamus following intra-cerebroventricular injection
of leptin alone or in combination with cilostamide (Cilost.), a selective PDE3 inhibitor. (A):
representative phosphorimages showing the level of POMC mRNA, NT mRNA and β-actin
mRNA in the hypothalamus. (B): results obtained by phosphor imaging showing the changes
in POMC and NT mRNA levels. The values were first normalized to β-actin mRNA levels and
then expressed as relative to vehicle (artificial cerebrospinal fluid + dimethyl sulfoxide)
control. Values represent the mean ± SEM. Control: n = 4, leptin: n = 5, cilost. : n = 5, and
leptin + cilost. : n = 7. * p < 0.05 and ** p < 0.01 vs. all other groups.
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Fig. 2.
Schematic of leptin signaling through STAT3 and PDE3B pathways in POMC and NT neurons
in the hypothalamus. Leptin binding to it’s receptor (Ob-Rb) leads to activation of JAK2,
receptor dimerization, JAK2-mediated Ob-Rb phosphorylation followed by phosphorylation
and activation of STAT3. Activated STAT3 dimerizes, translocates to the nucleus, and trans-
activate target genes including POMC and NT. Additionally, leptin activates PI3K and PDE3B,
and decreases cAMP levels in the hypothalamus. Since PDE3 inhibition by cilostamide
reverses the effect of leptin on STAT3 activation [Ref. 55] as well as leptin-induced POMC
and NT gene expression (current study), it is possible that decrease in cAMP levels is necessary
for STAT3 activation and subsequent stimulation of POMC and NT gene expression by leptin.
Also, PDE3B-activation dependent decrease in cAMP levels may directly result in increased
POMC and NT gene expression by leptin - a hypothesis need to be experimentally tested. IRS,
insulin receptor substrate.
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