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The transformation efficiency of Xylella fastidiosa can be increased by interfering with restriction by the
strain-specific type II system encoded by the PD1607 and PD1608 genes. Here, we report results for two
strategies: in vitro methylation using M.SssI and isolation of DNA from an Escherichia coli strain expressing
the methylase PD1607.

Xylella fastidiosa is a fastidious, xylem-limited, Gram-nega-
tive bacterium and the causative agent of Pierce’s disease (PD)
of grapevines (1, 12). X. fastidiosa is transmitted from infected
plants to susceptible plant species, like grapevines, by xylem-
feeding insects. Once inside the grapevine xylem, X. fastidiosa
impedes the flow of sap, thereby producing the characteristic
symptoms of PD. Studies of the virulence and basic biology of
X. fastidiosa have been facilitated by the availability of genetic
and molecular tools (6, 8–10, 20, 22, 23). In each case, their
successful use has been dependent on the ability to efficiently
introduce DNA into X. fastidiosa.

In most bacteria, efficient acquisition of foreign DNA is
limited by the presence of host-encoded restriction-modifica-
tion (R-M) systems (14, 25). The restriction enzyme (REase)
cleaves incoming DNA at specific sequences unless its recog-
nition site has been modified by its cognate methyltransferase
(MTase). R-M systems are divided into four categories (types
I to IV) based on their mode of action and the distribution of
the restriction, modification, and specificity functions within
the enzyme subunits. Analysis of the X. fastidiosa Temecula1
genome has uncovered a number of potential R-M systems
based on their overall sequence similarities to known systems (25,
28). According to the Restriction Enzyme Database (REBASE)
(25), X. fastidiosa Temecula1 is predicted to encode four func-
tional R-M systems, of the following types (with the following
locus tags): type I (PD2070-PD2072 and PD2074-PD2076),
type II (PD1607-PD1608), and type III (PD0833-PD0835). Re-
striction by these systems, particularly the type I systems, has
been shown to have a major impact on the stable acquisition of
foreign DNA by X. fastidiosa (9).

The focus of the manuscript is the type II R-M system
encoded by the PD1607 and PD1608 genes (28). This system,
which is present only in X. fastidiosa subsp. fastidiosa, does not
impact the incidence of infection or the ability of X. fastidiosa
to multiply within grapevines (17). The PD1607-PD1608 sys-
tem is located within the prophage-like region Xpd8 (4) be-
tween the hypothetical protein PD1606 and tRNAAsn (Fig. 1).
Analysis of their genetic organization suggests that the PD1608

and PD1607 genes are transcribed as a single polycistronic
mRNA with the stop codon of the upstream REase overlap-
ping the start codon of the downstream MTase. Based on
naming conventions, the REase encoded by the PD1608 gene
has been named XfaTORF1607P, and the MTase encoded
by the PD1607 gene has been named M.XfaTORF1607P
(REBASE) (25). For simplicity, we will refer to them as
REase-PD1608 and MTase-PD1607, respectively. REase-
PD1608 exhibits 58% amino acid identity to NspV from Nostoc
sp. strain PCC7524 (27) and is predicted to recognize the
sequence TTCGAA (REBASE) (25). The associated MTase-
PD1607 exhibits 45% amino acid identity to M.NspV from
Nostoc sp. strain PCC7524 (27). The similarity between the
PD1607-PD1608 and NspV systems is further supported by the
observation that X. fastidiosa Temecula1 genomic DNA is re-
sistant to digestion with NspV (data not shown). The simplest
interpretation for this result is that MTase-PD1607 methylates
one of the bases within the sequence TTCGAA, thereby block-
ing cleavage by NspV.

To determine if X. fastidiosa transformation efficiency is
lower for exogenous plasmids containing NspV sites, we con-
ducted a series of experiments by using pBBR1MCS-5, a
broad-host-range plasmid that contains a single NspV site and
replicates in both E. coli and X. fastidiosa (15, 23). Plasmid
DNA isolated from either X. fastidiosa or E. coli was intro-
duced into X. fastidiosa electrocompetent cells as previously
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FIG. 1. Chromosomal region surrounding the X. fastidiosa type II
R-M system. The orientations and locations of the putative open
reading frames (ORFs; arrows) and tRNAAsn (triangle) are indicated.
The PD1608 gene is predicted to encode a subtype P type II REase;
the PD1607 gene is predicted to encode a subtype gamma type II
MTase (REBASE) (25). The PD1608-PD1607 operon is located within
prophage-like region Xpd8 (4) and adjacent to tRNAAsn. The PD1605
ORF contains a frameshift mutation, which disrupts the putative in-
tegrase of Xpd8 (4). PD1606 extends toward and overlaps the 3� end
of PD1607 by 143 bp. The hypothetical protein encoded by the PD1606
gene shows some similarity in its N terminus (4e-10) to proteins be-
longing to the bacteriophage P4-like integrase subfamily (cd00801
sequence cluster) (19). However, PD1606 does not resemble PD1605
or other X. fastidiosa integrases.
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described (20, 26), and the resulting transformants were se-
lected on PD3 plates containing 5 �g/ml gentamicin. Transfor-
mation efficiencies were then calculated by dividing the total
number of transformants by the amount of DNA (�g) added.
When X. fastidiosa-isolated pBBR1MCS-5 was used, approxi-
mately 4.0 � 104 transformants/�g DNA were obtained (Fig. 2,
column A). In contrast, electroporation using E. coli DH5�-
isolated pBBR1MCS-5 resulted in only 1.7 transformants/�g
DNA (Fig. 2, column B). As anticipated (9), coelectroporation
of DH5�-isolated pBBR1MCS-5 with TypeOne restriction in-
hibitor (TRI) from Epicentre Biotechnologies enhanced trans-

formation, resulting in 2.3 � 103 transformants/�g DNA (Fig.
2, column C) and indicating that type I restriction has a major
impact on pBBR1MCS-5 transformation efficiency. Therefore,
we included TRI in all subsequent transformation experiments
using E. coli-isolated DNA. Lastly, to determine if an NspV
site on a piece of DNA impacts its transformation efficiency,
we disrupted the unique NspV site in pBBR1MCS-5, generat-
ing pAM232 (Table 1). As shown in Fig. 2 (column C versus
D), removal of the NspV site resulted in a 12-fold increase in
the transformation efficiency of pAM232 relative to that of
pBBR1MCS-5. The simplest explanation for this result is that
the NspV site on the incoming DNA is recognized and cleaved
by the endogenous REase-PD1608.

Strategies for overcoming restriction by REase-PD1608. A
common strategy for enhancing transformation involves prior
in vitro methylation of foreign DNA by using methylases
present in cell extracts (5, 7) or commercially available site-
specific methylases (2, 16, 29). To determine if prior methyl-
ation would increase X. fastidiosa transformation efficiency,
DH5�-isolated pBBR1MCS-5 was treated with M.SssI (New
England Biolabs), which methylates DNA at the cytosine res-
idue within its dinucleotide recognition sequence 5�-CG-3�
(24). To verify pBBR1MCS-5 methylation, treated and control
plasmids were digested with two enzymes sensitive to M.SssI
methylation (NspV and SalI) and one enzyme that is resistant
(SphI). As expected, unmethylated pBBR1MCS-5 was linear-
ized by all three enzymes, whereas CpG-methylated
pBBR1MCS-5 was resistant to NspV and SalI treatments but
not SphI (Fig. 3). When introduced into X. fastidiosa, CpG-
methylated pBBR1MCS-5 exhibited approximately 14-fold
higher transformation efficiency than did unmethylated
pBBR1MCS-5 (Fig. 2, column C versus E), an efficiency sim-
ilar to that observed for X. fastidiosa-isolated pBBR1MCS-5
(Fig. 2, column A). Thus, pretreatment of DNA containing an
NspV site with M.SssI enhances its transformation efficiency,
mostly likely by blocking cleavage by REase-PD1608.

FIG. 2. Transformation efficiency of plasmids into X. fastidiosa.
Efficiency of transformation was calculated as the number of transfor-
mants per microgram of DNA. The amount of DNA was quantified by
measuring absorbance at 260 nm by using a NanoDrop spectropho-
tometer (Thermo Scientific). The means of the results for three inde-
pendent experiments and their standard errors are indicated. (A) X.
fastidiosa-isolated pBBR1MCS-5. (B) DH5�-isolated pBBR1MCS-5
alone. (C) DH5�-isolated pBBR1MCS-5 with TRI. (D) DH5�-iso-
lated pAM232 with TRI. (E) DH5�-isolated pBBR1MCS-5 treated
with M.SssI according to manufacturer’s instructions before coelectro-
poration with TRI. (F) EAM1-isolated pBBR1MCS-5 with TRI.

TABLE 1. Bacteria, plasmids, and oligonucleotides used in this study

Strain, plasmid or
oligonucleotide Description Reference

or source

Strains
Xylella fastidiosa Temecula1 X. fastidiosa subsp. fastidiosa; PD isolate ATCC 700964 8
Escherichia coli

DH5� supE44 �lacU169 (�80 lacZ�M15) recA1 endA1 hsdR17 thi-1 gyrA96 relA1 Lab collection
DH5� �pir D�5� lysogenized with � pir bacteriophage Lab collection
EAM1 DH5� derivative; Spr Str attPHK022::(PLlacO-1-PD1607) This study

Plasmids
pAH69 Apr; CRIM helper plasmid; oriR101 IntHK022 11
pAH144 Spr Str; R6K 	 ori attPHK022 plasmid dependent upon pir
 in host 11
pAM217 Apr; PD1607 in pJET1.2/blunt This study
pAM218 Apr; PD1607 from pAM217 in pZE12 This study
pAM224 Spr Str; PLlacO-1-PD1607 from pAM218 in pAH144 This study
pAM232 Gmr; disrupted NspV site on pBBR1MCS-5 by filling-in with Klenow This study
pBBR1MCS-5 Gmr; pBBR1 replicon; broad-host-range cloning vector 15
pJET1.2/blunt Apr; blunt PCR cloning vector Fermentas
pZE12 Apr; ColE origin; PLlacO-1 promoter 18

Oligonucleotides
PD1607-Kpn 5�-GGTACCGTGAACGAAGCAAAGAAACG-3� (KpnI site is underlined)
PD1607-Xba 5�-TCTAGACTATGCGGCGCGGCGCTTGTGCGG-3� (XbaI site is underlined)
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Another strategy for preventing restriction involves in vivo
methylation of DNA by passage through an E. coli strain ex-
pressing the appropriate MTase (3, 21). The vectors, interme-
diate plasmids, strains, and oligonucleotides that we used in
this construction are listed in Table 1. To create this strain,
the PD1607 gene was amplified by PCR using oligonucleo-
tides PD1607-Kpn and PD1607-Xba and placed downstream
of the IPTG (isopropyl-�-D-thiogalactopyranoside)-inducible
PLlacO-1 promoter in pZE12 (18). The resulting fusion was
integrated into the attHK site in DH5� by using the CRIM
system (11), generating EAM1. Following transformation of
EAM1 with pBBR1MCS-5, expression of the MTase-PD1607
was induced by growth in LB containing 1 mM IPTG and
10 �g/ml gentamicin. As shown in Fig. 3, EAM1-isolated
pBBR1MCS-5 was resistant to cleavage by NspV but not by
either SalI or SphI. Furthermore, its transformation efficiency
was 10-fold higher than that of the DH5�-isolated plasmid
(Fig. 2, column C versus F).

Concluding remarks. Comparative genomics has revealed
that X. fastidiosa strains are unusually rich in R-M systems (14,
25, 28) and that some systems, like PD1607-PD1608, are found
only in specific X. fastidiosa subspecies. Strain-specific R-M
systems, which influence interstrain genetic exchange, are
thought to contribute to the genetic isolation necessary for
pathogens to successfully colonize a new host (13, 14). At a
practical level, these systems present obstacles for genetic ma-
nipulations that require the transformation of X. fastidiosa with
DNA from a foreign source. In this paper, we described two
different methods for overcoming restriction by REase-
PD1608 that involve prior methylation of the DNA. Similar
strategies could be developed to overcome the restriction by
species-specific REase in other X. fastidiosa subspecies.
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