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Transition metal-catalyzed allylic substitution reactions (ASR) have been widely applied in
organic synthesis.1 Many classes of carbon-centered nucleophiles can be employed, including
active methylene compounds,2 enolates,3 enamines4 and organometallic reagents.5 Oppolzer
has also demonstrated that olefins may be used as nucleophile equivalents in catalytic
intramolecular ASR.6 However, catalytic intermolecular allylic substitution of simple alkenes
has not been extensively investigated.7 Such a transformation would enable the construction
of 1,4-dienes (“skipped” dienes) prevalent in natural compounds.8 Moreover, many simple
alkenes, e.g., alpha olefins, are inexpensive feedstock chemicals and, as compared to enolates
and other organometallic reagents, are generally easier to synthesize and compatible with a
greater range of reaction conditions. Herein we report the first examples of catalytic
intermolecular allylic substitution of unactivated, simple alkenes. Catalyst loadings as low as
2.5 mol% Ni afford the desired product in high yield in both gram-scale and smaller scale
coupling reactions.

In the course of investigating nickel-catalyzed carbon-carbon bond-forming reactions in which
alkenes serve as nucleophiles,9,10 we observed the ASR of ethylene (1 atm) by cinnamyl
methyl ether (1a). Catalyzed by Ni(cod)2 and P(o-anisyl)3 in the presence of triethylsilyl
trifluoromethanesulfonate (Et3SiOTf) and triethylamine at room temperature, this reaction
afforded linear 1,4-diene 2a in 91% yield (Table 1, entry 1), along with a small amount of
conjugated 1,3-diene 3a (5%), yet no detectable 1,4-diene isomers of 2a. Ethylene also
undergoes substitution with a wide range of allylating reagents, including electrophiles bearing
classically poor leaving groups, such as, alkyl ethers, Me3Si ethers, and even allylic alcohols
(entries 1–4). Cinnamyl derivatives with classical leaving groups (acetate, chloride, and methyl
carbonate (1b), entries 5–7) also performed well in this transformation. In the case of 1b, a
catalyst loading of 2.5 mol% Ni provided a 91% yield of 2a (entry 7).

An examination of the scope of the ethylene ASR revealed that both Z-cinnamyl methyl ether
(1c) and the corresponding branched isomer 1d provided linear product 2a in good yield with
complete E selectivity (Table 2, entries 2–3). A broad range of allylic alcohol derivatives
functioned well (entries 4–8), with a small amount of branched product observed with
substrates bearing alkyl substituents (entries 5–8). Generally, substituents at any position of
the allyl carbonate were tolerated (entries 9–11).
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The scope with respect to the alkene was also investigated (Table 3). The ASR of propylene
by 1b under the same conditions as were used for ethylene (Table 2) afforded a mixture of
4a, 5, and 6 in an unselective manner (52:20:28). The use of PCy2Ph in place of P(o-anisyl)3
dramatically improved the selectivity for the 1,1-disubstituted product (4a, Table 3, entry 1,
77% yield, >98% selectivity), but higher boiling (i.e., not a gas at STP) monosubstituted alkenes
(alpha olefins) such as 1-octene gave the corresponding product in low yield (approx 20%)
under the same conditions. A solution to this problem was ultimately found by changing three
reaction parameters: Increasing the initial substrate concentration, using a combination of
PCy2Ph and P(OPh)3, and mixing 1b with the nickel complex prior to addition of alkene. Under
these conditions, many alpha olefins gave the coupling products 4 in good yield and with
excellent selectivity, including the more sterically demanding vinylcyclohexane (Table 3,
entries 2–6).11 The opposite regioselectivity was observed in the case of styrene, with 7 being
a sole coupling product (entry 7). It is worthy of note that in the case of all aliphatic olefins,
C-C bond formation occurs at the more substituted position of the alkene.

Although more detailed studies are required, we propose the mechanism delineated in Figure
1, in which methyl carbonate 1b is used as a representative substrate.12 The Ni(0) complex
reacts with 1b without the assistance of Et3SiOTf,13 affording allyl nickel complex 8. The
methoxy group is removed upon reaction with Et3SiOTf, generating cationic allylnickel
complex 9, poised for olefin coordination. Migratory insertion (giving 10) orients the alkene
substituent R away from the Ni, and (PhO)3P-facilitated10d β-H elimination and reductive
elimination provide the 1,4-diene product and regenerate the catalyst.

As a demonstration of the scalability of this transformation, the ASR of ethylene was conducted
on 10-mmol scale. Filtration of the reaction mixture through a pad of silica gel and treatment
with tetracyanoethylene (TCNE) cleanly and completely removed the major 1,3-diene
byproduct (E-3a) via [4+2] cycloaddition (giving 12). The desired coupling product (2a) was
not affected by TCNE treatment and was isolated in 81% yield (1.18 g) in >98% purity.

In summary, we report the first examples of catalytic allylic substitution of simple alkenes.
This method accommodates a wide range of allylic alcohol derivatives and non-activated
terminal alkenes, such as ethylene and propylene, affording synthetically valuable 1,4-dienes.
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High selectivity for substitution at the 2-position of alpha olefins is generally observed,
favoring 1,4-diene products with a 1,1-disubstituted alkene. Further investigation of the
reaction mechanism and the development of a mediator-free (i.e., without Et3SiOTf) process
are underway.
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Figure 1.
Proposed Mechanism of Ni-Catalyzed Allylic Substitution of Olefins (L = organophosphine;
triflate (TfO−) omitted for clarity).
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Scheme 1.
Gram-Scale Allylic Substitution Reaction of Ethylene
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Table 1

Scope of Leaving Group in Ni-Catalyzed ASR

Entry X y yield of 2aa yield of 3aa,b

1 OMe (1a) 10 91 5

2 OEt 10 85 4

3c OTMS 10 75 trace

4d OH 20 56 <5

5 OAc 10 86 10

6 Cl 10 63 20

7e OCO2Me (1b) 2.5 91 7

a
Determined by 1H NMR.

b
For 3a byproduct E:Z = approx 3:1 in all cases.

c
Me3SiOTf (1.75 equiv) used in place of Et3SiOTf, 4h.

d
Me3SiOTf (3 equiv) used instead of Et3SiOTf.

e
10 mol% P(o-anisyl)3 used, 3 h.
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