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Abstract
While most cigarette smokers endorse a desire to quit smoking, only 14–49% will achieve abstinence
after 6 months or more of treatment. A greater understanding of the effects of smoking on brain
function may result in improved pharmacological and behavioral interventions for this condition.
Research groups have examined the effects of acute and chronic nicotine/cigarette exposure on brain
activity using functional imaging; the purpose of this chapter is to synthesize findings from such
studies and present a coherent model of brain function in smokers. Responses to acute administration
of nicotine/smoking include reduced global brain activity; activation of the prefrontal cortex,
thalamus, and visual system; activation of the thalamus and visual cortex during visual cognitive
tasks; and increased dopamine (DA) concentration in the ventral striatum/nucleus accumbens.
Responses to chronic nicotine/cigarette exposure include decreased monoamine oxidase (MAO) A
and B activity in the basal ganglia and a reduction in α4β2 nicotinic acetylcholine receptor (nAChR)
availability in the thalamus and putamen (accompanied by an overall upregulation of these receptors).
These findings indicate that smoking enhances neurotransmission through cortico–basal ganglia–
thalamic circuits by direct stimulation of nAChRs, indirect stimulation via DA release or MAO
inhibition, or a combination of these and possibly other factors. Activation of this circuitry may be
responsible for the effects of smoking seen in tobacco-dependent smokers, such as improvements in
attentional performance, mood, anxiety, and irritability.

1 Introduction
Smoking remains a major health issue in USA and quitting smoking continues to be a challenge.
In a recent survey, approximately 23% of Americans were found to smoke cigarettes (Balluz
et al. 2004). While most smokers endorse a desire to quit (Fiore et al. 2000), very few will quit
smoking without treatment, and only about 14–49% will achieve abstinence after 6 months or
more of effective treatment (Holmes et al. 2004; Hughes et al. 1999; Hurt et al. 1997; Jorenby
et al. 1999; Killen et al. 2000, 1999). Because cigarette smoking carries both considerable
health risks (Bartal 2001; Mokdad et al. 2004) and high societal costs (Leistikow et al.
2000a, b), there is an urgent need for improved treatments for this condition. Functional brain
imaging (in conjunction with other lines of research) holds great promise for elucidating both
brain circuits and molecular targets that mediate the acute effects of cigarette smoking and the
chronic effects of tobacco dependence. A greater understanding of brain function associated
with smoking may result in improved pharmacological (and behavioral) interventions.

Many functional brain imaging studies of tobacco use and dependence have been performed,
using four primary imaging modalities: (i) functional magnetic resonance imaging (fMRI), (ii)
positron emission tomography (PET), (iii) single photon emission computed tomography
(SPECT), and (iv) autoradiography. These imaging modalities have been used to determine
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relationships between brain function and the effects of acute and chronic cigarette smoking
and of smoking-related behaviors. For this chapter, the MEDLINE database was searched using
keywords for the four imaging techniques mentioned above, cross-referenced with the words
“nicotine”, “cigarette”, and “tobacco.” Only data-driven functional imaging studies were
included in this review, and reference lists within papers found on MEDLINE were also
examined and relevant studies included here. In order to maintain focus in this chapter,
functional imaging techniques that provide measures of blood flow and metabolism (which are
closely related under normal conditions; Paulson 2002) are combined under the general heading
of brain activity (including fMRI and certain types of SPECT, PET, and autoradiography
studies). Also, in order to build a cohesive model of brain activity responses to acute and chronic
smoking, nicotine and cigarette studies will be reviewed together while recognizing that
cigarette smoke has many constituents other than nicotine (Baker et al. 2004; Fowles and
Dybing 2003).

The purpose of this chapter is to synthesize findings from functional brain imaging studies of
tobacco use and dependence, and present a coherent model of brain function in smokers. Acute
brain responses to nicotine/smoking will be reviewed first, followed by chronic responses to
nicotine/smoking, and concluding with a discussion of these imaging findings in the context
of neuroanatomical work and the clinical effects of smoking in tobacco-dependent subjects.

2 Brain Function Responses to Acute Nicotine Administration and Cigarette
Smoking
2.1 Brain Activity Responses to Nicotine/Cigarette Administration

Many functional brain imaging studies have been performed examining the effects of
administration of nicotine or cigarette smoking compared with a placebo or control state (Table
1). Though a wide range of brain regions have been reported to have altered activity in response
to nicotine or cigarette smoking, several global and regional findings have been replicated,
leading to general conclusions about the acute effects of nicotine or smoking on brain activity.

One common finding is that nicotine administration (Domino et al. 2000b; Stapleton et al.
2003b) or cigarette smoking (Yamamoto et al. 2003) results in decreased global brain activity.
Similarly, smokers who smoke ad lib prior to SPECT scanning (including the morning of the
scan) have decreased global brain activity compared to former smokers and nonsmokers
(Rourke et al. 1997). These findings are generally supported by studies using transcranial
Doppler ultrasound or the Xe 133 inhalation method to measure responses to smoking, with
some (Cruickshank et al. 1989; Kubota et al. 1983, 1987; Rogers et al. 1983), but not all
(Kodaira et al. 1993; Terborg et al. 2002), studies showing diminished cerebral blood flow.

A large (n = 86), recent study (Fallon et al. 2004) further characterized this decreased global
activity with nicotine administration. 18F-fluorodeoxyglucose (FDG) PET was performed
while smokers and exsmokers performed the Bushman aggression task (designed to elicit an
aggressive state) and wearing either a 0, 3.5-, or 21-mg nicotine patch. Smokers who were
rated high on the personality trait hostility had widespread cerebral metabolic decreases while
wearing the 21-mg patch and performing the aggression task. Low-hostility smokers did not
have these changes during PET, suggesting that personality profile may determine which
smokers have global metabolic decreases in response to nicotine.

In studies examining regional activity responses to nicotine or smoking, the most common
findings are relative increases in activity in the prefrontal cortex (including the dorsolateral
prefrontal cortex, and inferior frontal, medial frontal, and orbitofrontal gyri) (Domino et al.
2000b; Rose et al. 2003; Stein et al. 1998), thalamus (Domino et al. 2000a, b; London et al.
1988a, b; Stein et al. 1998; Zubieta et al. 2001), and visual system (Domino et al. 2000a, b;
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London et al. 1988a, b). Additionally, a Xe 133 inhalation study reported increases in frontal
lobe and thalamic blood flow in smokers who smoked a cigarette (Nakamura et al. 2000). The
human studies here examined cigarette smokers, while the animal studies here used non-
dependent rats, with strong concordance of findings between these sets of studies. Functional
brain imaging studies of nicotine or cigarette administration to human nonsmokers have not
yet been reported, and would be important for a more complete understanding of the effects
of tobacco on brain activity. While this group of studies demonstrates specific regional
activation with nicotine or smoking, they also imply activation of cortico–basal ganglia–
thalamic brain circuits (Alexander et al. 1990) that mediate the subjective effects of smoking
(see Sect. 4). Zubieta et al. (2005) have conducted a 15O-PET study in 19 smokers using
nicotine and denicotinized cigarettes, who were abstinent of smoking for 12 h before PET. In
this study, increases in the regional cerebral blood flow (rCBF) in visual cortex and cerebellum,
and reductions in rCBF in the anterior cingulate, the right hippocampus, and ventral striatum
were found. Cigarette craving in chronic smokers also was correlated with rCBF in the right
hippocampus, which is a region involved in associating environmental cues with drugs, and in
the left dorsal anterior cingulate, an area implicated in drug craving and relapse to drug-seeking
behavior.

Since regional activity was normalized to whole brain activity in at least some of these studies,
and whole brain activity has been found to decrease with nicotine or cigarette administration,
the regional findings presented here may represent either increased regional activity or,
possibly, less of a decrease in regional activity than in other brain areas. Regional decreases
in activity are generally not seen with nicotine or cigarette administration, though at least two
studies found relatively decreased activity in the amygdala, left (Rose et al. 2003) and right
(Zubieta et al. 2001)).

2.2 Effect of Nicotine on Brain Activation During Cognitive Tasks
There is evidence that nicotine administration improves performance on tasks that require
vigilant attention in nicotine-dependent smokers (Newhouse et al. 2004). Nicotine
administration also has been reported to improve reaction time, regardless of smoking status
(Ernst et al. 2001a). Consistent with these findings are studies that demonstrate that acute
abstinence from smoking (within 12 h) results in slowed response times (Bell et al. 1999; Gross
et al. 1993; Thompson et al. 2002).

In examining brain mediation of the cognitive effects of smoking, several groups have
performed functional imaging studies in subjects performing cognitive tasks during
administration of nicotine (compared to a control condition) (Table 2). For most of these
studies, subjects performed a cognitive task that involved visual recognition and working
memory, such as the n-back task. Results of these studies have been somewhat mixed, showing
both decreased (Ernst et al. 2001b;Ghatan et al. 1998) and increased (Jacobsen et al.
2004;Kumari et al. 2003) anterior cingulate cortex (ACC) activation in response to nicotine
administration while performing the task. Brain activation responses to nicotine during
cognitive tasks have been more consistent in other brain areas such as the thalamus (Jacobsen
et al. 2004;Lawrence et al. 2002) and visual cortex (Ghatan et al. 1998;Lawrence et al. 2002),
while nicotine had no effect on the visual cortex during photic stimulation (Jacobsen et al.
2002). This last finding indicates that nicotine activates the visual cortex only during
demanding visual tasks, rather than on simple stimulation.

2.3 Brain Dopamine Responses to Nicotine and Smoking
A common pathway for the positive reinforcement associated with most, if not all, addictive
drugs is the brain dopamine (DA) reward pathway (Koob 1992; Leshner and Koob 1999).
Laboratory animal studies demonstrate that DA release in the ventral striatum (VST)/nucleus
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accumbens (NAc) underlies the reinforcing properties of nicotine (Koob 1992; Leshner and
Koob 1999). Microdialysis (Damsma et al. 1989; Di Chiara and Imperato 1988; Pontieri et al.
1996; Sziraki et al. 2001) and lesion (Corrigall et al. 1992) studies in rats indicate that nicotine-
induced DA release is strongest in this region, and is more robust than the DA release found
in associated structures receiving dopaminergic input, such as the dorsal striatum (Di Chiara
and Imperato 1988). These studies generally used nicotine dosages that simulated human
cigarette smoking. Acute exposure to cigarette smoke and nicotine has been found to upregulate
dopamine transporter mRNA in the ventral tegmental area (VTA) and substantia nigra (Li et
al. 2004), and chronic exposure to cigarette smoke, more so than chronic nicotine alone, has
also been found to upregulate D1 and D2 receptor mRNA in the VST (Bahk et al. 2002).
Additionally, many in vitro studies of the VST have reported DA release in response to nicotine
administration (Connelly and Littleton 1983; Marien et al. 1983; Rowell et al. 1987; Sakurai
et al. 1982; Westfall et al. 1983).

Functional brain imaging studies of the DA system (Table 3) corroborate and expand upon
these laboratory findings. Striatal DA release in response to a nicotine or cigarette challenge
has been demonstrated repeatedly in both nonhuman primates and humans (Brody et al.
2004b,2006;Dewey et al. 1999;Marenco et al. 2004;Tsukada et al. 2002), with most of these
studies using PET and the radiotracer 11C-raclopride (a specific D2/D3 DA receptor binder) to
demonstrate DA release through radiotracer displacement. These studies have reported a wide
range of DA concentration change. In two studies that examined the question directly (Marenco
et al. 2004;Tsukada et al. 2002), nicotine was found to result in less radiotracer displacement
than amphetamine, while it has also been reported that nicotine-induced DA release is
comparable in magnitude to that induced by other addictive drugs (Pontieri et al. 1996). Also,
an association between 11C-raclopride displacement and the hedonic effects of smoking
(defined as elation and euphoria) has been demonstrated (Barrett et al. 2004), though this study
did not find an overall difference between the smoking and nonsmoking conditions. Thus,
while most studies do provide evidence for nicotine/smoking-induced DA release, there are
disparities between studies in the extent of human smoking-induced DA release, leaving this
issue currently unresolved. Disparities between these studies may be due to differences in
methodology (e.g., nicotine administration vs. cigarette smoking) and/or technical
complexities in performing such studies. (As an aside, effects of smoking on dopamine
projections to the prefrontal cortex (Goldman-Rakic et al. 1989) have not yet been reported
with functional brain imaging.)

Nicotine-induced DA release in the NAc has been reported to be mediated by stimulation of
nicotinic acetylcholine receptors (nAChRs) on cells of the VTA that project to the NAc rather
than by nicotinic receptors within the NAc itself (Nisell et al. 1994). Lesioning of mesolimbic
VTA neurons projecting to the NAc leads to decreased nicotine self-administration (Corrigall
et al. 1992; Lanca et al. 2000). Additionally, the effects of nicotine on the dopaminergic system
appear to be modulated by glutamatergic and GABAergic neurons (Picciotto and Corrigall
2002), with nicotine stimulation of gluatamatergic tracts from the prefrontal cortex to the VTA
leading to increased DA neuron firing (Kenny and Markou 2001) and GABA agonism leading
to a dampening of DA neuron responses (Cousins et al. 2002). Recent work indicates that
nicotine administration causes prolonged depression of GABAergic firing, leading to relatively
large excitatory (glutamatergic) input into the mesolimbic DA system and increased DA neuron
firing (Mansvelder et al. 2002).

Other functional imaging studies of the DA system have reported decreased D1 receptor density
(Dagher et al. 2001), increased 18F-DOPA uptake (a marker for increased DA turnover)
(Salokangas et al. 2000), and both decreased (Krause et al. 2002) and no alterations (Staley et
al. 2001) in dopamine transporter binding in smokers.
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To summarize these studies of the DA system, there is extensive evidence that nicotine
administration and smoking result in activation of the brain DA mesolimbic pathway, resulting
in increased DA release and turnover in the VST/NAc. Because dopaminergic input to the NAc
modulates neurotransmission through cortico–basal ganglia–thalamic circuitry (Haber and
Fudge 1997), smoking-induced increases in DA concentration may explain some of the clinical
effects of smoking, as discussed in Sect. 4.

2.4 Functional Imaging of Nicotinic Acetylcholine Receptors (nAChRs)
Because stimulation of nAChRs is intimately linked with the effects of smoking, a longstanding
and still developing area of research is the labeling of nAChRs using functional brain imaging.
Nicotinic acetylcholine receptors are ligand-gated ion channels consisting of α and β subunits
(Court et al. 2000; Hogg et al. 2003). Many nAChRs have been identified, with the heteromeric
α4β2 being the most common subtype in the brain and the homomeric α7 being the next most
common. Postmortem (Benwell et al. 1988; Breese et al. 1997) and laboratory (Yates et al.
1995) studies demonstrate that smokers have widespread upregulation of nAChRs, likely
related to desensitization of these receptors from nicotine exposure. Many animal studies also
demonstrate upregulation of nAChRs in response to chronic nicotine administration (e.g.,
Pauly et al. 1996; Shoaib et al. 1997; Zhang et al. 2002). Thus, nAChRs are a natural target for
tracer development in the pursuit of a greater understanding of tobacco dependence and other
illnesses with abnormal nAChR levels.

Animal research demonstrates that nicotine binds to nAChRs in the brain to mediate a variety
of behavioral states (Lukas 1998), such as heightened arousal and improved reaction time and
psychomotor function (Paterson and Nordberg 2000). Nicotine administration also produces
reward through DA release in the NAc, at least in part through stimulation of nAChRs in the
VTA (Blaha et al. 1996; Corrigall et al. 1994; Nisell et al. 1994; Yeomans and Baptista
1997; Yoshida et al. 1993). Nicotinic acetylcholine receptors are widespread throughout the
brain, with a rank order distribution of nAChR density being thalamus > basal ganglia >
cerebral cortex > hippocampus > cerebellum (Broussolle et al. 1989; Cimino et al. 1992;
Clarke et al. 1984; Davila-Garcia et al. 1999, 1997; London et al. 1985, 1995; Pabreza et al.
1991; Pauly et al. 1989; Perry and Kellar 1995; Valette et al. 1998; Villemagne et al. 1997).

Radiotracers for the nAChR have been developed in recent years, with labeled A-85380 (3-(2
(S)-azetidinylmethoxy pyridine) (Koren et al. 1998) compounds having the most widespread
use. Radiolabeling of A-85380 was a major advance in imaging nAChRs, because
administration of radiolabeled nicotine (used for previous imaging studies) resulted in high
nonspecific binding and short drug–receptor interaction times (Sihver et al. 2000). 2-[18F]F-
A-85380 or simply 2-FA and related compounds (Chefer et al. 1999; Horti et al. 1998; Koren
et al. 1998) are being used for PET imaging, and 5-[123/125I]iodo-A85380 is being used for
SPECT imaging (Chefer et al. 1998; Horti et al. 1999; Mukhin et al. 2000) of α4β2 nAChRs.

Studies of nonhuman primates and humans have examined distributions of nAChRs with these
new radiotracers, and found regional densities of these receptors similar to those in the animal
work cited above (Chefer et al. 2003, 1999; Fujita et al. 2002, 2003; Kimes et al. 2003; Valette
et al. 1999). Two recent studies on baboons examined effects of nicotine or tobacco smoke on
nAChR availability. In a 2-FA PET study (Valette et al. 2003), IV nicotine (0.6 mg), inhalation
of tobacco smoke from one cigarette (0.9 mg nicotine), and IV nornicotine were all found to
reduce the volume of distribution of the tracer by roughly 30–60% in the thalamus and putamen
at 80 min, and this reduction of 2-FA binding was relatively long lived (up to 6 h). Similarly,
a 50% reduction in nAChR availability was found with IV nicotine administration to baboons
using an epibatidine analog and PET scanning (Ding et al. 2000). Taken together, these studies
demonstrate that radiotracers for nAChRs can be administered safely to measure nAChR
densities, and that nicotine and smoking substantially decrease α4β2 nAChR availability.
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In a recent study (Brody et al. 2006), human cigarette smokers were studied using 2-FA and
PET scanning. In this study, only one to two puffs of a cigarette resulted in 50% occupancy of
brain α4β2 nAChRs, and this occupancy lasted for at least 3.1 h after smoking. Smoking a full
cigarette resulted in 88% occupancy, and was accompanied by a reduction in cigarette craving.
Binding of nicotine to α4β2 nAChR causes desensitization of these receptors, and this 2-FA
PET study indicated that smoking may lead to withdrawal alleviation by maintaining nAChRs
in the desensitized state.

[123 I]5-IA or simply 5-I-A is a SPECT radioligand that binds to β2nAChRs. In a recent study,
Staley et al. (2006) hypothesized that an abnormally high number of β2nAChRs in early
abstinence may be responsible for continued tobacco usage. In this study, 16 smokers and 16
nonsmokers underwent 5-I-A SPECT scanning. Smokers were imaged in the abstinent phase,
7 days after their last cigarette. Each group consisted of seven men and nine women who were
matched for age. Women smokers and nonsmokers were also matched by phase of menstrual
cycle. Smokers quit cigarettes with brief behavioral counseling, and no medication was used
for smoking cessation. In this study, recently abstinent smokers were found to have
significantly higher 5-I-A uptake in the striatum, parietal cortex, frontal cortex, anterior
cingulate, temporal cortex, occipital cortex, and cerebellum, which suggests that smoking
upregulates the number of β2nAChRs.

2.5 Glutamatergic (and Other) Effects of Nicotine/Cigarette Smoking
Recent autoradiography studies of rodents have examined the effects of nicotine/smoking in
other neurotransmitter systems that may be activated by nAChR stimulation. For example, in
response to nicotine, glutamate release has been demonstrated in the prelimbic prefrontal cortex
(Gioanni et al. 1999), and glutamate and aspartate release have been demonstrated in the VTA
(Schilstrom et al. 2000). The finding of nAChR-induced glutamate release in the prefrontal
cortex has also been demonstrated by measuring spontaneous excitatory postsynaptic currents
(Lambe et al. 2003). Importantly, one of these studies (Gioanni et al. 1999) also demonstrated
that nicotine administration facilitates thalamo-cortical neurotransmission through stimulation
of nAChRs on glutamatergic neurons.

3 Brain Function Responses to Chronic Nicotine Administration and
Cigarette Smoking
3.1 Functional Brain Imaging of Cigarette Craving

As for brain imaging studies of chronic tobacco/nicotine dependence, cigarette smokers
experience craving for cigarettes (urge to smoke) within minutes after the last cigarette, and
the intensity of craving rises over the next 3–6 h (Jarvik et al. 2000; Schuh and Stitzer 1995).
Cigarette-related cues have been shown to reliably enhance craving during this period,
compared to neutral cues (Carter and Tiffany 1999).

Two studies used a cigarette versus neutral cue paradigm paired with functional imaging to
evaluate brain mediation of cigarette craving. In one study (Due et al. 2002), six smokers and
six nonsmokers underwent event-related fMRI when presented with smoking-related images
(color photographs) compared with neutral images, for 4 s each. For the smoker group, craving
increased during the testing session and exposure to smoking-related images resulted in
activation of mesolimbic (right posterior amygdala, posterior hippocampus, VTA, and medial
thalamus) and visuospatial cortical attention (bilateral prefrontal and parietal cortex and right
fusiform gyrus) circuitry, whereas the nonsmoker group did not have these changes. In the
second study (Brody et al. 2002), 20 smokers and 20 nonsmokers underwent two FDG–PET
sessions. For one PET session, subjects held a cigarette and watched a cigarette-related video,
while for the other, subjects held a pen and watched a nature video (randomized order) during
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the 30-min uptake period of FDG. When presented with smoking-related (compared to neutral)
cues, smokers had higher regional metabolism in bilateral (ACC), left orbitofrontal cortex
(OFC), and left anterior temporal lobe. Change in craving scores was also positively correlated
with change in metabolism in the OFC, dorsolateral prefrontal cortex, and anterior insula
bilaterally.

Taken together, these studies of cigarette craving indicate that immediate responses to visual
smoking-related cues (fMRI study) activate the brain reward system, limbic regions, and the
visual processing system, while longer exposure to cues (FDG–PET study) leads to activation
of the ACC, which mediates anxiety, alertness, and arousal (Chua et al. 1999; Critchley et al.
2001; Kimbrell et al. 1999; Naito et al. 2000; Rauch et al. 1999) and the OFC, which functions
in part as a secondary processing center for sensory information (Rolls et al. 1998; Rolls and
Baylis 1994).

In a related preliminary study, 17 smokers underwent the same FDG–PET craving versus
neutral cue protocol as in the second study of craving listed above (Brody et al. 2002) after
treatment with a standard course of bupropion HCl (tapered up to 150 mg orally twice a day
for a mean of 5.6 weeks). This group of treated subjects had a significant reduction in smoking
levels from pre- to post-treatment (mean 27.1 down to 3.7 cigarettes per day). These treated
smokers also had reduced cigarette cue-induced craving and diminished ACC activation when
presented with cigarette-related cues, compared to untreated smokers (Brody et al. 2004a).
This diminished ACC activation was due to elevated baseline-normalized ACC activity in
treated smokers, giving an indication that bupropion treatment of smokers increases resting
ACC metabolism.

A more recent study examined (Brody et al. 2007) brain activation during resistance of the
urge to smoke when smokers were presented with cigarette-related cues. In this study,
activation was found in the cigarette cue resist condition compared with the cigarette cue crave
condition in the left dorsal ACC, posterior cingulate cortex (PCC), and precuneus. Other
findings of this study include lower magnetic resonance signal for the cigarette cue resist in
the cuneus bilaterally, left lateral occipital gyrus, and right postcentral gyrus. These activations
and deactivations were stronger when the cigarette cue resist condition was compared with the
neutral cue condition. The urge to smoke scale (craving) score had positive correlations with
MR signal in the medial aspect of superior frontal gyrus, supramarginal gyrus, precuneus,
inferior frontal gyrus/anterior insula, bilateral corpus callosum, left precentral gyrus, putamen,
and middle frontal gyrus, and right lingual gyrus extending to the fusiform gyrus. Negative
correlations were found for the cuneus, left occipital gyrus, anterior temporal lobe, postcentral
gyrus, insula, and right angular gyrus. This study concludes that active suppression of craving
during cigarette cue exposure is associated with activation of limbic and related brain regions
and deactivation of primary sensory and motor cortices.

3.2 Functional Brain Imaging of Cigarette Withdrawal
Abstinence-induced changes have also been studied (McClernon et al. 2005) in 13 dependent
smokers using event-related fMRI. FMRI images were taken after usual smoking and following
overnight abstinence. Self-reported craving measures were also conducted before, during, and
after scanning. Results revealed larger hemodynamic responses to smoking compared to
control cues in ventral anterior cingulate gyrus and superior frontal gyrus. Results show that
brain responses to smoking cues, while relatively stable at the group level following short-term
abstinence, may be modulated by individual differences in craving in response to abstinence,
particularly in regions subserving attention and motivation.

Rose et al. (2007) also studied smokers (n = 15) with functional brain imaging following
treatment for nicotine dependence. In this study, subjects were given nicotine patches and
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denicotinized cigarettes. PET scans were obtained at baseline, after 2 weeks of nicotine patch
and denicotinized cigarettes, and 2 weeks after patients returned back to smoking. Craving of
cigarettes was lower at the second session compared to the other two. After 2 weeks’ exposure
to nicotine patches and denicotinized cigarettes, the authors found decreased brain metabolic
activity in the right hemisphere anterior cingulate cortex.

Brain activity changes (measured with fMRI) during cigarette withdrawal were recently
reported for nicotine-dependent rats (Shoaib et al. 2004). In this study, subcutaneous
mecamylamine (1 mg kg−1), a nicotine receptor antagonist, was administered to precipitate
withdrawal during scanning, and this state was compared to a control state after subcutaneous
saline administration. After subcutaneous mecamy-lamine, nicotine-dependent rats had
bilateral increases in NAc activity compared to the control state.

3.3 Monoamine Oxidase (MAO) Function in Smokers
Fowler and colleagues have performed a series of important studies demonstrating decreases
in MAO A and B activity in cigarette smokers using the PET tracers [11C]clorgyline (Fowler
et al. 1996b) and [11C]L-deprenyl-D2 (Fowler et al. 1996a, 1998b), respectively. When
compared to former smokers and nonsmokers, average reductions for current smokers are 30
and 40% for MAO A and B (Fowler et al. 2003a). These reductions were the result of chronic
smoking behavior rather than a single administration of intravenous nicotine (Fowler et al.
1998a) or smoking a single cigarette (Fowler et al. 1999, 2000, 2005), and are less than those
seen with antidepressant MAO inhibitors (Fowler et al. 1994, 1996b). MAO A levels were
found to be reduced up to 50% in peripheral organs (heart, lungs, and kidneys) in smokers
when compared to nonsmokers. Additionally, a human postmortem study of chronic smokers
demonstrated a modest reduction in MAO A binding that did not reach statistical significance
(Klimek et al. 2001). Peripheral MAO B is also reduced in cigarette smokers (Fowler et al.
2003b).

MAO participates in the catabolism of dopamine, norepinephrine, and serotonin (Berlin and
Anthenelli 2001; Fowler et al. 2003a), and it has been postulated that some of the clinical effects
of smoking are due to MAO inhibition, leading to decreases in monoamine breakdown with a
subsequent increase in monoamine availability (Berlin and Anthenelli 2001). Thus, smoking
may enhance DA availability and the rewarding properties of smoking both through DA release
(as described above) and MAO inhibition. Smoking may also alter mood and anxiety through
MAO inhibition effects on norepinephrine and serotonin availability and turnover.
Comprehensive reviews of the role of MAO in tobacco dependence have recently been
published (Berlin and Anthenelli 2001; Fowler et al. 2003a).

4 Discussion: Functional Neuroanatomy of Tobacco Use and Dependence
Both acute and chronic effects of nicotine/cigarette exposure have been elucidated with
functional brain imaging. Replicated responses to acute administration of nicotine/smoking
include a reduction in global brain activity (perhaps most prominently in smokers with high
levels of hostility as a personality trait); activation of the prefrontal cortex, thalamus, and visual
system; activation of the thalamus and visual cortex (and possibly ACC) during visual cognitive
tasks; and increased DA concentration in the ventral striatum/NAc. Replicated responses to
chronic nicotine/cigarette exposure include decreased MAO A and B activity and a substantial
reduction in α4β2 nAChR availability in the thalamus and putamen (accompanied by an overall
upregulation of these receptors).

This group of findings demonstrates a number of ways in which smoking might enhance
neurotransmission through cortico–basal ganglia–thalamic circuits (Alexander et al. 1990), in
addition to demonstrating direct effects of chronic nicotine exposure on nAChR availability
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(Fig. 1). Given that the thalamus (Groenewegen et al. 1999; Herrero et al. 2002; Sommer
2003) and ventral striatum/NAc (Groenewegen et al. 1999; Herrero et al. 2002) function as
relay centers for information and for paralimbic and motor processing in the brain, the net
effect of smoking may be to enhance neurotransmission along cortico–basal ganglia–thalamic
loops originating in the paralimbic cortex. Neurotransmission through these circuits may be
stimulated directly by the interconnected (Sherman 2001; Sillito and Jones 2002) nAChR-rich
thalamus and visual systems, and/or indirectly through effects on MAO inhibition and DA
release in the ventral striatum/NAc, as well as through nicotine stimulation of excitatory
glutamatergic input to the dopaminergic system (Mansvelder et al. 2002). In the thalamus, for
example, nicotine has direct agonist action on excitatory thalamocortical projection neurons
and local circuit neurons, although nicotine also stimulates GABAergic interneurons, so that
the relationship between nicotine stimulation and thalamocortical stimulation may be complex
(Clarke 2004). There is mixed evidence as to whether or not nicotine stimulates corticothalamic
neurons (Clarke 2004).

Enhancement of neurotransmission through prefrontal and paralimbic cortico–basal ganglia–
thalamic circuits may account for the most commonly reported cognitive effect of cigarette
smoking, namely, improved attentional performance (Newhouse et al. 2004), and also related
effects, such as improvements in reaction times (Hatsukami et al. 1989; Pritchard et al. 1992;
Shiffman et al. 1995), arousal (Parrott and Kaye 1999), motivation (Powell et al. 2002), and
sustained attention (Rusted et al. 2000). Prefrontal (including both dorsolateral and
ventrolateral) (Duncan and Owen 2000; Rees and Lavie 2001; Smith and Jonides 1999) and
ACC (Carter et al. 1999; Duncan and Owen 2000; Peterson et al. 1999; Smith and Jonides
1999) cortices are reported to activate during attentional control tasks (especially visuospatial
tasks) (Pessoa et al. 2003). Cigarette smoking may enhance attentional control through direct
stimulation of nAChRs within these structures or perhaps through subcortical stimulation of
nAChRs in the thalamus and via DA release and/or MAO inhibition in the basal ganglia.

In addition to improvement in attention, smoking improves withdrawal symptoms, such as
depressed mood, anxiety, and irritability in tobacco-dependent smokers (Cohen et al. 1991;
Parrott 2003), and all these effects depend (at least in part) on the expectations of the smoker
(Perkins et al. 2003). Though nicotine administration generally results in increased activity
along prefrontal and paralimbic brain circuits, it is interesting that both increased and decreased
ACC activation during cognitive task performance has been reported (see Sect. 2.2). ACC
activity has been associated with anxiety and mood, with increased activity being associated
with greater anxiety (Chua et al. 1999; Kimbrell et al. 1999) and decreased activity being
associated with depressed mood (Drevets et al. 1997). This combination of findings suggests
a potential interaction between expectation of the effects of smoking (e.g., mood improvement,
anxiety reduction, or decreased irritability) and direction of ACC activity change during
cognitively demanding tasks. Perhaps smokers who expect to and do have anxiety alleviation
from smoking have deactivation or decreased activation of the ACC while performing
cognitive tasks, whereas those who expect to and do experience mood improvement from
smoking have increased activation of the ACC.

In addition to these primary effects of nicotine and smoking, other functional imaging studies
reviewed here focus on smoking-related states, such as cue-induced cigarette craving. Such
studies are part of a large body of literature examining cue-induced craving for addictive drugs.
Studies specific for cigarette cues/craving reveal that exposure to visual cigarette cues
immediately activates mesolimbic (VTA, amygdala, and hippocampus) and visuospatial
cortical attention areas of the brain, and acutely (over a 30-min period) activate paralimbic
regions (ACC and OFC), and that this cue-induced activation may be diminished by a course
of bupropion treatment. These results are similar to those of functional imaging studies for
drugs other than tobacco (Goldstein and Volkow 2002; Miller and Goldsmith 2001), and it has
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been posited that at least some of the activations seen with cigarette-related cues (cortical
attention areas and OFC) are associated with an expectation of smoking in the nontreatment-
seeking subjects who participated in these studies (Wilson et al. 2004).

5 Future Directions
New radioligands are in development for nAChRs. Currently, 2-FA, 6-FA, and 5-I-A
radiotracers are available, which have affinity to bind to the α4β2 nAChR subtype. Other
radiotracers are in development for this subtype, but there is need for radioligands for imaging
of other subtypes of nicotinic receptors, including the α7 subtype, which is abundant in humans.
Future research is likely to focus on radioligands for imaging α4β2 nAChR in the thalamus
with faster kinetics than 2-FA, 6-FA, and 5-I-A. Radiolabeled antagonists for imaging of
α4β2 nAChR may prove very beneficial for greater understanding of receptor binding and
ultimately in development of pharmacological agents to help with quitting smoking (Pomper
et al. 2005; Horti et al. 2006).

New treatments are being discovered for smoking cessation, and the Food and Drug
Administration has recently approved varenicline, which is a partial nAChR agonist and
antagonist. The agonist effect is caused by binding to nicotinic receptors and stimulating
receptor-mediated activity. The antagonist effect occurs when varenicline blocks the ability of
nicotine to activate nicotinic receptors. Imaging studies with varenicline may tell us more about
nicotine dependence and the role of the α4β2 nicotine receptor.
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Fig. 1.
Representation of the cortico–basal ganglia–thalamic brain circuitry that may mediate the
effects of nicotine/smoking on attentional control, craving, mood, and anxiety. Potential targets
for nicotine/smoking to enhance attention (and improve craving, mood, and anxiety) include
(1) direct stimulation of nicotinic acetylcholine receptors (nAChRs) in cortex, (2) stimulation
of the nAChR-rich thalamus and basal ganglia, (3) activation of dopaminergic mesolimbic
reward pathways originating in the VTA and projecting to the striatum, and (4) monoamine
oxidase (MAO) inhibition in the basal ganglia. NAc nucleus accumbens; VTA ventral tegmental
area
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