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Identification of the site of origin for ‘malignancy
with unknown primary’ remains a challenge for mod-
ern pathology. Correct diagnosis is critical to defining
the most beneficial treatment for the patient. Standard
pathological approaches combine morphology and im-
munohistochemical (IHC) studies to first subclassify cy-
tokeratin-positive carcinomas into adenocarcinoma,
squamous cell carcinoma, neuroendocrine carcinoma,
and urothelial carcinoma. Subsequently, organ-specific
IHC-markers, if available, are used to assign the tumor’s
primary site of origin. Previous gene expression classi-
fiers have shown promise in tumor classification but
cannot readily be integrated into standard practice be-
cause they ignore the algorithmic hierarchy used by
pathologists. Here we present a novel hybrid approach
integrating a hierarchy of gene expression classifiers
into the algorithmic method used with IHC. In this
method, a tumor is initially assigned to one of the car-
cinoma subclasses by the top tier classifier. Dependent
on initial classification, one of three second-tier classi-
fiers assign primary site resulting in both carcinoma
subtype and primary site classification. First tier classi-
fier accuracies were 89%, 88%, and 75% for cross-vali-
dation, independent, and institutional independent test
sets, respectively. Second tier accuracies were 87%,
90%, and 87% for adenocarcinoma, squamous, and
neuroendocrine carcinoma respectively. Therefore, we
can successfully separate the four main subtypes of car-
cinoma and subsequently assign primary site by incor-
poration of gene expression–based classifiers into the
standard algorithmic pathology approach. (J Mol Diagn
2010, 12:476–486; DOI: 10.2353/jmoldx.2010.090197)

Identifying site of primary origin for carcinoma of un-
known primary remains a challenge for the pathologist,
even with modern pathological techniques. This carries
serious implications for cancer therapy, as current onco-

logical therapeutic regimens are targeted to site of origin.
Microarray-based gene expression studies are one po-
tential technological solution to this problem, and the
feasibility of this methodology for broad-based tumor
classification has been established by a number of stud-
ies.1–7 Approaches based entirely on gene expression
data, however, limit these studies because they do not
take into account well-understood differences in mor-
phology and biological differentiation. Pathologists rec-
ognize and exploit these differences in their daily prac-
tice. Assessment of morphological features using routine
hematoxylin and eosin stains is the first, and many times
the last, step in pathological tumor classification, as many
malignant neoplasms may be classified with morphology
alone. Immunohistochemistry is often part of an algorith-
mic approach that first separates malignancies into gen-
eral classes: hematolymphoid, carcinomas, mesotheli-
oma, melanoma, CNS primaries, germ cell neoplasms,
and sarcomas. Specific subtypes within each category,
except for melanoma and mesothelioma, may be further
refined with the use of specific markers. The first key
breakpoint is the distinction of hematolymphoid or liquid
malignancies from solid malignancies. The next break-
point is distinguishing among the solid malignancies.

Identification of cytokeratin expression is a key com-
ponent of this algorithm, as it will delineate carcinomas,
the most frequent type of adult malignancy. Mesotheli-
oma and some germ cell tumors also express cytokera-
tins. Further immunohistochemical studies will separate
mesothelioma and germ cell tumor from carcinomas (Fig-
ure 1). Carcinomas are then further subtyped into squa-
mous cell carcinoma, adenocarcinoma, neuroendocrine
carcinoma; and urothelial carcinoma; these may then be
refined by site of origin (Figure 2).

Although the current antibody panels are relatively
effective at distinguishing among these various forms of
carcinoma, there remain many instances in which the
carcinoma type is not determined with objective cer-
tainty. Currently available antibody panels are used in a
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subjective and semiquantitative manner by pathologists,
because of nonuniform criteria for determining what qual-
ifies as positive expression.

The inability to distinguish carcinoma subtypes has
therapeutic implications, because chemotherapeutic
regimens for carcinomas are based not only on the site of
primary origin but also on the subtype of carcinoma. As
an example, the esophagus may develop both squamous
cell carcinoma and adenocarcinoma, yet these different
subtypes will each receive a different type of chemother-
apy. A neuroendocrine carcinoma will be treated with a
specific type of therapy, depending on its differentiation,
regardless of site of origin. Thus, a classification of hu-
man tumors that skips these distinctions would be miss-
ing significant information needed for appropriate treat-
ment decisions.

Here we construct a two-tiered classification scheme
based on gene expression data that first delineate neo-
plasms at the first branch point of cytokeratin positive ma-
lignancies, that of carcinoma differentiation, then determine
a tumor’s site of origin using a group of second level clas-

sifiers (Figure 3). This classification process is performed in
a quantitative and objective manner. Unlike other gene ex-
pression–based classification schemes proposed to date,
this approach follows the standard work flow used in every-
day practice of pathology and can be directly compared
with or integrated with the results of IHC staining for each of
these critical decision points.1,4,6,7

Materials and Methods

Sources of Human Microarray Data

Data used to build all classifiers were exclusively derived
from tissues arrayed on Affymetrix U133 Plus 2.0 Gene-
Chips (Affymetrix, Santa Clara, CA). Two sets of data
were used: microarray data published by the Interna-
tional Genomics Consortium Expression Project for On-
cology (expO) and data derived from fresh frozen sam-
ples obtained from Moffitt Cancer Center tumor bank.

IGC expO has published more than 1900 tumor sam-
ples that have been analyzed on the identical U133 Plus
2.0 GeneChips, making the derived data comparable.
The pathology information accompanying each sample
was reviewed by a single pathologist (B.A.C.) to delin-
eate the epithelial malignancies into one of the four car-
cinoma subtypes and into a primary site of origin. Only
primary tumors were considered for the analysis. A total
set of 561 carcinoma samples were used in this study.
Table 1 lists all carcinoma types obtained from the expO
dataset. Hepatocellular carcinomas and renal cell carci-
nomas were delineated as adenocarcinomas for the
purpose of this study. In this cohort, adenocarcinomas
represent the greatest number of carcinoma subtypes,
followed by squamous cell carcinomas, urothelial car-
cinomas, and neuroendocrine carcinomas.

In addition to the expO data set, 413 tumor samples
obtained from the Moffitt Cancer Center tumor bank were
arrayed using the U133 Plus 2.0 GeneChip from Af-
fymetrix. A summary of the tumor types and primary sites
of origin profiled are listed in Table 2. As for the expO
data, all tumor samples derived from the Moffitt Cancer

Figure 1. Diagram of IHC work flow for the identification of carcinoma from
a malignant neoplasm. Initial Cytokeratin IHC separates the neoplasm into
positive and negative for CK staining. A second panel of IHC delineates
carcinoma from mesothelioma and germ cell tumors.

Figure 2. Flow diagram of immunohistochemical staining used to delineate
four categories of carcinoma; when available, antibodies used in IHC are
shown for primary site of origin identification. Note the absence of primary
site of origin antibodies for squamous and urothelial tissues.

Figure 3. Flow diagram showing parallel and complementary gene expres-
sion classifier and IHC staining used to separate carcinoma into the four
major subtypes. Strike thru lines indicate no available IHC. No site of origin
classifier was constructed for urothelial as origin site plays no role in treat-
ment decision.
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Center tumor bank were reviewed by a single pathologist
(B.A.C.). Cases were selected to include morphological
variants when applicable and to include all grades of
differentiation to develop classifiers that will be applica-
ble to the widest range of histological variants of these
malignancies. RNA extraction was performed using the
RNeasy Mini Kit by Qiagen (Valencia, CA). RNase activity
was minimalized by using the RNase-Free DNase Set by
Qiagen. Standard protocols for each of these products
were followed. Specimen quality was assessed using the
Agilent (Agilent, Santa Clara, CA) BioAnalyzer. The Bio-
analyzer software calculates an RNA integrity number on
a scale from 1 to 10 for each RNA sample run on the chip.
An RNA integrity number �6.5 was taken as the cut-off
for accepting the RNA as being of good quality. Speci-
mens that were not of good quality were discarded.

Expression Value Calculation (RMA)

Robust multi-array analysis (RMA) was used to normalize
and calculate gene expression values for all samples

used. Each sample set was treated independently for the
purposes of classifier training and testing to ensure that
there was no unwanted bias.

Expression Value Calculation (Incremental RMA)

Incremental RMA (iRMA) is a technique wherein the
quantile normalization means and probe-binding affinity
parameters from one sample set are saved during the
RMA procedure. These two value sets are then used
directly by subsequent RMA procedures in lieu of recal-
culation of these model values for the new sample set.8

This approach allows for the normalization of gene ex-
pression data from different sources to an initial data set
without the need to perform RMA on the entire sample set
due to the addition of a new sample or set of samples. In
the same manner iRMA can be used to normalize an
independent test set to the training set on which a clas-
sifier was built allowing independent testing of data with-
out the introduction of chip set bias. Expression values for
all Independent Test sets were calculated with iRMA
using the quantile means and probe binding affinities
derived from the previous RMA procedure on the corre-
sponding Training–Test split set.

Construction of the Carcinoma Subtype
Classifier

Training–Test Split

The initial training set consisted of 30 randomly se-
lected samples each of squamous cell carcinoma, ade-
nocarcinoma, and urothelial carcinoma and 11 cases of
neuroendocrine carcinoma, obtained from the expO data
set. All available cases of neuroendocrine carcinoma
were used (n � 11).

Independent Test Set

The initial independent test set consisted of an addi-
tional randomly selected 10 samples of squamous cell
carcinoma, adenocarcinoma, and urothelial carcinoma.
No additional neuroendocrine samples were available
from expO. All samples were obtained from the expO
dataset. Samples used in the Training–Test split were not
considered for selection here, as is the case for all inde-
pendent test sets described.

Institutional Independent Test Set

The institutional independent test set consisted of
randomly selected tissues from the Moffitt Cancer Cen-
ter data set (n � 413 tumor samples). Twenty samples
each of squamous cell carcinoma, adenocarcinoma,
urothelial carcinoma, and neuroendocrine carcinoma
were used for testing.

Table 1. IGC Data: Top Primary Sites per Histological
Subtype

Histologic subtype Primary site Number

Adenocarcinoma Vulva 1
Adenocarcinoma Vagina 1
Adenocarcinoma Appendix 1
Adenocarcinoma Duodenum 1
Adenocarcinoma GI tract, NOS 2
Adenocarcinoma GE junction 2
Adenocarcinoma Gallbladder 2
Adenocarcinoma Breast 3
Adenocarcinoma Small intestine 3
Adenocarcinoma Unknown 5
Adenocarcinoma Esophagus 5
Adenocarcinoma Fallopian tube 6
Adenocarcinoma Stomach 9
Adenocarcinoma Cervix 9
Adenocarcinoma Peritoneum 12
Adenocarcinoma Pancreas 17
Adenocarcinoma Colon (rectosigmoid) 35
Adenocarcinoma Colon (rectum) 36
Adenocarcinoma Lung 55
Adenocarcinoma Prostate 59
Adenocarcinoma Ovary 117
Adenocarcinoma Uterus 157
Adenocarcinoma Colon 254
Neuroendocrine Small intestine 1
Neuroendocrine Pancreas 2
Neuroendocrine Lung 7
Squamous Parotid 1
Squamous Pharynx 1
Squamous Penis 1
Squamous Kidney 1
Squamous Skin 2
Squamous Tongue 2
Squamous Bladder 3
Squamous Vulva 7
Squamous Cervix 24
Squamous Lung 37
Urothelial Ureterovesicle 1
Urothelial Urinary tract 1
Urothelial Ureter 3
Urothelial Kidney 9
Urothelial Bladder 27
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Construction of Adenocarcinoma Primary Site
Classifier

Training–Test Split

The initial training set consisted of 20 randomly se-
lected samples each of kidney, ovary, uterus, colon, lung,
prostate, breast (n � 140) obtained from the combined
expO dataset and Moffitt derived data. RMA was used for
normalization and gene expression signal calculation.

Independent Test Set

The independent test set consisted of 10 randomly
selected samples each of kidney, ovary, uterus, colon,
lung, prostate, and breast obtained from the combined
expO and Moffitt data sets. Incremental RMA was ap-
plied to this data set using the model values obtained
during RMA of the initial training set.

Construction of Squamous Primary Site
Classifier

Training–Test Split

The initial training set consisted of 25 randomly se-
lected samples from a combined tongue and larynx
group. Additionally, 3 vulva, 9 cervix, 5 penis, 18 lung,
and 8 rectum were randomly selected from the combined
expO and Moffitt data set. RMA was used for gene ex-
pression signal calculation.

Independent Test Set

The independent test set consisted of 11 randomly
selected samples from a combined tongue and larynx
group. Additionally, 2 vulvar, 4 cervical, 2 penile, 6 pul-
monary, and 4 rectal squamous cell carcinomas were
randomly selected from the combined expO and Moffitt

Table 2. Histologic Type and Primary Site of Origin for Specimens Obtained from H. Lee Moffitt Cancer Center Tissue
Procurement Facility

Site of origin Carcinoma type Total Subtypes Grades

Stomach Adenocarcinoma 39 16 signet ring cell Grade 1:7
20 intestinal Grade 2:13
3 mucinous Grade 3:19

Bladder, ureters, renal pelvis Urothelial carcinoma 25 No specific subtypes 24 high-grade
1 low-grade

Liver Hepatocellular carcinoma 31 1 fibrolamellar Grade 1:8
1 clear cell Grade 2:15
29 NOS Grade 3:6

Grade 4:1
Grade X:1

Kidney Renal cell 61 27 clear cell Clear cell grades
10 sarcomatoid Grade 1:6
16 papillary Grade 2:7
8 chromophobe Grade 3:8

Grade 4:6
Breast Adenocarcinoma 73 42 ductal

19 lobular
12 mixed

Anus, rectum, colon Squamous cell carcinoma 12 Grade 1:3
Grade 2:3
Grade 3:6

Esophagus Squamous cell carcinoma 5 Grade 1:0
Grade 2:4
Grade 3:1

Larynx Squamous cell carcinoma 42 Grade 1:7
Grade 2:20
Grade 3:15

Tongue Squamous cell carcinoma 44 Grade 1:8
Grade 2:24
Grade 3:12

Penis Squamous cell carcinoma 6 Grade 1:2
Grade 2:3
Grade 3:1

Pancreas Adenocarcinoma 26 Oncocytic: 1 (no grade assigned) Grade 1:8
1 adenosquamous Grade 2:11
1 undifferentiated Grad3 3:5

Grade 4:1
Small intestine Adenocarcinoma 19
Various sites Neuroendocrine

carcinoma
25 Grade 1:15

Grade 2:2
Grade 3:8
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data set. Incremental RMA was applied to this data set
using the model values obtained during RMA of the initial
training set.

Construction of Neuroendocrine Primary Site
Classifier

Training–Test Split

The initial training set consisted of 11 randomly se-
lected samples from a combined small bowel and duo-
denum group. Additionally, 7 pancreatic and 11 lung
neuroendocrine carcinomas were randomly selected
from the combined expO and Moffitt data set. RMA was
used for gene expression signal calculation.

Independent Test Set

The independent set consisted of six randomly se-
lected samples from a combined small bowel and duo-
denum group. Additionally, four pancreatic and four lung
neuroendocrine neoplasms were randomly selected from
the combined expO and Moffitt data set. Incremental
RMA was applied to this data set using the model values
obtained during RMA of the initial training set.

Identification of Discriminating Genes – Feature
Selection

Identification of a relatively small number of genes that
have the ability to distinguish between different tumor
categories is a great challenge that is inherent in all
large-scale biological assays. To avoid the possibility of
selecting a list of genes for the classifier where many or
all of the highly significant genes distinguish a minimal
number of tumor categories, the following approach was
used. A series of four Kruskal–Wallis H tests were per-
formed comparing a single tumor category versus the
three remaining tumor categories. This one versus all
approach results in four lists of probe sets that were
subsequently sorted by P value. To construct a classifier
with n � 50 probe sets we simply chose the top probe
sets from each of the four lists, and then continued to the
second probe set from each list. This process is repeated
until n � 50 probe sets are chosen. Note that because a
single gene is represented by more than one probe set
on the Affymetrix U133 Plus chip, the list consists of 50
probe sets rather than 50 individual genes.

Classifier Construction

An artificial neural network (ANN) was chosen for the
classifier construction because of its ability to approxi-
mate any nonlinear function reasonably well and because
no a priori assumptions need to be made about the rela-
tive importance of any single feature. Fifty input features
(probe sets) and five hidden nodes were used to train the
ANN for all classifiers constructed. We used a leave k out
cross validation (LKOCV), k � 10%, to assess the accu-

racy of all constructed classifiers. LKOCV in some cases
can be slightly optimistic, and two independent training
sets were used for further validation in the case of the
carcinoma subtype classifier. It should be noted that we
performed a “complete” analysis for each sample, mean-
ing that both the gene selection procedure and subse-
quent ANN training steps were performed for each fold.

Results

Classifier Accuracies

The accuracies for the cross validation of the training set
and each of the test sets is shown as confusion matrix
tables (Table 3) for the carcinoma subtype classifier. The
confusion matrix tables show class by class accuracy
and cumulative accuracy. Note that the first independent
test set did not include neuroendocrine carcinoma. The
training set established an accuracy of 89%. The accu-
racy of the first independent test set was 88%. An insti-
tutional independent test set in which all samples origi-
nated from the Moffitt tissue bank resulted in 78%
accuracy in separation of the four carcinoma subtypes.
Note that the underlying primary site of origin for the IGC
tumors, training set, was notably different from the Moffitt
tumors, institutional training set contributing to the drop in
accuracy. Accuracies for each of the three sites of origin
classifiers are presented in Table 4. Again confusion
matrices and accuracies for the training cross-validation
and independent test sets are presented.

Gene Function Analysis

A total of 32 discriminating genes were identified from the
list of 50 Affymetrix probe sets, shown in Table 5. Most of
the genes identified are not well characterized or studied
in human tumors. However, the protein expression of four
of these genes has been previously validated in human
tissues. One such example is synaptic vesicle glycopro-
tein 2A (SV2A), a gene identified as a marker of neuroen-
docrine carcinomas. SV2 is an integral membrane pro-
tein, similar to synaptophysin, a well-established marker
of neuroendocrine differentiation. SV2A is one of three
well-characterized isoforms of SV2, which include SV2A,
SV2B, and SV2C. SV2 immunoreactivity has been ob-
served in neuroendocrine cells of normal stomach, intes-
tines, parathyroid, thyroid, pancreas, and adrenal me-
dulla, as well as nerve structures in all organs.9 SV2 was
found to be expressed in neuroendocrine carcinomas
from a variety of organs.9,10

Cytokeratin 5, found as a marker of squamous cell
carcinoma, is an established component of the antibody
panel used to distinguish squamous cell carcinomas
from the other carcinoma types. The antibody to cyotok-
eratin 5/6 combined with p63 is routinely used by pathol-
ogists to distinguish squamous cell carcinoma from ad-
enocarcinoma and neuroendocrine carcinomas and a
number of publications have confirmed its utility for specific
problematic morhological differential diagnoses.11–14 Dif-
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fuse expression for CK5/6 is a marker of squamous
differentiation.15

Desmcollin-3 was shown to have differential expres-
sion between squamous cell carcinoma and the other
carcinoma subtypes. Immunohistocehmical analysis of
lung carcinomas showed desmocollin-3 to be expressed
in all squamous cell carcinomas but only 1 of 19 adeno-
carcinomas and 50% of large cell carcinomas. This study
validates our findings.16

HNF4 is a marker of adenocarcinoma in our classifier.
One study found HNF4 � to be a marker of ovarian
mucinous carcinomas in fluids.17 The exact specificity of
HNF4 gamma remains to be studied. HNF4 gamma is
expressed in the kidneys, gut, pancreas, and testes.18

Discussion

We have successfully developed and tested a new hy-
brid approach that combines morphological and IHC
assessment with a hierarchy of quantitative gene expres-
sion–based classifiers into the algorithmic method cur-
rently used by pathologists. This approach incorporates
a hierarchy of gene expression–based classifiers into the
algorithmic method currently used by pathologist to fur-
ther refine and support their decision making process.

We begin at the point where the pathologist typically
initiates the analysis: identifying a neoplasm as carcino-
ma-based on morphology and immunophenotypic ex-
pression for cytokeratins, and then determining whether it
falls into one of four main subtypes of carcinoma. The first
tier of our classifier similarly begins by assigning a neo-
plasm defined as carcinoma-based on morphology and
cytokeratin expression into one of four carcinoma sub-
types: squamous cell, neuroendocrine, adenocarcinoma,

and urothelial. First tier classifier accuracies were 89%,
88%, and 75% for cross-validation, independent, and
institutional independent test sets, respectively showing
an ability to separate these four subtypes of carcinoma.
The identification of SV2, desmocollin-3, CK5, and HNF4
as discriminating genes suggests the selection of genes
for the first tier of the classifier may be based on real
biological differences because these proteins have been
already shown to be differentially expressed in these
human tissues. The other genes identified as being dis-
criminatory will need to be validated in tissue samples.
Although many carcinomas are easy to subclassify, many
pose a challenge because they are poorly differentiated
or appear to show combined features of differentiation,
such as combined neuroendocrine carcinoma and ade-
nocarcinoma or squamous cell carcinoma and combined
adeno- and squamous cell carcinoma.

The next step in pathological assessment is to sub-
classify the carcinoma relative to the site of primary ori-
gin. Current immunohistochemical algorithms to define
site of origin are only applicable to adenocarcinomas and
well-differentiated neuroendocrine carcinomas. Although
the antibody panels are effective at generally narrowing
down possible primary sites, they are used in a subjec-
tive and qualitative or semiquantitative manner. Further-
more, squamous cell carcinomas are not classifiable as
to site of primary origin using currently available antibody
panels.

We followed the standard pathology work flow de-
scribed above by developing a second tier of classifiers
that assigned the primary site of origin to the tumor within
adenocarcinoma, squamous cell carcinoma, or neuroen-
docrine carcinoma dependent on initial classification.
Second tier classifier accuracies ranged from 83% to

Table 3. Confusion Matrices and Accuracies for Training, Independent, and Institutional Independent Test Sets

Training–Test Split

Urothelial Squamous Adenocarcinoma Neuroendocrine

25 4 1 0
3 26 0 0
0 0 29 1
0 1 1 9

CM Accuracy � 89%

Independent Test Set

Urothelial Squamous Adenocarcinoma

25 4 1
3 25 1
0 0 29

CM Accuracy � 88%

Institution Independent Test Set

Urothelial Squamous Adenocarcinoma Neuroendocrine

19 1 0 0
9 11 0 0
2 0 16 0
0 5 0 14

CM Accuracy � 78%

Note no neuroendocrine samples were available from the expO dataset for the initial independent validation.
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Table 4. Confusion Matrices and Accuracies for the Training and Independent Test Sets for the Three Second Tier Primary Site
of Origin Classifiers

Adenocarcinoma

Train–Test Split

Kidney Ovary Uterus Colon Lung Prostate Breast

19 0 0 0 0 1 0
1 9 9 0 0 0 1
0 4 14 0 0 0 2
0 0 0 20 0 0 0
0 0 0 0 20 0 0
0 0 1 0 0 19 0
0 1 1 0 2 0 17

CM Accuracy � 84%

Independent Test Set

Kidney Ovary Uterus Colon Lung Prostate Breast

8 0 2 0 0 0 0
0 10 0 0 0 0 0
3 0 6 1 0 0 0
0 0 1 8 1 0 0
0 0 0 0 10 0 0
0 0 0 1 0 9 0
0 0 0 0 0 0 10

CM Accuracy � 87%

Squamous

Train–Test Split

Tongue-larynx Vulva Cervix Penis Lung Anal-rectum

24 0 1 0 0 0
0 3 0 0 0 0
2 0 6 0 1 0
4 1 0 0 0 0
1 0 1 0 16 0
0 0 0 0 0 8

CM Accuracy � 83%

Independent Test Set

Tongue-larynx Vulva Cervix Penis Lung Anal-rectum

11 0 0 0 0 0
2 0 0 0 0 0
0 0 6 0 0 0
0 0 0 1 1 0
0 0 0 0 4 0
0 0 0 0 0 4

CM Accuracy � 90%

Neuroendocrine

Train–Test Split

Small-bowel Pancreas Lung

9 0 2
0 7 0
0 0 11

CM Accuracy � 93%

Independent Test Set

Small-bowel Pancreas Lung

4 0 1
0 4 0
0 0 11

CM Accuracy � 87%

Samples from the Moffitt and expO data sets were first grouped and tumors randomly selected for both training and independent validation.
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93%, showing the ability of the gene expression–based
classifiers to distinguish a large variety of primary sites.

A number of studies have demonstrated accurate pre-
diction of tumor class by using gene expression–based
tumor classification schemes. Most of these gene expres-
sion–based classifiers have started with an all-encom-
passing approach that did not incorporate differences in
tumor cell morphology and biology. These studies in-
cluded solid and liquid tumor types, and unrelated tumor
types such as melanoma, carcinoma, and CNS malig-
nancies,1,5,6 all of which are usually easily distinguished
with histomorphology and IHC. Additionally, other studies
focused solely on subclassifying a limited spectrum of
carcinomas as to site of origin,3,4,7,19 without distinction
as to carcinoma subtype. None of these studies incorpo-
rated an approach following the pathologist-based algo-
rithm described in this article.

Two tests are commercially available in the United
States, the Pathwork Tissue of Origin Test (Pathwork Di-
agnostics, Sunnyvale, CA) and the THEROS CancerTYPe
ID* by bioTheranostics (San Diego, CA). Both of these
are mRNA-based products. The Pathwork Tissue of Ori-
gin Test issues a similarity score for 15 tumor types using
a 1550-gene profile that uses the expression level of 1550
transcripts to perform pair-wise comparison between the
test sample and each of the 15 tissues on the test panel.
A validation study of this test was performed using 547

frozen specimens submitted from four institutions. The
tissues were derived from either metastatic cancers or
poorly or undifferentiated primary cancers. The test
showed a sensitivity of 87.8% and a specificity of
99.4%.20 A limitation of this validation study is that it was
performed using frozen tissues. This validation study is
significant because it focused on poorly differentiated or
undifferentiated primary carcinomas, and metastatic car-
cinomas, which are the real challenges in tumor diagno-
sis. The Pathwork Tissue of Origin Test has now been
developed for use in formalin-fixed, paraffin embedded
(FFPE) tissues as the PathChip. In a study of 462 FFPE
specimens, the test demonstrated 89% positive percent
agreement with available diagnoses, and greater than
99% negative percent agreement in specimens that had
previously been identified with existing methods as being
among the 15 tumor types on the panel.21 While identi-
fying up to 15 tumor types, most may be distinguished
with the application of simple ancillary studies, such as
flow cytometry and gene rearrangement studies to diag-
nose non-Hodgkin lymphoma and immunohistochemistry
to diagnose melanomas. Some of the recognized prima-
ries, such as colorectal primaries and breast, have es-
tablished immunohistochemical patterns. This test might
be helpful for those tumor types that do not have a
well-defined immunohistochemical pattern or are poorly
differentiated or undifferentiated. This test, however, does

Table 5. Set of Genes Differentially Expressed among the Four Carcinoma Types

Tumor type Gene title Gene symbol

Adenocarcinoma Hexokinase domain containing 1 HKDC1
KIAA0152 KIAA0152
Calmodulin-like 4 CALML4
Amiloride binding protein 1 (amine oxidase �copper-containing�) ABP1
Tripartite motif-containing 15 TRIM15
Hepatocyte nuclear factor 4, gamma HNF4G
Crystallin, lambda 1 CRYL1

Neuroendocrine Yes-associated protein 1, 65 kDa YAP1
Kinesin family member 1A KIF1A
Suppression of tumorigenicity 18 (breast carcinoma; zinc finger protein) ST18
Synaptic vesicle glycoprotein 2A SV2A
Cartilage associated protein CRTAP
Absent in melanoma 1 AIM1
Tumor necrosis factor receptor superfamily, member 10b TNFRSF10B
Leucine zipper protein 1 LUZP1
S100 calcium binding protein A16 S100A16

Squamous Ribosomal protein L39-like RPL39L
Hypothetical protein MGC35402 MGC35402
Lysosomal-associated membrane protein 3 LAMP3
Keratin 5 (epidermolysis bullosa simplex, Dowling-Meara/Kobner/Weber-

Cockayne types)
KRT5

ATP-binding cassette, sub-family A (ABC1), member 13 ABCA13
Pleckstrin homology domain containing, family A member 6 PLEKHA6
Similar to OK/SW-CL.16 LOC440552
Desmocollin 3 DSC3
Interferon, gamma-inducible protein 16 IFI16

Urothelial Rho GTPase activating protein 23 ARHGAP23
GATA binding protein 3 GATA3
Dehydrogenase/reductase (SDR family) member 2 DHRS2
Leucine-rich repeats and immunoglobulin-like domains 1/leucine-rich

repeats and immunoglobulin-like domains 1
LRIG1

Sema domain, transmembrane domain (TM), and cytoplasmic domain,
(semaphorin) 6D

SEMA6D

Hypothetical protein LOC203274 LOC203274
Ceramide kinase CERK
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not report on differences in tumor morphology, such as
squamous cell carcinoma, versus adenocarcinoma versus
neuroendocrine carcinoma, features that are more impor-
tant in predicting cancer therapy and prognosis.

The THEROS CancerTYPE ID* is designed to focus on
those cases that are indeterminate and distinguishes
among 39 tumor types. Included in these 39 tumor types
are epithelial malignancies, lymphomas, mesotheliomas,
meningiomas, stromal neoplasms, and pheochromocy-
toma. This test does provide information regarding tumor
subtype, separating squamous cell carcinomas from ad-
enocarcinomas for certain primary sites, but again uses
an “all-encompassing” approach to tumor classification.
Many of these separations are coarse distinctions that
may be accomplished with the use of widely-available
immunohistochemistry. For example, lymphomas may be
distinguished from carcinomas with the use of immuno-
histochemical antibodies for cytokeratins and LCA and
even finer distinctions may be routinely made with addi-
tional ancillary testing. For example, current practice is to
use flow cytometry and gene rearrangement studies to
subclassiify non-Hodgkin’s lymphoma. Mutations in the
CKIT gene or PDGFR gene are diagnostic for gastroin-
testinal stromal tumors. This approach is useful for the
undifferentiated neoplasms, in which a primary line of
differentiation cannot be determined.

The Veridex CUP assay (Raritan, NJ) uses 10 genes
tested by RT-PCR to distinguish among six different pri-
mary sites of carcinoma: lung, breast, colon, ovary, pan-
creas, and prostate.22,23 Although these studies demon-
strate the feasibility of this assay, the assay itself left 48%
of patients unassigned to an origin.

The CupPrint classifier, being developed by Agendia
(Amsterdam, Netherlands), focuses on a finer distinction
for adenocarcinoma of unknown primary.24,25 The Cup-
Print classifier is developed by using the databases from
another published classifier.5 This is an RT-PCR–based
test applicable to formalin-fixed paraffin-embedded tis-
sue. It is a customized eight-pack microarray containing
495 genes that were selected as highly differentiated
expressed between 48 tumor types. A weighted five-
nearest neighbor algorithm was used to determine the
five most molecularly similar tumors in the database.
They achieved an accuracy of 83% for carcinomas with a
known primary and 94% for a carcinoma of unknown
primary. This study more closely approximated our ap-
proach, in that it focused mostly on adenocarcinomas,
although urothelial carcinomas of the bladder and germ
cell tumors, which are not strictly adenocarcinomas, were
included in their scheme. Their classifier had a system-
atic problem in classifying lung and pancreatic carcino-
mas, misclassifying 63% and 100% of these, respec-
tively. A satisfactory explanation for why this occurred is
not provided. This is an important limitation, as these two
primary sites most often give rise to adenocarcinoma of
unknown primary.

One previous microarray-based gene expression
study proposed a tumor classifier–based on a patholog-
ical tree–based framework26 using a schema in which
neoplasms were separated in a sequential coarse to fine
approach, beginning with the separation of solid malig-

nancies from hematolymphoid malignancies. The authors
further refined the epithelial malignancies into those of
Mullerian (ovarian, endometrial) and non-Mullerian origin
(breast, prostate, lung, colon, bladder, renal, pancreas).
This approach more realistically organizes tumor classi-
fication to fit within a pathologist-based diagnostic algo-
rithm. It does, however, leave out the first step typically
performed by pathologists, the recognition of morpholog-
ical subtypes of carcinomas, which include squamous
cell carcinomas, urothelial carcinomas, adenocarcinoma,
and neuroendocrine carcinomas.

In this study we began at a more practical breakpoint
in the pathology-based approach to tumor classification,
which starts with the subclassification of cytokeratin pos-
itive carcinomas into its four basic types, and follows up
with the prediction of site of origin. Studies have focused
solely on identifying site of primary origin for adenocar-
cinoma3,4,27 proving the effectiveness of using gene ex-
pression to classify tumors within specific pathological
carcinoma subtypes. Molecular classifiers for site of pri-
mary origin for squamous cell carcinoma and neuroen-
docrine carcinomas have not been developed. One
study mentioned an attempt at classifying squamous cell
carcinoma of unknown primary19 and reported no suc-
cess. Two studies have focused on a very specific differ-
ential diagnosis: distinguishing pulmonary from head and
neck primary squamous cell carcinomas. One study de-
veloped a classifier using Affymetrix HG_U95Av2 oligo-
nucleotide microarray, which focused specifically on
separating lung from tongue squamous cell carcino-
mas.28 Another study developed a 10-gene classifier
derived from Affymetrix U133 and HG_U95Av2 data with
a 96% accuracy.29 None has presented a molecular clas-
sifier for neuroendocrine carcinoma of unknown primary.

An miRNA classifier has also been developed for car-
cinoma tissue origin by Rosetta Genomics (Rehovot,
Israel).30 This classifier uses a binary tree method of
classification going from coarse to fine specifications.
The decision at each node is a simple binary decision
that can be performed using the expression levels of a
few miRNAs. This classifier was tested on 400 paraffin-
embedded and frozen samples from 22 different primary
and metastatic tumor tissues. Overall accuracy was
�90%. Accuracy for the test reached 89% in an indepen-
dent data set. The approach described in this article is
based on tumor cell differentiation, similar to the ap-
proach used by Shedden.26 This study validates our
approach, in that separate miRNAs distinguish among
squamous cell and adenocarcinoma of the lung. Carci-
noid of the lung is recognized as distinct from other
malignancies of the lung. The distinction of neuroendo-
crine from squamous and glandular carcinomas is the
one with which we begin.

Adenocarcinomas are known to have significant mor-
phological variation; therefore, subtype is as important as
the site of primary origin. Carcinoma subtype impacts the
tumor classification. As an example, mucinous ovarian
carcinomas classify with colonic or gastrointestinal pri-
maries4,19 rather than with ovarian serous type carcino-
mas. This demonstrates the necessity of including a va-
riety of tumor subtypes and grades associated with a

484 Centeno et al
JMD July 2010, Vol. 12, No. 4



particular tumor class. For this reason, our classifier is
built on a variety of adenocarcinoma types per organ site
and includes the various grades of differentiation per
type.

Our classification system is the first to show successful
classification of two other subtypes of carcinoma: squa-
mous cell and neuroendocrine carcinoma. The squa-
mous cell carcinoma classifier included vulva, cervix,
penile, pulmonary, and ano-rectal carcinomas. In clinical
practice, vulvar, cervical, and penile carcinomas would
not be considered in the same patient, as these are
gender-specific cancers. However, this classifier serves
as a proof of principle for using gene expression–based
classification for squamous cell carcinomas. Interest-
ingly, the tongue and larynx primaries could not be sep-
arated, indicating the close embryological relationship of
these organs. Future work will expand on the classifier,
adding additional possible primary sites from the head
and neck and also esophagus.

Neuroendocrine carcinoma, unknown primary contin-
ues to be a diagnostic problem in the current practice of
oncology and pathology. Frequent sites of metastases
include liver, lymph nodes, and bone. In a recent analysis
of SEER data, up to 21% of low grade and 50% of
high-grade neuroendocrine carcinomas were associated
with metastases at the time of diagnosis.31 In a proportion
of these malignancies, the site of primary neuroendocrine
carcinoma is not clinically evident. It is, therefore, impor-
tant to develop diagnostic tools to accurately predict the
origin of metastatic neuroendocrine carcinoma, so that
the primary tumor may also be treated appropriately. The
neuroendocrine carcinomas included in this analysis
were from the three most frequent primary sites, pan-
creas, small bowel, and lung. Missing from these prima-
ries is Merkel cell carcinoma, a primary high-grade neu-
roendocrine carcinoma of the skin. Merkel cell carcinoma
may be distinguished from other neuroendocrine carci-
nomas by its characteristic CK 7–negative and CK 20–
positive immunophenotypic pattern. IHC markers that
can be used to determine the site of origin of ‘metastatic
low-grade neuroendocrine carcinomas’ from unknown
primary sites include TTF1, CDX2, cytokeratin 7 and 20,
neuroendocrine secretory protein-55 (NESP-55), and pan-
creatic and duodenal homeobox factor-1 (PDX-1).32–35 De-
spite site-specificity of these markers, a number of met-
astatic low-grade neuroendocrine carcinomas in the liver
and other metastatic sites remain in the ‘unknown pri-
mary’ category. The molecular classifier proposed here
will be a useful adjunct to the currently available IHC
markers for more accurate prediction of primary site of
origin in case of metastatic neuroendocrine carcinomas
from unknown primary sites.

In conclusion, our study shows that distinction among
the four basic subtypes of carcinoma and subsequent
delineation of primary site of origin is feasible using a
tumor classifier derived from standard practice based on
morphology and immunohistochemistry, integrated with
microarray-based gene expression profiling. This hybrid
approach follows the standard pathological workflow for
carcinoma classification. This success allows for both
integration and direct comparison of microarray-based

classifiers to established pathological techniques for dis-
tinguishing carcinomas of unknown primary.
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