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Reactive oxygen species (ROS) are crucial for thyroid
hormonogenesis, and their production is kept under
tight control. Oxidative stress (OS) is toxic for thyro-
cytes in an inflammatory context. In vitro , Th1 pro-
inflammatory cytokines have already been shown to
decrease thyroid-specific protein expression. In the
present study, OS level and its impact on thyroid
function were analyzed in vitro in Th1 cytokine (in-
terleukin [IL]-1�/interferon [IFN] �)-incubated thyro-
cytes (rat and human), as well as in vivo in thyroids
from nonobese diabetic mice, a model of spontane-
ous autoimmune thyroiditis. N-acetylcysteine (NAC)
and prostaglandin, 15 deoxy-�12,14-prostaglandinJ2
(15dPGJ2), were used for their antioxidant and anti-
inflammatory properties, respectively. ROS produc-
tion and OS were increased in IL-1�/IFN�-incubated
thyrocytes and in destructive thyroiditis. In vitro ,
NAC not only reduced ROS production below control
levels, but further decreased the expression of thy-
roid-specific proteins in addition to IL-1�/IFN�-inhib-
itory effects. Thus, besides ROS, other intracellular
intermediaries likely mediate Th1 cytokine effects. In
vivo , NAC and 15dPGJ2 reduced OS and the immune
infiltration, thereby leading to a restoration of thy-
roid morphology. It is therefore likely that NAC and
15dPGJ2 mainly exert their protective effects by act-
ing on infiltrating inflammatory cells rather than di-
rectly on thyrocytes. (Am J Pathol 2010, 177:219–228;
DOI: 10.2353/ajpath.2010.091253)

Thyrocytes continuously produce H2O2 and various re-
active oxygen species (ROS) that are physiologically re-
quired for normal thyroid hormone synthesis. To control
the toxicity resulting from ROS, thyrocytes possess sev-
eral protective mechanisms. During thyroid hormone syn-
thesis, H2O2 is produced in a limited area at the apical
membrane and is immediately consumed in the peroxi-
dation reaction catalyzed by thyroperoxidase (TPO).
When ROS are produced in higher amounts, they are
systematically eliminated by potent antioxidant systems
such as peroxiredoxins, catalase, and glutathione peroxi-
dases.1–5 Thus, a basal ROS production, which we define
as oxidative load, is required to safeguard thyroid hor-
mone synthesis, as recently demonstrated.6 Likewise, an
harmless oxidative stress (OS) may also be important for
cell division during goiter formation when thyrocytes are
facing iodine deprivation.7

The context is quite different in the case of thyroid
inflammation. Thus, in models of thyroiditis (transient or
permanent), high amounts of ROS are produced and may
become toxic.8–13 Using one of these models, we re-
cently showed that increased OS associated with a
strong inflammatory reaction can be controlled by 15
deoxy-�12,14-prostaglandin J2 (15dPGJ2),2 an anti-in-
flammatory prostaglandin14 that prevents OS-induced
cytotoxicity.15 Iodine administration to goitrous thyro-
cytes produces an inflammatory reaction that is transient
in most cases. However, in individuals genetically prone
to develop autoimmune thyroiditis, this transient inflam-
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UCL-5251, 52 Av. E.Mounier, B-1200, Brussels, Belgium. E-mail:
anne-catherine.gerard@uclouvain.be.

The American Journal of Pathology, Vol. 177, No. 1, July 2010

Copyright © American Society for Investigative Pathology

DOI: 10.2353/ajpath.2010.091253

219



mation may become permanent, thereby evolving toward
destructive thyroiditis. A model of destructive thyroiditis
can be obtained in nonobese diabetic (NOD) mice. In this
model of Hashimoto’s-like thyroiditis, the ongoing inflam-
matory reaction relies on pro-inflammatory Th1 cyto-
kines16–18 that inhibit the expression of thyroid-specific
proteins such as thyroglobulin, TPO, Na�/I� symporter
(NIS), and dual oxidases (Duoxs).19–24 Mechanisms re-
sponsible for this inhibition are not yet known. In autoim-
mune processes targeting other cell types, such as pan-
creatic � cells, Th1 cytokine effects are mediated by nitric
oxide (NO).25,26 In human, but not in rat thyrocytes, NO
has also been identified as mediating the inhibitory ac-
tions of Th1 cytokines, but only partially.22,27–30 Intracel-
lular factors other than NO should therefore mediate Th1
cytokine-induced inhibitory effects. ROS may represent,
among others, alternative candidates, as suggested by
previous studies. For instance, Th1 cytokines are known
to increase ROS generation in the respiratory tract,31 in
osteoarthritis,32,33 and in pancreatic islets.34,35 Up to
now, nothing is known about the eventual involvement of
ROS as intracellular mediators of Th1 cytokine-induced
inhibitory actions in thyrocytes.

In the present study we aimed to evaluate the impact of
Th1 cytokines (interleukin [IL]-1�/interferon [IFN] �) on
ROS production and how they may influence thyroid cell
function in vitro. Likewise, the role played by OS in thy-
roiditis was analyzed in vivo in the aforementioned NOD
mouse model of spontaneous autoimmune thyoiditis. In
both in vitro and in vivo models, the roles of ROS were
evaluated by using N-acetylcysteine (NAC), a potent an-
tioxidant, and 15dPGJ2 for its anti-inflammatory proper-
ties. We also investigated how antioxidant systems be-
have in these conditions.

Materials and Methods

Cell Cultures

PCCL3 cells, a continuous line of nontransformed rat
thyroid follicular cells,36 were a gift of Dr. F. Miot (Univer-
sité Libre de Bruxelles, Institut de recherche interdisciplin
aire en biologie humaine et moléculaire, Brussels, Bel-
gium). They were grown to 80% to 90% confluence in
Coon’s modified Ham’s F12 medium (BRL-Gibco, Pais-
ley, Strathclyde, UK) supplemented with 5% newborn calf
serum, penicillin (50 U/ml), streptomycin (50 �g/ml), fun-
gizone (2.5 �g/ml; BRL-Gibco), 1 mU/ml thyroid stimulat-
ing hormone, 10 �g/ml insulin, and 5 �g/ml transferin
(Sigma, Bornem, Belgium), in a humidified atmosphere
(5% CO2). Recombinant rat IL-1� (2 ng/ml, Chemicon
International, Temecula, CA) and recombinant rat IFN�
(100 U/ml, Chemicon International) were added for three
additional days, in combination or not with NAC (1
mmol/L, Sigma) or 15dPGJ2 (2.5 �mol/L, Sigma) in the
same medium containing 0.5% newborn calf serum and 1
mU/ml thyroid stimulating hormone. NAC, 15dPGJ2, or
vehicle was added 2 hours before the cytokine cocktail.
As a control, NAC or 15dPGJ2 were added on thyroid
cells in the absence of cytokines.

Human thyroid tissues from patients who underwent
thyroid surgery for benign multinodular goiter were ob-
tained from the anatomopathology department after pa-
tients gave their informed consent. Thyrocytes were iso-
lated according to Nilsson et al37 and suspended in
modified Earle’s medium without phenol red containing
5% newborn calf serum, penicillin (50 U/ml), streptomy-
cin (50 �g/ml), and fungizone (2.5 �g/ml; BRL-Gibco).
They were plated in 6-well plates (50 �g DNA/well) or in
multichamber glass slide (Nunc International, Naperville,
IL; 7 �g DNA/chamber) and cultured in a humidified
atmosphere (5% CO2) with 1 mU/ml thyroid stimulating
hormone. After 1 week, cells were incubated for three
additional days with cytokines in combination or not with
NAC (1 mmol/L) or 15dPGJ2 (2.5 �mol/L), as described
for PCCL3 cells. All experiments were repeated at least
twice.

ROS Production

Thyrocytes were incubated in multichamber glass slides
in appropriate medium. ROS production was measured
by using a fluorescent dye, 2�, 7� dichlorofluorescein
diacetate (DCFH-DA; Molecular Probes, Paisley, UK).
PBS-washed (pH 7.4) thyroid cells were incubated in
Krebs-Ringer HEPES medium, pH 7.4, containing DCFH-DA
(25 �mol/L) at 37°C for 1 hour. The excess of dye was
removed by two washes with PBS. Cells were stained
with Hoechst for 20 minutes and rinsed in PBS. Cover
slides were mounted in fluorescent mounting medium
(DakoCytomation, Carpinteria, CA) for microscopic ob-
servation. ROS production was visualized on a fluores-
cent microscope equipped with a digital camera.

Viability Assay

Cell viability was assessed by using the Alamar blue
assay (Biosource International, Camarillo, CA), as previ-
ously described.22

Apoptosis Detection

Caspase activity was measured by using a CaspACE
fluorescein isothiocyanate-VAD-fmk in situ marker (Pro-
mega, Madison, WI), which binds activated caspases,
according to the manufacturer’s instructions. Briefly, cells
were incubated with 20 �mol/L fluorescein isothiocya-
nate-VAD-fmk at 37°C for 20 minutes. Cells were then
washed twice with PBS, fixed in 10% buffered formalin for
30 minutes, and rinsed with PBS. Coverslides were
mounted in fluorescent mounting medium for micro-
scopic observation. Cells treated with staurosporine (5
�mol/L; Sigma) were used as positive control.

Nitrite Assay

Nitrite accumulation in the medium of human thyrocytes
was measured by the Griess reaction by using a com-
mercially available kit (Promega).
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Real-Time RT-PCR

Cells were suspended in TriPure isolation reagent (Roche
Diagnostics GmbH, Mannheim, Germany), and total RNA
was purified according to the manufacturer’s protocol.
Reverse transcription was performed by incubating 2 �g
RNA with 200 U Moloney Murine Leukemia Virus reverse
transcriptase (Invitrogen, Merelbeke, Belgium) in the rec-
ommended buffer containing 1 �l RNasin (Promega), 0.5
mmol/L dNTP (Promega), 2 �mol/L oligodT (Sigma), and
10 mmol/L dithiothreitol (20 �l final volume) overnight at
42°C. CDNA was diluted 1:5 in water for use in real time
PCRs.

CDNAs (2 �l) were mixed with 500 nmol/L of each
selected primer (Table 1) and SYBR Green reaction mix
(BioRad, Herts, UK) in a final volume of 25 �l. Reactions
were performed by using a iCycler apparatus (BioRad)
as follows: 95°C for 1 minute, followed by 40 cycles of
95°C for 15 seconds, annealing temperature for 45 sec-
onds (Table 1), and 81°C for 15 seconds. Amplification
levels were normalized to that of �-actin.

Western Blottings

Thyrocytes were suspended in Laemmli buffer (50
mmol/L Tris-HCl, pH 6.8, 2% SDS, and 10% glycerol),
containing a protease inhibitor cocktail (Sigma), and
were sonicated during 30 seconds. Protein concentration
was determined by using a bicinchoninic acid protein
assay kit (Pierce, Rockfort, IL). Duox (antibody provided
by F. Miot, IRIBHN, Brussels), TPO (antibody provided by
J. Ruf, Université de la Méditerranée, Marseille, France),
catalase (Sigma), peroxiredoxin 3 and 5 (PRDX3, PRDX5;
antibodies provided by B. Knoops, Université catholique
de Louvain, Louvain La Neuve), and �-actin (Sigma)
Western blottings were performed as previously de-
scribed.22 Proteins (30 �g/lane) were heated at 95°C for
5 minutes in the loading buffer (Laemmli buffer containing
100 mmol/L dithiothreitol and 0.1% bromophenol blue),
separated by 8% SDS-polyacrylamide gel electrophore-
sis, and transferred onto a nitrocellulose membrane (Hy-
bond ECL, Amersham Biosciences, Rosenthaal, The
Netherlands). Membranes were blocked for 1 hour at
room temperature in PBS (pH 7.4), 5% nonfat dry milk,
0.1% Tween, and incubated overnight at 4°C with the
primary antibody at a dilution of 1:4000 (Duox, TPO),
1:10,000 (PRDX3, PRDX5), or 1:2000 (catalase, �-actin).

Membranes were incubated for 1 hour at room tempera-
ture with EnVision (1:200, DakoCytomation) peroxidase-
labeled secondary antibody and visualized with en-
hanced chemiluminescence (SuperSignal West Pico,
Pierce) on CLXposure TM films (Pierce). Western blots
were scanned and quantified by densitometry using the
NIH Scion Image Analysis Software (NIH, Bethesda, MD).
Values were normalized by reporting the signal intensity
to �-actin expression.

Immunofluorescence

Thyrocytes were cultured in multichamber glass slides in
appropriate medium. Thyrocytes were fixed for 30 min-
utes in 4% paraformaldehyde, rinsed once with PBS,
permeabilized for 15 minutes in a PBS-Triton 1% solution
at room temperature, and washed with PBS supple-
mented with 1% bovine serum albumin. Cells were then
incubated overnight with PRDX5 primary antibody (1:
75) at room temperature. After being washed in PBS,
fluorescein isothiocyanate-conjugated secondary anti-
body was added for 1 hour at room temperature at a
dilution of 1:30 (anti-rabbit; DakoCytomation). Cover-
slides were mounted in fluorescent mounting medium
for microscopic observation.

Animals and Treatments

Three-month-old female NOD mice, under a standard
diet and kept under semibarrier conditions, were origi-
nally obtained from Professor Wu (Beijing, China) and
inbreeded since 1989 (Proefdierencentrum, Leuven, Bel-
gium). Animals were injected intraperitoneally with a sa-
line solution of NAC (100 mg/kg/day) or with a saline
solution of 15dPGJ2 (40 �g/kg/day) for 4 days. NMRI
mice were used as control. Mice were housed and han-
dled according to Belgian Regulation of Laboratory Ani-
mal Welfare.

Preparation of Tissue Samples for Microscopy
and Morphometric Analysis

Five animals of each group were anesthetized with
pentothal, and thyroid lobes were dissected. One thy-
roid lobe was fixed in paraformaldehyde (4% in PBS)

Table 1. Forward and Reverse Primers and Annealing Temperatures Used

Target Primer forward Primer reverse Annealing temperature, °C

Actin 5�-CATCCTGCGTCTGGACCT-3� 5�-AGGAGGAGCAATGATCTTGAT-3� 62
rDuox 5�-GTGGCTGGAGGGAGCCAT-3� 5�-CCGTGAACAGACTCCTGT-3� 60
rDuox1 5�-CCTGCAAGCCAAAAGAAGAC-3� 5�-CCACTGAAGTTTTCCCGTACA-3� 60
rDuox2 5�-AGAGGGAGCCATTACCCTGT-3� 5�-CGCATAGCTGAGATGGATGA-3� 60
rTPO 5�-CAGGTTTTGGTGGGAGAA-3� 5�-CTGCACACTCATTAACATCTT-3� 58
rNIS 5�-GCGCTGCGACTCTCCCACTGAC-3� 5�-GGCGGTAGAAGATCGGCAAGAAGA-3� 60
hDuox 5�-GTGGCTGGCTGACATCAT-3� 5�-TGCAGGGAGTTGAAGAA-3� 58
h Duox1 5�-GGACCCCCAGGACCAGGAT-3� 5�-CTTACACTCACCGCCCCAACAC-3� 60
hDuox2 5�-AACCCAAACGTCCATCAACA-3� 5�-CCTTGTACCCCCTTCCACTT-3� 58
hTPO 5�-CACGATGCAGAGAAACCTCAA-3� 5�-ATAGACTGGAGGGAGCCAT-3� 60
hNIS 5�-ACCGCGCCCCACCTCTTTCTTATT-3� 5�-CCCCCTCCTGATTCTGGTTGTTG-3� 62
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for 24 hours and embedded in paraffin. The second
lobe was frozen for cryostat sections. Thick sections (5
�m) were used for morphology analysis and for immu-
nohistochemistry. Morphometric measurements were
performed by using the point-counting method de-
scribed by Weibel et al.38

For each thyroid, 1000 points were counted, and the
relative volumes of epithelium, colloid, vessels, and inter-
stitium were measured.

Immunohistochemistry

4-hydroxynonenal (4-HNE), PRDX5, and catalase immu-
nostainings were performed on paraffin sections. Sec-
tions were dewaxed and rehydrated. Except for PRDX5
detection, paraffin sections were pretreated in a micro-
wave oven in citrate buffer (pH 6.6) for one cycle of 3
minutes at 750 W, followed by four cycles of 3.5 minutes,
each at 350 W. Endogenous peroxidases were quenched
with 1% H2O2 for 30 minutes.

Then, paraffin sections were washed with PBS supple-
mented with 1% or 5% bovine serum albumin and there-
after incubated in PBS supplemented with 1% or 5%
bovine serum albumin containing 2% or 5% normal goat
serum at room temperature. Sections were incubated
with the first antibody (4-HNE, PRDX5, and catalase) at
room temperature (Table 2). The binding of antibodies
was detected by using a second antibody conjugated to
a peroxidase-labeled polymer (EnVision detection, Dako-
Cytomation, Carpinteria, CA) or a biotinylated second
antibody for 30 minutes followed by an avidin-biotin per-
oxidase complex for 30 minutes (Vectastain ABC kit;
Vector Laboratories, Burlingame, CA). The peroxidase
activity was measured with 3-amino-9-ethylcarbazole
substrate (DakoCytomation). Sections were counter-
stained with Mayer’s hematoxylin, rinsed, and mounted in
Faramount Aqueous mounting medium (DakoCytoma-
tion). To verify the binding specificity, some sections
were incubated with the second antibody alone.

Data Analysis and Statistics

Data were expressed as mean � SEM, n � 6 for all
experiments. Each experiment was repeated at least
twice. Statistical analyses were performed by using anal-

ysis of variance followed by Tukey-Kramer Multiple Com-
parison Test (GraphPad InStat, San Diego, CA), or by
unpaired t-test. P � 0.05 was considered as statistically
significant.

Results

IL-1�/IFN� Increase Intracellular ROS
Production without Affecting Cell Viability In
Vitro: Differential Effects of NAC and 15dPGJ2

Although Th1 cytokines are known to induce ROS pro-
duction in various cell types,31,32,34,35 this has not been
yet described in thyrocytes. IL-1�/IFN�-induced ROS,
and nitrite production was therefore analyzed both in rat
and human thyroid cells.

In rat PCCL3 control cells, ROS detected by DCFH-DA
fluorescence were observed as granules within the cyto-
plasm (Figure 1A). The staining was greatly enhanced in
Th1 cytokine-treated cells (Figure 1B), whereas ROS
were detected both in the cytoplasm and in nuclei. In
cells treated with NAC alone, and in accordance with
NAC anti-oxidant properties, ROS fluorescence was
strongly reduced compared with control cells (Figure
1C). In cells co-incubated with IL-1�/IFN� together with
NAC, ROS fluorescence was below control levels (Figure
1D). By contrast, 15dPGJ2 influenced ROS production,
neither in control cells (data not shown) nor in Th1 cyto-
kine-treated cells (Figure 1E). Similar results were ob-
tained in human primary cells (data not shown).

According to previous results, nitrite levels, the stable
end-product of NO generation, were low in media from
control human thyroid cells, but greatly enhanced in Th1
cytokine-treated cells (Figure 1F).22,30 When cells were
co-incubated with IL-1�/IFN� and NAC or 15dPGJ2, ni-
trite levels were significantly reduced as compared with
Th1-treated cells, but remained higher than in control
cells (Figure 1F).

Cell viability was not affected, and no change in apo-
ptosis was detected whatever the treatment used, indi-
cating that the observed effects were not resulting from
cell death (data not shown).

Table 2. Experimental Conditions for Immunohistochemistry

Antibody First antibody Second antibody Revelation substrate

4-HNE (Calbiochem, Darmstadt,
Germany)

Rabbit polyclonal EnVision rabbit
(DakoCytomation)

AEC (DakoCytomation)
Dilution: 1:800
Incubation time: overnight

PRDX5 (Polyclonal rabbit, B. Knoops,
Université catholique de Louvain)

Rabbit polyclonal EnVision rabbit
(DakoCytomation)

AEC (DakoCytomation)
Dilution: 1:200
Incubation time: 1 hour

PRDX3 (Polyclonal rabbit, B. Knoops,
Université catholique de Louvain)

Rabbit polyclonal EnVision rabbit
(DakoCytomation)

AEC (DakoCytomation)
Dilution: 1:500
Incubation time: 1 hour

Catalase (Sigma) Monoclonal mouse EnVision mouse
(DakoCytomation)

AEC (DakoCytomation)
Dilution: 1:200
Incubation time: 3 hours
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IL-1�/IFN� Induce a Down-Regulation of
Thyroid Cell Function In Vitro: Differential Effects
of NAC and 15dPGJ2

As already reported,19,22 IL-1�/IFN� induced a down-
regulation of the thyrocyte function, as indicated by de-
creased Duox (Duox1 and Duox2), TPO, and NIS expres-
sion, at mRNA or protein levels in rat PCCL3 and human
cells (Figure 2; Supplemental Figure S1, see http://ajp.
amjpathol.org).

Our data also confirm that Duox protein and mRNA
expression was strongly decreased in PCCL3 cells incu-
bated with NAC alone.6 When incubated together with
IL-1�/IFN�, NAC further aggravated Th1-induced inhibi-
tory effects (Figure 2, A and B). In human thyroid cells,
NAC alone or in combination with Th1 cytokines signifi-
cantly reduced Duox protein and mRNA expression with-
out additional effect on Th1-induced down-regulation of
Duox protein expression (Supplemental Figure S1, A and
B, see http://ajp.amjpathol.org).

The distinct analysis of Duox1 and Duox2 expression
in PCCL3 cells showed a different pattern. NAC influ-
enced neither basal nor Th1-induced down-regulation of
Duox1 mRNA expression (Figure 2C), but induced a
decrease in Duox2 mRNA expression and further im-

paired Th1 cytokine-induced down-regulating effects
(Figure 2D).

As for Duox and already reported,6 NAC alone in-
duced a down-regulation of TPO mRNA and protein ex-
pression both in PCCL3 and human thyroid cells (Figure
2E; Supplemental Figure S1, C and D, see http://ajp.
amjpathol.org). In cells incubated together with NAC and
IL-1�/IFN�, an additive effect of their respective inhibitory
action was observed.

Although NAC alone had no effect on NIS mRNA, it
further aggravated IL-1�/IFN�-induced NIS down-regula-
tion, at least in human cells (Figure 2F; Supplemental
Figure S1E, see http://ajp.amjpathol.org).

Both in PCCL3 and human cells, 15dPGJ2, when ad-
ministered alone or together with Th1 cytokines, had no
specific effect on Duox nor on NIS expression (Figure
2A–D and F; Supplemental Figure S1A, B, and E, see
http://ajp.amjpathol.org). The only isolated modification
we observed was on TPO mRNA expression in PCCL3
cells (Figure 2E).

The Expression and Intracellular Localization of
PRDX3 and PRDX5 Antioxidant Enzymes Are
Strongly Influenced by Th1 Cytokines, NAC, and
15dPGJ2

PRDX5 and PRDX3 protein expression in PCCL3 cells
was significantly increased by IL-1�/IFN� (Figure 3, A

Figure 1. Detection of intracellular ROS in PCCL3 cells (A–E). ROS produc-
tion was measured in control cells (A), in IL-1�/IFN�-treated cells (B), in
NAC-treated cells (C), in IL-1�/IFN�-treated cells co-incubated with NAC (D),
and with 15dPGJ2 (E). Scale bars � 200 �m. Nitrite accumulation in the
culture medium of human thyrocytes (F) is shown. Results are expressed as
mean � SEM of six individual wells of one representative experiment (n �
6). *P � 0.05 versus control cells; †P � 0.05 versus IL-1�/IFN�-treated cells;
‡P � 0.05 versus NAC-treated cells; §P � 0.05 versus 15dPGJ2-treated cells.

Figure 2. Quantification of Duox protein expression in PCCL3 cells (A).
Densitometric values of Western Blots are expressed as mean � SEM of one
representative experiment (n � 6). Relative expression of Duox (B), Duox 1
(C), Duox 2 (D), TPO (E), and NIS (F) mRNAs in PCCL3 cells, adjusted to the
�-actin signal, are expressed as mean � SEM of one representative experi-
ment (n � 6). *P � 0.05 versus control cells; †P � 0.05 versus IL-1�/IFN�-
treated cells; ‡P � 0.05 versus NAC-treated cells; §P � 0.05 versus 15dPGJ2
treated-cells.
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and B). The subcellular localization of PRDX5 also
changed. In control cells, PRDX5 was expressed only as
granules in the cytoplasm (Figure 3D). In Th1 cytokine-
treated cells, PRDX5 expression not only increased in the
cytoplasm, but also lighted up in the nuclei (Figure 3E).
NAC treatment differentially regulated both PRDXs. NAC
alone or together with Th1 cytokines reduced PRDX5
expression (Figure 3, A and F), but increased the expres-
sion of PRDX3 (Figure 3B). 15dPGJ2 significantly in-
creased PRDX5 and PRDX3 expression in PCCL3 without
affecting their expression induced by Th1 cytokines, or
their localization (Figure 3A, B, and G). Other antioxidant
enzymes reacted differently, as catalase protein expres-
sion remained stable in all experimental conditions (Fig-
ure 3C).

The Strong Increase of Both OS and Inflammatory
Reaction in the NOD Mouse Model of Spontaneous
Thyroiditis Is Down-Regulated by NAC and
15dPGJ2

To study the role of OS in thyroiditis in vivo, we used the
NOD mouse model of spontaneous thyroiditis. At 3
months, 100% of mice exhibited an inflammatory infiltrate
in the thyroid together with variable stages of tissue de-
struction. Instead of large and regular follicles filled with
colloid and lined by cuboidal epithelial cells as observed
in normal thyroids, the thyroids of NOD mice consisted of
small follicles with narrowed follicular lumina lined by
thicker cell walls. Signs of cell destruction were observed

in some areas: dead cells were observed in follicular
lumina, some follicles were completely destroyed, and
the interstitium was massively occupied by inflammatory
cells (Figure 4A). These observations were confirmed by
the morphometric analysis that showed a decrease in the
relative volume of the colloid together with an increase in
the relative volume of both epithelium and interstitium
(Figure 4B).

4-HNE, a toxic product resulting from lipid peroxida-
tion, was used as a OS marker.39 Although 4-HNE
immunostaining was fairly detected in thyroids from
NMRI mice, it strongly increased in NOD mice, with
localization in thyrocytes, as well as in some interstitial
cells (Figure 5).

In NAC-treated NOD thyroid glands, OS was drasti-
cally reduced, as confirmed by the strong decrease in
4-HNE expression, although remaining higher than in
NMRI mice (Figure 5). Follicles were larger and more
regular in size. Follicular lumina were filled with colloid
and lined by flattened epithelial cells. Although the
inflammatory reaction was still observed in the intersti-
tium, it was markedly less pronounced compared with
thyroids of untreated NOD mice (Figure 4A). Hence,
the colloid relative volume was significantly increased,
but remained lower than in NMRI mice. The relative
volume of the epithelium decreased to values similar to
NMRI mice. The relative volume of the interstitium also
decreased, but remained higher than in NMRI mice
(Figure 4B).

As with NAC, the follicles of NOD mice treated with
15dPGJ2 were larger and more regular in size. Their

Figure 3. Expression of PRDX5, PRDX3, and catalase antioxidant enzymes. Quantification of PRDX5 (A), PRDX3 (B), and catalase (C) protein expression in
PCCL3 cells. Densitometric values of Western blots are expressed as mean � SEM of one representative experiment (n � 6). *P � 0.05 versus control cells; †P �
0.05 versus IL-1�/IFN�-treated cells; §P � 0.05 versus 15dPGJ2-treated cells. Immunofluorescence of PRDX5 in PCCL3 cells in control (D), in IL-1�/IFN�-treated
cells (E), in IL-1�/IFN�-treated cells co-incubated with NAC (F), and in IL-1�/IFN�-treated cells co-incubated with 15dPGJ2 (G). Scale bars � 200 �m.
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lumina were filled with more colloid and lined by flattened
epithelial cells (Figure 4A). The interstitium compartment
was also significantly reduced. These morphological
changes were associated with a decrease in 4-HNE ex-
pression, indicating a reduced OS (Figure 5).

Because of the strong OS induction in NOD thyroid
glands, we analyzed the in vivo expression of two potent
enzymatic antioxidant systems, namely PRDX5 and cata-
lase (Figure 5). They were weakly expressed in the cyto-
plasm of control thyrocytes from NMRI mice. In thyroids
from NOD mice, their expression was heterogeneously
distributed, with a weak expression in follicles with flat-
tened epithelium and a stronger expression in those with
thicker epithelial cells. The total expression of PRDX5 and
catalase was weaker in NOD mice treated either with
NAC or with 15dPGJ2.

Discussion

In this study, we show for the first time that, in vivo,
thyroiditis is associated with increased toxic OS and that,
in vitro, Th1 pro-inflammatory cytokines induce intracellu-
lar ROS production in rat and human thyrocytes. This
intracellular accumulation of ROS is quite different from
that observed under physiological conditions. Hence, in
a normal thyroid, H2O2 is produced by Duox in a limited
area called thyroxisome that is located at the apical pole
of the cell in microvilli.40 H2O2 is either consumed during
the hormone synthesis process or detoxified by potent an-
tioxidant systems, thereby being harmless for cells.1,2,41,42

The outcome for thyrocytes is quite different when ROS
are heavily produced in cells incubated with Th1 cyto-
kines. ROS may then become toxic, being detected both
in the cytoplasm and in nuclei. In previous studies, we
have shown that Th1 cytokines induce a down-regulation
of Duox,22 and a reduction in the production of extracel-
lular H2O2 in the FRTL5 cell line (unpublished data). It is
therefore likely that Th1 cytokine-induced ROS in thyro-
cytes are not generated from Duox enzymes, but instead
from a source that remains to be discovered.

Another question that remains to be sorted out con-
cerns the exact nature of ROS produced when thyrocytes
are incubated with Th1 cytokines. The DCFH-DA probe
used in our study is not sensitive enough to distinguish
H2O2 from other ROS, likely more toxic, including per-
oxynitrite and hydroxyl radicals. It is, however, clear that
the nature of ROS will be determinant in terms of cell
survival, some of them being more deleterious than oth-
ers.41 Among reactive oxygen species, reactive nitrogen
species, especially NO, are known to be induced by
IL-1�/IFN� in human thyrocytes27,30,43 and are partially
responsible for the inhibitory effects of Th1 cytokines on
thyrocytes.22 In addition, although NAC partially reduces
the production of nitrite, ROS immunoflorescence de-
tected by DCFH-DA fluorescence is completely abol-
ished. Thus, ROS other than NO are likely produced in
Th1 cytokine-incubated thyrocytes.

In vivo, the production of ROS was evaluated indirectly
by measuring the induction of OS. In NOD mice, both
toxic OS and inflammatory reaction affecting the whole
thyroid gland were observed, as described in other mod-
els such as osteoarthritis, autoimmune encephalomyeli-
tis, and lung diseases.33,44,45 Here, OS results from ROS
produced by thyrocytes themselves facing Th1 cytokines
(intrafollicular OS), but also from inflammatory cells colo-
nizing the interstitium (extrafollicular OS). A way to ex-
plain the toxicity of OS in thyroiditis in NOD mice is the
induction of intracellular adhesion molecule-1 by ROS.46

In the presence of NAC, the intracellular ROS produc-
tion and OS were significantly reduced both in vitro and in
vivo. As precursor of glutathione, NAC may decrease cell
OS directly or indirectly by restoring glutathione con-
tent.47,48 In vitro, NAC alone exerts an inhibitory effect on
thyroid cell function.6 Combined with Th1 cytokines, the
inhibitory effects were additive, suggesting that although
ROS are produced in Th1 cytokine-treated cells, other
intracellular mediators are involved in Th1 cytokine inhib-
itory effects. In vivo, the paradigm is not exactly the same

Figure 4. Thyroid morphology (A) and morphometric analysis (B) of thy-
roids from NMRI and NOD mice. Thyroiditis was observed in thyroids from
NOD mice as shown by an interstitium massively infiltrated by inflammatory
cells (arrows). In addition, follicles were small and narrowed compared with
NMRI mice, and dead cells were observed. By contrast, when NOD mice
were treated with NAC or with 15dPGJ2, the inflammatory reaction was
markedly decreased: follicles were more regular, and lumina were filled with
colloid and lined by flattened epithelial cells. Scale bars � 50 �m. These
observations were confirmed by morphometric analysis. *P � 0.05 versus
NMRI mice; †P � 0.05 versus NOD mice.
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as NAC reduces the inflammatory reaction, thereby pro-
tecting indirectly thyrocytes against the cell destruction
induced by the extrathyroidal autoimmune reaction. This
could be due to the ability of NAC to decrease the in-
flammation by inhibiting various cytokines (tumor necro-
sis factor-�, IFN�, IL-8, and IL-6)45 and/or to restore the
cellular redox-status and to modulate the activity of redox
sensitive cell signaling pathways such as nuclear factor
�B that regulates pro-inflammatory genes.44 The ab-
sence of NAC effects directly on thyrocytes in vivo com-
pared with the in vitro experimental conditions could also
be due to differences in terms of local concentration of
NAC, probably reaching lower concentrations in thyroids
when administered systemically in vivo than when added
in vitro directly to cultured thyrocytes.

The effects of 15dPGJ2 were different from those of
NAC, at least in vitro, as no reduction of ROS production
was observed. By contrast, in vivo, as for NAC, OS was
decreased, thereby allowing the recovery of a near nor-
mal thyroid morphology. It is not the first time that such
protective effects are observed as they have been al-
ready reported in a nonautoimmune model of iodine-
induced thyroid involution.2 This is likely due to the ability
of 15dPGJ2 to inhibit the expression of a variety of pro-
inflammatory factors including cyclooxygenase-2, NOS2,
and several cytokines (IL-6, IL-12, and tumor necrosis
factor-�).49–51 15dPGJ2 may also modulate or inhibit the
nuclear factor �B system51–53 and activate the mitogen
activated protein kinase pathway through PPAR�-depen-
dent and independent mechanisms.54 Because 15dPGJ2
has no direct effect on thyroid cells in vitro, but is able to

reduce inflammation in vivo, we suggest that 15dPGJ2 may
favorably influence OS in the thyroid gland by acting di-
rectly on infiltrating inflammatory cells.

In this present study we report for the first time a
differential regulation of Duox1 and Duox2 mRNA levels
in PCCL3 rat thyroid cells. The respective roles of these
two proteins encoded by two different genes remain un-
clear. Rigutto et al55 have reported in PCCL3 cells that
Duox1 alone is able to generate H2O2 and that the
amount of Duox1 present is sufficient to generate enough
H2O2. By contrast, other arguments suggest that in hu-
mans, thyroid Duox2 is the main H2O2 generator.55 A
study in the respiratory tract epithelium demonstrated
that IL-4, a Th2 cytokine, increases Duox1 mRNA expres-
sion and that IFN�, a Th1 cytokine, markedly induces
Duox2 mRNA expression.31 In our study, the results were
quite different. Here, Th1 cytokines inhibited both Duox
genes. On the other hand, the antioxidant NAC negatively
influenced only Duox2 mRNA. Thus, Duox2 expression
seems to require a minimal oxidative load to be ade-
quately expressed, whereas Duox1 expression does not
depend on the thyroid cell ROS content. Obviously, fur-
ther investigations are required to clarify the exact under-
lying mechanisms.

In conclusion, our results confirm that the maintenance
of a minimal oxidative load, as in control cells, is essential
to safeguard thyroid cell function. In addition, ROS are
not the sole intracellular mediators of Th1 cytokine-in-
duced inhibitory effects of thyroid cell function in vitro. In
vivo, both the antioxidant NAC and the anti-inflammatory
prostaglandin 15dPGJ2 protect the thyroid against toxic

Figure 5. Immunohistochemical detection of 4-HNE, PRDX5, and catalase in thyroids from NMRI and NOD mice. The high expression of 4-HNE observed in NOD
thyroid glands was strongly decreased after treatment with NAC or 15dPGJ2. PRDX5 and catalase were expressed in control thyroids from NMRI mice. In thyroids
from NOD mice, their expression was heterogeneously distributed with a weak expression in follicles with flattened epithelium and a stronger expression in those
with thicker epithelial cells (arrows). Scale bars � 50 �m.
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OS mainly by acting on infiltrating inflammatory cells,
thereby contributing to the reduction of the extrafollicular
toxic OS. The intracellular OS remains under the control
of efficient intracellular antioxidant systems, thereby al-
lowing the thyroid cell function and morphology to
recover.
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