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Abstract
Joubert syndrome (JBTS), related disorders (JSRD) and Meckel syndrome (MKS) are ciliopathies.
We now report that MKS2 and JBTS2 loci are allelic and due to mutations in TMEM216,
encoding an uncharacterized tetraspan transmembrane protein. JBTS2 patients displayed frequent
nephronophthisis and polydactytly, and two cases conformed to the Oro-Facio-Digital type VI
phenotype, whereas skeletal dysplasia was common in MKS fetuses. A single p.R73L mutation
was identified in all patients of Ashkenazi Jewish descent (n=10). TMEM216 localized to the base
of primary cilia, and loss of TMEM216 in patient fibroblasts or following siRNA knockdown
caused defective ciliogenesis and centrosomal docking, with concomitant hyperactivation of RhoA
and Dishevelled. TMEM216 complexed with Meckelin, encoded by a gene also mutated in JSRD
and MKS. Abrogation of tmem216 expression in zebrafish led to gastrulation defects that overlap
with other ciliary morphants. The data implicate a new family of proteins in the ciliopathies, and
further support allelism between ciliopathy disorders.

The neurological features of JSRD include hypotonia, ataxia, psychomotor delay, irregular
breathing pattern and oculomotor apraxia and are variably associated with multiorgan
involvement, mainly retinal dystrophy, nephronophthisis (NPH) and congenital liver
fibrosis. JSRD are genetically heterogeneous, and all known genes encode proteins localized
at or near the primary cilium1. We previously mapped the JBTS2 (also known as CORS2)
locus to chromosome 11p12-q13.3 in a large Sicilian family and in three consanguineous
pedigrees from the Middle East2-3. Aligning the two datasets suggested a minimal candidate
interval between D11S1344 and D11S1883 (46.123-63.130 Mb)4 (Fig. 1a).

Overlapping with JSRD is MKS, characterized by occipital encephalocele and other
posterior fossa defects, cystic dysplastic kidneys, hepatic bile duct proliferation and
polydactyly, and the two conditions are known to be allelic at four loci5-8. The MKS2 locus
was initially mapped in families of North African and Middle Eastern ancestry to a
chromosome 11q region telomeric to JBTS29, but our subsequent identification of
additional families, as well as SNP re-analysis of the initial family, indicated allelism with
JBTS2 between rs1113480 and rs953894 (48.014-62.518 Mb) (Supplementary Fig. 1).
Because JSRD and MKS are considered ciliopathies, of the 200 total candidate genes, we
first sequenced the exons and splice sites of genes listed in the cilia proteome
databases10-11 in one affected subject from each JBTS2/MKS2 family, but no mutations
were identified.

Tetraspan transmembrane proteins are characterized by four hydrophobic, putative
transmembrane domains (TM1-TM4), forming two extracellular and one intracellular loop,
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which regulate signaling and trafficking properties of their partner proteins in multiple
cellular contexts12. While little is known about their function, they can act with Wnt
receptors13, and their ability to form complexes with a wide variety of membrane and
cytosolic proteins14 suggests that they may participate in the formation of membrane
domains that regulate signaling and sorting processes. Transmembrane proteins also
represented attractive candidates, due to similarities to MKS3/TMEM67 encoding Meckelin,
which is mutated both in JSRD and MKS5,15. Therefore we additionally sequenced the
eight genes encoding transmembrane proteins, eventually identifying homozygous
deleterious mutations in TMEM216 in six of the 12 JSRD/MKS families compatible with
linkage to the locus (Table 1). Interestingly, residue p.R73 was mutated both in a Sicilian
family with JSRD (COR000, p.R73L) and in a Turkish family, in which MKS and JSRD
coexisted in the same sibship (COR114/F37, p.R73H). The p.G77A mutation in two
Palestinian families (F56, F58) resulted from a substitution (c.230G>C) that affects the first
base of exon 5, leading to the use of an alternative splice site in intron 4, the inclusion of an
additional 46bp and resultant premature protein termination (p.T78KfsX30) (Supplementary
Fig. 2). None of these mutations were identified in over 500 controls from ethnically
matched cohorts.

We next screened an additional 460 JSRD and 132 MKS probands (Supplementary Note)
and identified mutations in 12 and two further cases, respectively (Table 1). Twelve of 14
JSRD families shared the same homozygous p.R73L founder mutation, including two
families from Sicily and ten families of Ashkenazi Jewish descent. Saturation of the region
surrounding the p.R73L mutation with 17 SNP/microsatellite markers indicated that these
families shared the same ancestral haplotype, spanning 472 Kb around the mutation
(Supplementary Fig. 3), that could be dated back at least 20 generations. The carrier
frequency in the Ashkenazi population was determined to be about 1:100, as we identified
two heterozygous healthy unrelated carrier individuals among a screened cohort of 212
Ashkenazi individuals, making carrier detection possible at least in this population. A
similar carrier frequency of 1:92 has also been determined for the p.R73L mutation in a
distinct study on eight Ashkenazi JBTS2 families and 2766 unaffected controls16.
Microsatellite analysis also detected shared haplotypes in the two Palestinian (F56, F58) and
in the two Tunisian families (F2, F5), homozygous for the same mutations (Supplementary
Fig. 1).

Overall, 20 JSRD patients and 11 MKS fetuses carried TMEM216 mutations (Fig. 1b, Table
1). All of the nonsynonymous changes occurred in evolutionarily conserved residues (Fig.
1c-d), and led to unstable protein when transfected into heterologous cells (Fig. 1e,
Supplementary Fig. 4). Although truncating mutations were identified in both the middle
and end of the protein, p.R73 transversions predominated (Fig. 1c), with the p.R73L clearly
a founder mutation. Among JSRD, the phenotype was characterized by frequent occurrence
of NPH (9/20) and polydactyly (9/20), while retinal dystrophy and congenital hepatic
fibrosis were never observed. In keeping with this, sequence analysis of 96 patients with
Bardet-Biedl syndrome identified no homozygous mutations, since retinopathy is a key
feature of this condition. In two JSRD patients (MTI161 and MTI467), polydactyly was
associated with either tongue tumors or multiple oral frenula, corresponding to the Oro-
Facio-Digital type VI (or Varadi-Papp) syndrome16 (OMIM%277170), indicating that
TMEM216 mutations are the first known identified cause. In the 11 MKS fetuses with
TMEM216 mutations, distinctive clinical features were skeletal dysplasia, including
intrauterine growth retardation or bowing of the long bones in six fetuses, cleft palate in
four, and anencephaly in two (Table 1, Supplementary Fig. 5).

TMEM216 is a poorly annotated gene, with RefSeq predicting a protein of just 86 aa,
suggesting potential alternative splicing. To characterize this mRNA we performed Northern
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analysis with a commercial human fetal blot, and found a single major mature isoform at
about 1.4 Kb (Supplementary Fig. 6a), agreeing with the predicted 1.3 Kb of the longest
representative cDNAs. To interrogate splicing we designed primers complementary to the
furthest 5′ and 3′ regions of the known cDNA, and sequenced 48 cloned PCR products
from a 20 week gestation human fetal brain library. We identified four major splice
isoforms, the longest and most prevalent predicting a protein of 148 aa (Supplementary Fig.
6b), which we consider to be the full-length mRNA. There is also extensive alternative
splicing, encoding very short proteins (Supplementary Fig. 6b), the functions of which were
not evaluated further. Importantly, we did not find any mutations in any of the putative
UTRs.

To elucidate roles for TMEM216 in human development, we first examined its expression in
human embryonic tissues. In situ hybridization analysis in human embryos confirmed
expression in the central nervous system, limb bud, kidney and cartilage (Supplementary
Fig. 6c-h), which is similar to the broad and relatively low-level expression pattern of other
JSRD/MKS genes. We next raised an anti-TMEM216 polyclonal affinity-purified antibody
against aa 81-90, demonstrated specificity (Supplementary Fig. 7a-b), and immunostained
two different ciliated cell lines (inner medullary collecting duct [IMCD3] and retinal
pigment epithelium [hRPE]). We observed localization with the base of the primary cilium
or adjacent basal body in the majority of cells, as marked by either acetylated or
glutamylated tubulin staining (Fig. 2a-d). TMEM216 antibody also reacted strongly to the
base of cilia in organs like kidney containing ciliated cells (Fig. 2c, Supplementary Fig. 7c),
but failed to react with these structures in hTERT-immortalized fetal TMEM216 p.R85X
homozygous mutant fibroblasts (Supplementary Fig. 7d). Epitope-tagged TMEM216
showed similar localization to the base of cilia and other microtubule structures (i.e. mitotic
spindle in cells undergoing late telophase, Supplementary Fig. 8).

In TMEM216 p.R85X mutant fibroblasts, we noticed a failure in ciliogenesis following 48
hr serum starvation (Fig. 3a) compared with controls. Western analysis of whole cell lysates
from control fibroblasts identified a band at 19 kD (Fig. 3b), matching the predicted 148 aa
full length protein, whereas this band was attenuated or lost in TMEM216 p.R85X
fibroblasts or in IMCD3 cells in which Tmem216 was knockded down.

To determine the basis of the ciliogenesis defect, we performed transient transfection of
monolayers of IMCD3 cells with two separate Tmem216 siRNA duplexes. Tmem216
knockdown prevented ciliogenesis in polarized cells, and blocked correct docking of
centrosomes at the apical cell surface (Fig. 3c), as seen previously for Meckelin and
MKS117. This ciliogenesis defect was quantified by comparing the percentage of cells with
cilia (defined as > 1 μm length) vs. those without cilia (< 1μm length), and by analyzing the
percentage of cells with centrosomes located apical to the nucleus. In cells in which
Tmem216 was knocked down, we observed a striking defect in both of these measurements
compared with two separate control transfections (Fig. 3d-e, chi-squared test, p<0.001, for
350 cells from each condition), suggesting its requirement in centrosome docking.

The similarities in cellular phenotypes of Mks3 and Tmem216 knockdown, and subcellular
localizations of Meckelin and TMEM216, prompted us to ask if the two proteins could
interact. Firstly, GFP-tagged TMEM216 was immunoprecipitated with antibodies to either
N- or C-terminal portions of Meckelin (Fig. 4a) and, secondly, the reciprocal IP experiment
used α-GFP antibody to pull down Meckelin (Fig. 4b). Both assays detected a complex
between TMEM216 and Meckelin.

Many aspects of actin-dependent polarized cell behavior, including morphogenetic cell
movements18 and ciliogenesis19, are mediated by the planar cell polarity (PCP) pathway of
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non-canonical Wnt signaling20. We therefore first examined RhoA, since the Rho family of
small GTPases are key mediators of this pathway20-21. Consistent with previous results
following MKS3 loss22, we found that RhoA signaling was hyperactived in both TMEM216
p.R85X fibroblasts or following Tmem216 knockdown (Fig. 4c-d), despite normal total
amounts of RhoA in these cells. Centrosome docking at the apical cell surface is prevented
by the interruption of actin remodeling23, and is dependent on both RhoA activation and
regulation by the core PCP protein Dishevelled (Dvl)24. We confirmed that RhoA is
localized to the basal body in confluent IMCD3 cells but, following Tmem216 knockdown
for 24 hr, RhoA was mislocalized to peripheral regions of the basal body and to basolateral
cell-cell contacts (Fig. 4e), consistent with translocation of ectopically-activated RhoA to the
cytosol25. Tmem216 knockdown also showed evidence of a mislocalization of γ-tubulin at
the centrosome/basal body for this timepoint, which suggests a defect in γ-tubulin
nucleation, one of the earliest steps in ciliogenesis26. The established role of RhoA in
modulating the actin cytoskeleton in the PCP pathway then led us to evaluate MKS2 patient
fibroblast lines for alterations. We found a co-localization of actin stress fibers and the actin
cross-linker filamin-A in the cytoplasm of these mutant cells, which was absent in control
(Fig. 4f).

We next looked at Dvl signaling in cells, since cilia negatively regulate Dvl activation27,
and Dvl mediates Rho activation at the apical surface of ciliated epithelial cells24. We found
that loss of TMEM216 increased phosphorylation of Dvl1 (Fig. 5a left and right panel),
implying that TMEM216 modulates hyper-responsiveness of signaling pathways mediated
by Dvl and RhoA. We found that Rho inhibition also increased the Dvl1 phosphorylation in
ciliated cells, supporting the existence of feedback mechanism between Rho and Dvl (Fig.
5a, right panel). Unexpectedly, the constitutive Dvl1 phosphorylation associated with
TMEM216 loss was blocked by Rho inhibition (Fig. 5a, right panel), suggesting that this
loss in ciliated cells can modify the feedback mechanism. Although this possibility warrants
further investigation, our data nevertheless suggest a working model in which Dvl1, RhoA
and TMEM216 may serve as part of a complex in the pericentrosomal compartment to
mediate cellular polarization and centrosomal apical docking. Previous studies have shown
that Dvl and Rho contribute to a core framework for regulating the apical docking of
centrosomes24, and we also see evidence of a common complex containing TMEM216,
Dvl1 and RhoA in TMEM216-transfected cells (Fig. 5b). Since we saw no difference in the
localization of Dvl1 following Tmem216 knockdown (Supplementary Fig. 9), these data
predict that the hyperactivation of Rho in the absence of TMEM216 might be responsible
for the centrosome docking defect at the apical cellular surface. As expected, we found that
the impaired centrosome docking caused by Tmem216 knockdown was rescued in a dose-
dependent fashion using Rho inhibitor (Fig. 5c).

Meckelin is proposed to regulate centrosomal docking through the RhoA signaling
pathway22, and bears similarity to the Frizzled family of transmembrane Wnt receptors15.
Direct evidence of a role for Meckelin in PCP signaling stems from zebrafish embryo
morphant phenotypes following morpholino knock-down of mks328. These included defects
in gastrulation movement (a shortened body axis, broad notochords and misshapen somites),
which are typical of defects in non-canonical (PCP) Wnt signaling, and have been observed
in numerous ciliary and basal body morphants28-29. We observed identical ciliary
phenotypes in tmem216 morphants, which were largely rescued by RNA encoding human
TMEM216 (Fig. 5d), and fully rescued by RNA encoding non-targetable zebrafish tmem216
(not shown). We therefore directly compared the tmem216 and mks3 morphant phenotypes
in zebrafish, and noted similar defects in both live embryos and in embryros in which
pronephric mesoderm, anterior neural structures, adaxial mesodermal cells, and somites
were labeled with a krox20, pax2, and myoD riboprobe cocktail (Fig. 5e-f). Quantification
demonstrated alteration of convergence to the midline and extension along the AP axis
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consistent with a PCP defect, although the AP extension defect was more pronounced in the
mks3 compared to the tmem216 morphant.

Recent work has implicated the tetraspanin TSPAN12 in the regulation of Norrin signaling
by the Wnt receptor Frizzled-4 and coreceptor LRP513. We therefore speculate that
TMEM216, a novel tetraspan protein, forms a non-canonical Wnt receptor-coreceptor
complex with Meckelin. Our data support a role for both proteins in mediating PCP
signaling through the RhoA pathway to cause actin cytoskeleton rearrangements, although
whether Rho functions upstream or downstream of Dvl1 remains to be determined. In apical
regions of the cell, such actin reorganization would be an essential step before the
centrosome/basal body could dock correctly and initiate ciliogenesis. The identification of
mutations in TMEM216 as a cause of JSRD and MKS therefore further emphasizes the
interrelationship between cell polarity, cellular morphogenesis and signal transduction
pathways.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

ONLINE METHODS
Research subjects

We used standard methods to isolate genomic DNA from peripheral blood of the affected
children and family members or from frozen fetal tissue or amniocytes. Chromosome
analysis was performed for at least one patient of each family. Informed consent was
obtained from all participating families and the studies were approved by the Ethics Boards
of Leeds (East), Casa Sollievo della Sofferenza, Hôpital Necker-Enfants Malades, and
UCSD.

Genetic mapping
To refine the MKS2/JBTS2 locus, the 10K Affymetrix SNP array was used to perform a
genome-wide linkage search in nine consanguineous families with MKS. We performed
multipoint linkage analysis using MERLIN software, assuming a fully penetrant recessive
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model, a disease allele frequency of 0.001, and allowed for heterogeneity between families.
Areas of homozygosity on chromosome 11 were confirmed by performing high-resolution
haplotype analysis.

Mutation screening
Mutational screening of TMEM216 was performed by direct sequencing of PCR products of
the six coding exons and the adjacent intronic junctions in JSRD/MKS families showing
potential linkage to the locus and all MKS cases. To test for TMEM216 mutations in the
cohort of 460 JSRD patients we applied the high resolution melting (HRM) technique30
using a LightCycler 480 (Roche Applied Science), with the same primers and optimized
PCR conditions (Supplementary Table 1). Segregation of the identified mutations was
investigated in all available family members. Missense mutations were excluded in the
following ethnically matched controls: wildtype at p.R73 for 227 Italian and 109 Turkish;
and wildtype at p.G77 and p.L114 for 158 Palestinian and 112 Tunisian individuals. All
mutations were also excluded in 200 Central Asian (predominantly Pakistani), 200 European
(predominantly British), as well as a cohort of 96 ethnically diverse individuals.

Founder haplotype analysis
The region surrounding TMEM216 was saturated with 14 single nucleotide polymorphisms
and three microsatellite markers in ten patients homozygous for the same p.R73L mutation.
Estimation of the mutation age was calculated as reported31.

Bioinformatics
Genetic location is based on Human Genome Browser build 36.3 (http://
www.genome.ucsc.edu). The ciliary proteome was searched using web-based tools10-11.
RefSeq and Pfam were respectively accessed at (http://www.ncbi.nlm.nih.gov/RefSeq/) and
(http://pfam.sanger.ac.uk/).

Cloning
Full-length TMEM216 was cloned into the pcDNA3.0 vector, and then shuttled into the
mCherry-, EGFP-, and FLAG- containing vectors. Mutations were introduced into
TMEM216-pEGFP-N3 by QuickChange mutagenesis (Stratagene). TMEM216 open reading
frame was also cloned into pCS2+ vector in order to make RNA for injection into zebrafish
embryos.

Cells and antibodies
Mouse inner medullary collecting duct (IMCD3), human hTERT-immortalized retinal
pigmentary epithelial (hRPE), and human embryonic kidney (HEK293) cells were grown in
Dulbecco’s minimum essential medium (DMEM)/Ham’s F12 supplemented with 10% fetal
calf serum at 37°C/5% CO2. Fibroblasts were immortalized with the hTERT system, and
maintained in Fibroblast Growth Medium (Genlantis) supplemented with 10% fetal calf
serum and 0.2 mg/ml geneticin. Normal, undiseased control fibroblasts were gestationally-
age matched to fibroblasts from MKS patients22. Primary antibodies used were: mouse α-
EGFP antibody (Covance MMS-118R); mouse anti-GFP and rabbit A.V. peptide (“Living
Colors”, Clontech); mouse anti-α-tubulin, mouse anti-γ-tubulin, mouse anti-acetylated-
tubulin (Sigma-Aldrich); mouse-anti-glutamylated tubulin (GT335)32, rabbit-anti-γ-tubulin,
rabbit-anti-Meckelin, mouse anti-β actin (Abcam); mouse anti-filamin A (AbNova); and
mouse anti-Dvl1 (Santa Cruz Biotechnology SC-8025); mouse anti-RhoA (Cytoskeleton).
Rabbit-anti-Meckelin C-terminus, raised against amino acids 982-995, has been described
previously17. Rabbit-anti-Meckelin N-terminus, raised against amino acids 100-113, has
also been described22. Secondary antibodies were Alexa-Fluor 488-Alexa-Fluor 594- and
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Alexa-Fluor 568-conjugated goat anti-mouse IgG and goat anti-rabbit IgG (Molecular
Probes), and HRP-conjugated goat anti-mouse and goat anti-rabbit (Dako). Alexa-Fluor 488
and 633 phalloidin conjugate (Molecular Probes) was used to visualize F-actin.

Biochemical assays
Constructs encoding wildtype or mutant TMEM216 were transfected into 293T cells in a
ratio of 20:1 TMEM216:TK-βgal vector. Cells were lysed after 48h and samples analyzed
by Western blot with α-EGFP antibody (1:500) and β-gal assay to standardize transfection
efficiency33. Normalized loading levels were confirmed by blotting with α-tubulin
(1:2000).

Rabbit-anti-TMEM216 antiserum was raised against the peptide sequence
NLCQRKMPLS(C), comprising amino acids 81-90, by GenScript (Piscataway, NJ, USA).
Antiserum was affinity-purified, and co-immunoprecipitation was performed as described
previously34. Whole cell extracts (WCE) were prepared from confluent untransfected
HEK293 cells, or IMCD3 cells that had been transiently transfected with 1.0 μg plasmid
constructs in 90mm tissue culture dishes, or scaled down as appropriate. WCE supernatants
were processed for immunoprecipitation experiments by using 5 μg affinity-purified mouse
anti-GFP, or 5 μg MAbs, or 5-10 μg purified IgG fractions from rabbit polyclonal antisera,
coupled to protein G- and/or protein A-sepharose beads (GE Healthcare)
Immunoprecipitations were performed in reduced salt incubation buffer (20 mM Tris,
pH7.5, 25 mM NaCl, 2 mM EDTA, 0.5 mM EGTA, 0.02% [w/v] NaN3, 10% [v/v] glycerol,
10% [v/v] ethanol, 0.1% [v/v] protease inhibitor cocktail). For assessing Dvl1
phosphorylation status, extraction and wash buffers were supplemented with phosphatase
inhibitor cocktail (Sigma Aldrich).

In situ hybridization in human embryos
Human embryos were collected from terminated pregnancies using the mefiprestone
protocol in agreement with French bioethics laws (94-654 and 04-800). Embryos were fixed
in 11% formaldehyde, 60% ethanol and 10% acetic acid, embedded in paraffin and
sectioned at 5 μm. Primers (Supplementary Table 1) were selected for RT-PCR
amplification on RNA extracted from a whole C12 (4w) embryo to be used as template for
generating the riboprobes, as described previously35. Sections were hybridized with a
Digoxygenin labeled probe at 70°C overnight, and digoxygenin was detected with an anti-
DIG-Fab’ antibody (Roche) at 1:1000.

Immunofluorescence and confocal microscopy
IMCD3 or hTERT-immortalized fetal fibroblasts were seeded at 20 × 103 cells/well on glass
coverslips in six-well plates and fixed in ice-cold methanol (5 minutes at 4°C) or 2%
paraformaldehyde (20 minutes at room-temp) as described previously17,22. Confocal
images were obtained using a Nikon Eclipse TE2000-E system, controlled by EZ-C1 3.50
(Nikon) software. Images were processed in Metamorph, and figures were assembled using
Adobe Photoshop CS3.

Transfection and siRNA
For transfection with plasmids, cells at 90% confluency were transfected using
Lipofectamine 2000 (Invitrogen). Cells were incubated for 24 to 72 hrs prior to lysis or
immunostaining. For RNAi knockdown in IMCD3 cells, siRNA duplexes (Supplementary
Table 1) were designed against different regions of the mouse Tmem216 (“Stealth Select”,
Invitrogen). Mks3 siRNA reagents have been described previously22. The medium or low
GC non-targeting negative controls (Invitrogen) were used as scrambled siRNA controls.
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Irrelevant siRNA duplexes against Hhari were used as a second negative control (a gift from
P. Robinson, University of Leeds, UK). Individual duplexes (20 nM) or siRNA pools (total
60 nM) were transfected into IMCD3 cells at 60-80% confluency using Lipofectamine 2000
RNAiMAX (Invitrogen). The efficiency of siRNA transfections, as determined with
BLOCK-iT Fluorescent Oligo (Invitrogen), was >60%. Further assays were carried out at 72
hours after transfection.

Gene expression analyses with quantitative real-time PCR
For the relative quantitation of gene expression we used quantitative real-time PCR for the
standard curve method. Total RNA (1 μg) was reverse-transcribed using the Superscript III
first strand cDNA system (Applied Biosystems). PCR analysis of cDNA was performed
using dHPLC-purified primers (Supplementary Table 1) specific for mouse Tmem216
(Invitrogen), following optimization to eliminate primer-dimers and subsequent
confirmation by analysis of amplimer dissociation curves following a qPCR run. Each
reaction was run in triplicate. Amplimer levels were quantified continuously with the SYBR
GreenER qPCR system (Invitrogen) using an ABI 7500 instrument, essentially as described
previously15. Hprt RNA was amplified for normalization, quantified in Supplementary
Figure 10.

RhoA activation assay
The activated GTP-bound isoform of RhoA was specifically assayed in pull-down assays
using a GST fusion protein of the Rho effector rhotekin (Cytoskeleton), using conditions
recommended by the manufacturers. Rho activity was inhibited by treating cells with cell
permeable exoenzyme-C3-transferase (Cytoskeleton) at 2 μg/ml for 5 hr under standard cell
culture conditions. Results shown are representative of three separate experiments. Full
scans of all Western blots are shown in Supplementary Figure 11.

Identification of ciliary defect phenotypes in Zebrafish
To knockdown tmem216 in zebrafish, a translational blocking morpholino antisense
oligonucleotide (MO) or control (Gene Tools) or control was microinjected (4ng/nl) into
one-two cell stage embryos, obtained from natural spawning of wild-type (AB) zebrafish
lines. The mRNA encoding full-length human TMEM216 was co-injected where indicated.
Endogenous mks3 was suppressed with a splice-blocking MO described previously (3 ng/
nl)28. For assessment of gastrulation phenotypes (shortened body axis, wide undulating
notochord, thin and elongated somites, and small anterior structures), mid-somitic embryos
were scored blind at 8 somites (live; 80-100 embryos/injection), or 10-11 somites
(morphometric analyses). Embryos were fixed overnight in 4% PFA, hybridized in situ with
DIG-labeled krox20, pax2, and myoD riboprobes according to standard protocols, and flat-
mounted for imaging and analysis. At 3 days postfertilization, morphological phenotype of
morphants were quantified under bright-field microscopy based upon ciliary defects
(hydrocephalus, small brain, heart edema, and curved tail) or embryonic lethal phenotypes.
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Figure 1.
Mutations in the TMEM216 gene in patients linked to the JBTS2 and MKS2 loci. (a)
Chromosomal location of the JBTS2 and MKS2 loci on Chr. 11cent. (b) TMEM216
genomic organization, depicting start and stop codon, and location of identified base
changes. (c) The longest splice isoform encodes for a 148 aa tetraspan membrane protein.
Patient mutations predominate towards the middle, with one prevalent p.R73 change
occurring repeatedly. Missense, nonsense and splice mutations were identified. (d)
Evolutionary conservation of mutated amino acids. (e) Patient mutations lead to unstable
protein products. Western blot of whole lysate of cells transfected with a cDNA encoding
wild type (WT) vs. patient missense mutations, compared with control (p.V71L). Each
mutation resulted in the production of 40-50% of WT protein levels, compared with α-
tubulin loading control.
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Figure 2.
Ciliary localization of TMEM216. (a-d) Overlapping localization of endogenous TMEM216
(green) and acetylated α-tubulin or GT335 (glutamylated tubulin) (red) at the base of the
primary cilium (arrows) in IMCD3 (a, b), proximal renal tubules (c) or hRPE cells (d).
White dashed line indicates the tubule lumen. Boxes show insets at magnification x10. Scale
bar 5 μm.
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Figure 3.
TMEM216 mutation or knockdown results in impaired ciliogenesis and centrosome
docking. (a) Two different TMEM216-mutated patient fibroblasts lines show defective
ciliogenesis and impaired centrosome docking (marked by γ-tubulin). Scale bar: left 20 μm;
right 1 μm. (b) TMEM216 antisera reacts with a 19 kDa band in control cells, which is
reduced in TMEM216 p.R85X fibroblasts (some residual is apparent likely due to read-
through from geneticin treatment), as well as in siRNA1-treated IMCD3 cells. Fibro. =
fibroblasts; Non-transf. = non-transfected; scr. = scrambled. (c) Transfected IMCD3 cells
showing effect of Tmem216 siRNA treatment, with reduced ciliogenesis and centrosome
docking (note lack of cilia and lack of apically located centrosomes following knockdown).
Top is x-y, and bottom is x-z projection, scale bar 10 μm. (d) Percent ciliated cells (defined
as cilia > 1 μm length) is reduced following Tmem216 siRNA treatment. Percent cells with
apical basal bodies (defined as most superior 1.0 μm sections compared to nuclear position)
is similarly reduced. *p<0.01, **p<0.001, chi-squared test. (e) Shows method of
quantification at 72 hrs. Scale bars: white, most apical 1.0 μm; grey, basal 1.5 μm.
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Figure 4.
TMEM216 complexes with Meckelin, and their loss results in Rho hyperactivation and actin
cytoskeleton remodelling. (a) TMEM216-GFP (~37 kDa; arrow) is immunoprecipitated (IP)
with anti-Meckelin antisera against either the N- or C-termini from whole cell extract (input
WCE), but not in control IPs with an irrelevant antibody (irr. Ab) or the preimmune
antiserum (preimm.). Arrowhead is IgG heavy chain. (b) IP of TMEM216-GFP by α-GFP
pulls down a 60 kDa C-terminal containing isoform of endogenous Meckelin (arrow), but
not in control IPs with no antibody (no MAb) or an irrelevant antibody (irr. MAb).
Arrowhead is IgG heavy chain. (c) MKS2 fibroblast (fibro.) WCE has increased levels of
activated RhoA-GTP compared to normal control. (d) siRNA knockdown of Tmem216 and
Mks3 in IMCD3 cells increased RhoA activation, compared with scrambled control (scr.).
Total RhoA and β-actin are loading controls. Positive control (+) is loading with non-
hydrolyzable GTPγS, negative control (−) is loading with GDP. (e) RhoA (red) localizes to
the basal bodies (γ-tubulin, green) in IMCD3 cells following 24 hr treatment with scrambled
siRNA, but mislocalizes to regions adjacent to the basal bodies (arrows; and inset,
magnification x5) and at basolateral surfaces (arrowheads) following Tmem216 knockdown.
Mislocalization of γ-tubulin is also apparent (bottom inset). Scale bar 10 μm. (f) Subcellular
phenotypes of fibroblasts cultured from undiseased control and two MKS fetuses mutated in
TMEM216 [p.R85X homozygous] and MKS3 [p.R217X]+[p.M261T], as indicated. Actin
stress fibers in both mutated cells (arrowheads) are detected by phalloidin staining. Scale bar
10 μm.
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Figure 5.
TMEM216 disruption results in Dvl1 phosphorylation, and planar cell polarity-like
phenotypes in zebrafish. (a) siRNA knockdown of Tmem216 (left panel) and TMEM216
p.R85X patient fibroblasts (right panel) cause an increase in the upper (phosphorylated)
isoform (P-Dvl1) compared to scrambled control (scr.). Treatment with Rho inhibitor
exoenzyme-C3-transferase (2 μg/ml) alone increased Dvl1 phosphorylation, but increases in
P-Dvl1 by TMEM216 loss are reversed by Rho inhibition (right panel). (b) Co-
immunoprecipitation of both Dvl1 and RhoA with TMEM216 in TMEM216-GFP
transfected cells. Arrowhead is IgG heavy chain. (c) Dose-dependent rescue of centrosome/
basal body docking phenotype in Tmem216 siRNA-treated cells following += 0.5, ++= 1.0,
+++= 2.0 μg/ml Rho inhibitor treatment. *p<0.01; **p<0.001 for chi-squared test. (d)
Injection of translation-blocking morpholino (MO) to tmem216 vs. scrambled MO causes a
ciliary defect phenotype in injected zebrafish embryos (>50 each condition). Injection of
human TMEM216 RNA causes no phenotype in WT embryos, but allows partial, dose-
dependent rescue of the MO phenotype. (e) Lateral (top) and dorsal (bottom) views of
zebrafish embryos injected with tmem216 or mks3 MO at 8-somite stage had ciliopathy
features. (f) Representative 11-somite stage embryos hybridized with krox20, pax2, and
myoD riboprobes. Convergence to the midline is measured by the width at the fifth
rhombomere (horizontal arrow), and extension along the anterior-posterior (AP) axis by
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notochord length (vertical arrow) (n=12-15 embryos/injection). Suppression of the tmem216
or mks3 morphant gastrulation defect causes significant differences in width and length
compared to controls (*p<0.005). Pheno.=phenotype; embry.=embryonic;
rhomb.=rhombomere; Bars=standard error of means.
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