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Abstract

Induced pluripotent stem cells (iPSCs) hold enormous potential for the development of personalized in vitro disease models,
genomic health analyses, and autologous cell therapy. Here we describe the generation of T lymphocyte-derived iPSCs from
small, clinically advantageous volumes of non-mobilized peripheral blood. These T-cell derived iPSCs (‘‘TiPS’’) retain a
normal karyotype and genetic identity to the donor. They share common characteristics with human embryonic stem cells
(hESCs) with respect to morphology, pluripotency-associated marker expression and capacity to generate neurons,
cardiomyocytes, and hematopoietic progenitor cells. Additionally, they retain their characteristic T-cell receptor (TCR) gene
rearrangements, a property which could be exploited for iPSC clone tracking and T-cell development studies.
Reprogramming T-cells procured in a minimally invasive manner can be used to characterize and expand donor specific
iPSCs, and control their differentiation into specific lineages.
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Introduction

In vitro reprogramming of somatic cells to an undifferentiated

pluripotent state by viral transfer of defined factors such as

SOX2, OCT4, NANOG and LIN28 or SOX2, OCT4, c-Myc, and

KLF4[1,2] has opened the way for the generation of patient-

specific human iPSCs using multiple cell types [3,4]. This

premise has been further advanced by derivation of iPSCs via

transient expression of genes or by using protein transduction of

appropriate transcription factors [5,6]. To date, the majority of

iPSC research in humans has focused on fibroblasts as a cell

source. While fibroblasts offer certain advantages as a starting

material due to their commercial availability and ease of gene

delivery, they are suboptimal for large-scale clinical derivation

of iPSC lines due to the need for invasive skin biopsies and the

difficulty of establishing stable lines from primary tissue. Non-

mobilized peripheral blood is perhaps the ideal cell source for

reprogramming due to the ease of obtaining patient samples [7].

Additionally, large numbers of frozen blood samples, from living

and deceased donors, are stored in biorepositories worldwide

[8].

Investigators have recently reported successful reprogramming

of primary CD34+ hematopoietic progenitor cells from both

mobilized and non-mobilized blood donors [3,9]. These findings

represent an important advance in iPSC research, however, non-

mobilized adult peripheral blood contains approximately 100–

1000 CD34+ cells/ml [10,11] making these rare progenitors a

challenging cell source for iPSC line derivation from small blood

volumes. As an alternative, more abundant and tractable blood

cell source we report the derivation of iPSCs from T lymphocytes

obtained from the equivalent of 1 ml whole blood. These T-cell

derived iPSCs (‘‘TiPS’’) share essential characteristics with hESCs

as well as fibroblast-derived iPSC lines. Additionally, they retain

their characteristic T-cell receptor (TCR) gene rearrangements, a

property which could be exploited, for example, as a genetic

tracking marker or in re-differentiation experiments to study

human T-cell development.

Results and Discussion

T-cells are well suited as a starting material for reprogramming

due to their abundance in whole blood (,6.56105–3.16106/ml in

healthy adults) [12] and ease of culture using well-established

protocols [13,14]. To facilitate T-cell proliferation and efficient

retroviral transduction, peripheral blood mononuclear cells

(PBMCs) were isolated from a leukapheresis or a standard

venipuncture (Vacutainer� CPT tube) and cultured in serum-

free media with IL-2 and anti-CD3 antibody (Figure 1). This led to

preferential expansion of mature CD3+ T-cells consisting of an

average day 3 CD3+ purity of 90% +/2 7% (Figure 2A).

Activated T-cell enriched populations containing 16106 cells

were subjected to two rounds (at day 0 and 1) of retroviral

transduction with four separate vectors, each encoding one of the

reprogramming factors (SOX2, OCT4, c-Myc, or KLF4) linked to a

fluorescent marker gene. Transduction efficiency was assessed at

day 3 by fluorescence microscopy and flow cytometry. Staining for

CD3 showed the transduced population to be 99% +/2 1% CD3+

(Figure 2A).

PLoS ONE | www.plosone.org 1 June 2010 | Volume 5 | Issue 6 | e11373



The population of cells containing the transduced T-cells was

placed on irradiated mouse embryonic fibroblasts (MEFs) in hESC

medium supplemented with 100 ng/ml basic fibroblast growth

factor (bFGF). iPSC colonies were observed beginning at day 23.

Reprogramming efficiencies of T-cells were estimated by dividing

the number of colonies with hESC-like morphology by the input

number of transduced cells and determined to be approximately

0.01%, similar to published fibroblast and CD34+ cell efficiencies

[1,3].

TiPS were generated from both leukapheresis samples (from a

male Hispanic adult, lines denoted ‘‘TiPS-L’’) and whole blood

Vacutainer samples (from a male Caucasian adult, lines denoted

‘‘TiPS-V’’). In each case, reprogramming was achieved using an

input cell number equivalent to the amount of T-cells in 1 ml whole

blood. Colonies displaying hESC morphology were expanded on

MEFs and the clones were successfully maintained under feeder-

free conditions using mTeSR media and Matrigel coated plates.

We performed DNA fingerprinting to verify that TiPS shared a

genetic background with the starting donor T-cell population and

to rule out cell line cross-contamination (Figure S1). Pluripotency

was verified by expression of hESC pluripotency markers SSEA-3,

SSEA-4, Tra-1-81, and OCT4 using flow cytometry (Figure 2B)

and alkaline phosphatase staining (Figure S2). We confirmed the

TiPS lines’ T-cell origin via multiplex PCR detection of TCR b
chain rearrangements (Figure 2C).

RT-PCR was performed to confirm expression of hESC genetic

markers DNMT38, LEFT8, NODAL, REX1, ESG1, TERT, GDF3,

and UTF1 (Figure 3A). Further characterization demonstrated

integration of the transgenes into the host genome as well as their

silencing following successful reprogramming (Figures 3B, C).

TiPS were similar to both the hESC line H1 and to fibroblast-

derived iPSC line controls in all of the above assays. Additionally,

lines were karyotypically normal after multiple passages and have

been propagated for over 30 passages in culture while retaining a

normal karyotype (Figure S3).

Finally, the TiPS cell lines were evaluated to determine their in

vivo and in vitro differentiation potential. All TiPS clones formed

teratomas. The teratomas contained tissue consistent with

derivation from all three primary germ layers (Figures 4A). The

cell lines were also assessed for their capability to differentiate in

vitro into ectodermal and mesodermal lineages in various directed

differentiation protocols. The clones were able to generate

neurons, beating cardiac troponin T-positive cardiomyocytes and

multipotent granulocyte-erythroid-macrophage-megakaryocyte

(GEMM) hematopoietic cells (Figures 4B, C, D, E).

A potential concern of T-cell derived iPSCs is the persistence of

TCR gene rearrangements in the iPSC genome and their potential

effect on subsequent differentiation. Though we did not observe

any significant differences in differentiation potential between

TiPS clones and hESC lines or fibroblast-derived iPSC lines

(Figure 4D,E, additional data not shown) the effects of these

genomic rearrangements on lymphoid differentiation remain to be

investigated. TCR rearrangements may in fact prove advanta-

geous in certain contexts, such as for iPSC clone tracking, as

demonstrated by the detection of parent line clonal TCR b chain

rearrangements in derivative teratomas (Figure 5). Further, upon

re-differentiation into T-cells TiPS cells may bypass key steps in the

canonical thymic development sequence due to the mechanism of

TCR allelic exclusion caused by the expression of their pre-

rearranged TCR genes. This phenomenon could be explored in

T-cell development studies.

It should be noted that insertional mutagenesis and other

potential disruptions of cellular function are possible when using a

retroviral reprogramming protocol [15]. Recent advances in using

episomal reprogramming methods may address these issues and

efforts are in progress to reprogram T-cells via these alternative

methods [5,6]. Further, an interesting example of a potential

therapeutic use for such episomally reprogrammed TiPS cells is as

a source to differentiate integration-free hematopoietic stem cells

bearing endogenous TCR genes specific for tumor-associated

antigens [16].

Previous reports of reprogramming terminally differentiated B

lymphocytes in mice required the addition, or knock-down, of

cellular identity-associated transcription factors and used a

doxycycline-inducible expression system [17]. Recently, a descrip-

tion of reprogramming murine T-cells was published necessitating

a p53 gene knock-out for successful iPSC generation [18].

Experiments involving manipulation of anti-proliferative pathways

[19,20,21,22] offer insights into the mechanisms of reprogram-

ming and may significantly augment reprogramming efficiencies.

However, none of the above mentioned manipulations appear to

be a requirement for successful viral reprogramming of human T-

cells. Additionally, our data, coupled with methodologies used in

reprogramming adult CD34+ hematopoietic progenitor cells [3,9],

now afford a primary, human system to examine recent

observations in the mouse system correlating differentiation stage

of input cells with reprogramming efficiency [23].

We describe the derivation of iPSCs from small, clinically

advantageous volumes of non-mobilized human peripheral blood.

T-cells represent an abundant cell source for reprogramming

which can be harvested from large numbers of donors in a

minimally invasive manner and cultured via well-established

protocols. In the experiments we have detailed, TiPS have similar

characteristics and differentiation potential as hESC lines and

Figure 1. Overview of T-cell reprogramming process, beginning with activated T-cells and resulting in iPSC colonies with hESC-like
morphology. T-cell and iPSC colony images were acquired on an Olympus IX71 microscope with 106 and 206objectives, respectively.
doi:10.1371/journal.pone.0011373.g001
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fibroblast-derived iPSC lines. Additionally, TiPS provide a novel

model with which to explore iPSC clone tracking, T-cell

development and therapeutic applications of iPSC technology.

Materials and Methods

Cell Growth Media and Basic Fibroblast Growth Factor
iPSC lines were maintained using previously described methods

[1]. Zebrafish bFGF was substituted for human bFGF in all

experiments, as previously described [24].

Fibroblast iPSC Lines
Control fibroblast-derived iPSC lines, referred to as ‘‘Fib-iPS’’,

were produced as previously described using IMR90 cells obtained

from ATCC (Manassas, VA) [1].

T-cell Activation and Expansion
Peripheral Blood Mononuclear Cells (PBMCs) were obtained

from an HLA-A2 positive adult male Hispanic donor (‘‘Donor L’’)

leukocyte pack (Biological Specialty Corp, Colmar, PA) processed

with Lymphocyte Separation Medium (Cellgro, Manassas, VA).

Additionally, whole blood samples were collected from a male

Caucasian donor of unknown serotype (‘‘Donor V’’) via standard

venipuncture in a Vacutainer� CPTTM tube (BD Biosciences, San

Jose, CA) and PBMCs were collected by centrifugation according

to the manufacturer’s recommendations. Blood samples were

obtained with written informed consent in accordance with the

Declaration of Helsinki and Institutional Review Board approval

from the Biological Specialty Corporation (Colmar, PA, USA). T-

cells were expanded in freshly prepared AIM-V Medium

(Invitrogen, Carlsbad, CA) supplemented with pen/strep/gluta-

mine (Invitrogen) plus 300 IU/ml rhIL2 (Peprotech, Rocky Hill,

NJ) and 10 ng/ml soluble anti-CD3 antibody (eBioscience, OKT3

clone, San Diego, CA) [25,26] Proliferation was verified by

CEDEX (Roche Innovatis, Bielefeld, Germany) cell count after 3

days in culture at which point cells were assayed for T-cell

phenotype and then transduced with reprogramming factors.

Transient Transfection for Retrovirus Production
Retrovirus was generated by transfecting 293T cells in a 10 cm

plate at 70-80% confluence with 10 ug of retroviral vector

(Moloney Murine Leukemia Virus) backbone encoding each of 4

Figure 2. Derivation and characterization of induced pluripotent stem cells from human T-cells. (A) Flow cytometric analysis of input cell
source CD3 surface expression. (i) CD3 surface expression on day -3 non-activated PBMCs and day 0 activated T-cells from the PBMC population in a
representative donor. (ii) CD3 expression gated on the transduced (GFP+) cell population 72 hours post-transduction in a representative donor to
demonstrate preferential transduction of CD3+ cells. (iii) Histogram representation of the above metrics (i-ii) in an average of 10 donor Vacutainer-
derived samples. (B) Flow cytometric analysis of hESC pluripotency markers OCT4, Tra-1-81, SSEA-3 and SSEA-4 in representative leukapheresis (‘‘TiPS
L-2’’) and Vacutainer (‘‘TiPS V-1’’) derived TiPS lines. (C) T-cell receptor (TCR) b chain rearrangement analysis using multiplexed PCR primers targeted
to conserved regions within the V-J region of the TCR b locus. Polyclonal starting T-cell populations are represented by a bell-shaped curve of
amplicon peaks within the valid fragment size range on the electropherogram. Fibroblast (non-T-cell) iPS cells (‘‘Fib-iPS’’) lack germline
rearrangement at the TCR b locus and serve as a negative control. The clonally derived TiPS lines (representative data from two leukapheresis lines
and one Vacutainer line, ‘‘TiPS L-1’’, ‘‘TiPS L-2’’ and ‘‘TiPS V-2’’, respectively) show one distinct peak of defined size. DNA fragment analysis was
performed on an ABI 3730 DNA analyzer.
doi:10.1371/journal.pone.0011373.g002

Figure 3. Characterization of induced pluripotent stem cells from human T-cells. (A) RT-PCR analysis of representative leukapheresis (‘‘TiPS
L-1’’ and ‘‘TiPS L-2’’) and Vacutainer (‘‘TiPS V-2’’) derived TiPS cell lines for expression of hES cell-marker genes DNMT38, LEFTB, NODAL, REX1, ESG1,
TERT, GDF3, and UTF1. GAPDH was used as positive loading control for each sample. (B) PCR analysis of genomic DNA confirms integration of the
transgenes. Forward primers for the reprogramming gene (‘‘RG’’) of interest and reverse primers for the IRES were utilized. OCT4 forward and reverse
primers were used as the PCR reaction positive control, as shown in vector map. (C) RT-PCR analysis of TiPS cell lines shows silencing of the
exogenous transgenes, with GAPDH as positive control for each sample. In (A) and (C) hESC line H1 and in (A-C) a fibroblast derived iPSC line (‘‘Fib-
iPS’’) served as positive cell controls, and activated donor T-cells served as a negative cell control. In (A-C) images were modified with Photoshop
software to combine gels and remove redundant control data from separate experiments.
doi:10.1371/journal.pone.0011373.g003
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Figure 4. In vivo and in vitro differentiation potential of TiPS cell lines. (A) Teratoma formation shows in vivo differentiation potential. TiPS
cells injected into SCID/beige mice formed teratomas at 5 to 12 weeks. Hematoxylin and eosin staining shows tissues consistent with derivation from
the three primary germ layers including simple epithelium with goblet cells indicating gastrointestinal or respiratory tissue (endoderm), cartilage
(mesoderm) and retinal pigmented epithelium (ectoderm). Representative images from TiPS L-2 cell line were acquired using an Olympus IX71
microscope using a 406 objective. (B) In vitro differentiation into neurons. TiPS L-2 cells were induced into neuronal differentiation as aggregates
then stained for neuronal marker beta III-tubulin with an Alexa Fluor 594 secondary antibody; cell nuclei were counterstained with Hoechst stain.
Images were acquired using a 206objective. Contrast was adjusted and images were merged using Image J software. (C) Cardiac induction of TiPS
cells via cell aggregate method. Cell aggregates contain beating cardiac troponin T (cTNT)-positive cardiomyocytes at days 14 to 15. Flow data from
representative samples is shown. Images were acquired using a 106 objective. (D) In vitro differentiation into hematopoietic progenitor cells.
Hematopoietic progenitor cells (HPCs) generated via a serum-free embryoid body (EB) differentiation protocol for 12 days in two TiPS lines compared
to an hESC line (‘‘H1’’) and a fibroblast derived iPSC line (‘‘Fib-iPS’’). HPCs were quantified via flow cytometry by dissociating the EBs into single cells
and staining with fluorochrome-conjugated monoclonal antibodies to CD34, CD45, CD43, CD31, CD41 and CD235a. (E) Hematopoietic clonogenic
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reprogramming genes and a fluorescent marker gene (GFP or

RFP), 3 ug of Gag-Pol, 1 ug of plasmid encoding a derivative of

NFkB, and 1 ug of Vesicular Stomatitis Virus G protein using

polyethylene imine (‘‘PEI’’) lipophilic reagent (40 ug/10 cm plate).

After four hours, the medium was exchanged with 5 ml of DMEM

(Invitrogen) plus 10% FBS (Hyclone, Waltham, MA) and 50 mM

HEPES (Invitrogen). Viral supernatant was collected 48 hours

post-transfection and passed through a 0.8 um pore size filter.

Retroviral Transductions via Spinfection
One million activated donor cells per well were ‘‘spinfected’’ via

centrifugation for 1.5 h61000 g at 32uC in a mixture of the four

retroviral supernatants plus 4 ug/ml polybrene (Sigma-Aldrich, St.

Louis, MO), and 300 IU/ml rhIL-2. After spinfection the plates

received a half-media exchange, and were incubated overnight.

The next day the cells were harvested by centrifugation and

spinfected a second time.

Verification of T-cell Expansion and Transduction
Efficiency

T-cell identity was verified 3 days after activation by flow

cytometry surface staining with anti-CD3 antibodies (BD, clone

HIT3a), as well as post-transduction to verify which cell

population was transduced successfully. Samples were run on an

(CFU) assays were performed by placing EB differentiated and individualized cells into serum-free MethoCult media containing cytokines (SCF, G-CSF,
GM-CSF, IL-3, IL-6, and EPO). Colonies were scored after 14 days of incubation according to morphologic criteria as erythroid (CFU-E/BFU-E), myeloid
comprising macrophage (CFU-M), granulocyte (CFU-G), and granulocyte-macrophage (CFU-GM), and multilineage comprising granulocyte-erythroid-
macrophage-megakaryocyte (CFU-GEMM) colonies. Total CFUs were quantified and representative images were acquired using an Olympus CKX41
microscope with a 26 objective.
doi:10.1371/journal.pone.0011373.g004

Figure 5. iPSC Clone Tracking. Genomic DNA was isolated from teratoma samples and compared with their parent cell lines for TCR b chain
rearrangements. Representative data is shown from cell line TiPS V-1. The derivative teratoma harbors the clonal rearrangement of the parent cell
line. PCR analysis was conducted using multiplexed primers targeted to conserved regions within the V-J region of the TCR b locus. DNA fragment
analysis was performed on an ABI 3730 DNA analyzer. Background #1000 RFU.
doi:10.1371/journal.pone.0011373.g005
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Accuri (Ann Arbor, MI) flow cytometer. CEDEX cell counts were

conducted on days 0, 3 and 4 to confirm expansion and thus

amenability to MMLV retroviral infection (data not shown).

Plating Transduced T-cells on MEFs
Seventy two hours post initial transduction, transduction success

and efficiency estimates were verified by fluorescent microscopy

and flow cytometry as listed above. 56105 transduced cells were

added to 10 cm plate seeded with MEFs 1 to 3 days prior in a 50/

50 media combination D10F:hESC without zbFGF (or additional

cytokines). Cells were incubated and fed hESC media + 100 ng/

ml zbFGF (first week) or MEF-conditioned media + 100 ng/ml

zbFGF (thereafter) by half media exchange every other day. To

avoid cell loss during feedings the plates were angled slightly for 10

minutes to allow the cells to settle and media was removed slowly

from the media horizon.

iPSC Colony Identification and Picking
Colonies with well-defined borders and typical hESC morphol-

ogy began to appear around day 23. GFP and RFP silencing was

verified by fluorescent microscopy and the number of colonies was

counted to estimate reprogramming efficiency given the number of

input plated cells. Colonies were manually harvested, transferred

to MEFs, and expanded according to established protocols [7,27]

Estimates of reprogramming efficiency were obtained by dividing

total number of putative iPSC colonies by the input number of

transduced cells. Counts were ceased after colony harvest (day 25–

30) to avoid the inclusion of false positive re-seeded colonies left

behind from the harvest.

DNA Fingerprinting
TiPS cell lines and donor PBMCs were sent to the University of

Wisconsin Histocompatibility/Molecular Diagnostics Laboratory

(Madison, WI) for short tandem repeat (STR) analysis. Genotypes

for 8 STR loci were determined from TiPS cell sample DNA.

Karyotyping
G-banding analysis was conducted by WiCell Research Institute

(Madison, WI).

T-cell Receptor b Chain Rearrangement Analysis
Genomic DNA was isolated per manufacturer’s protocol (using

the Qiagen DNeasy Blood and Tissue kit) from donor T-cells, the

TiPS cell lines, and a fibroblast (non-T-cell) derived iPSC line used

as a negative control. Additionally, DNA was isolated from frozen

teratoma samples and parent cell lines by first dissolving tissue and

cell samples in a buffer containing Tris, NaCl, EDTA, SDS and

Proteinase K (Invitrogen). DNA was then precipitated with

saturated NaCl and ethanol, and resuspended in water for PCR

analysis. PCR was performed using a multiplex primer kit

(Invivoscribe Technologies, San Diego, CA) specific for a majority

of clonal TCR b chain rearrangements [28]. Capillary electro-

phoresis and PCR product fragment analysis was performed at the

University of Wisconsin Biotechnology Center DNA Sequencing

Core Facility (Madison, WI) using an ABI 3730 DNA analyzer.

Data was analyzed using Peak Scanner software (ABI, Foster City,

CA).

Alkaline Phosphatase (AP) Staining
Confluent cells grown on MEFs were AP stained with Vector

Blue Alkaline Phosphatase Substrate Kit III (Vector Laboratories,

SK-5300, Burlingame, CA) according to the manufacturer’s

protocol.

RT-PCR for Transgene and hESC Marker Gene Expression
Total RNA was isolated using the RNeasy Mini Kit (Qiagen,

Germantown, MD) according to the manufacturer’s protocol. First

strand cDNA synthesis was carried out with oligo-dT primers (as

described previously [1,2]) using SuperScript III First Strand

Synthesis kit (Invitrogen) according to the product protocol. cDNA

was diluted 1:2 and PCR reactions were performed with GoTaq

Green Master Mix (Promega, Madison, WI) using a Mastercyler

(Eppendorf, Hauppauge, NY).

PCR Analysis of Viral Integration
Genomic DNA was isolated from 1–56106 iPSCs using DNeasy

Blood and Tissue kit (Qiagen) according to the manufacturer’s

protocol for cultured cells. Genomic DNA (5 ul) was used for PCR

reactions to check for viral integration using GoTaq Green Master

Mix (Promega). Specific primer sets were used that detect only the

transgene and not the endogenous gene. Primers for endogenous

OCT4 served as a positive control for the reaction. Reactions were

performed with primers as described previously [1,2].

Flow Cytometry: iPSC Line Intracellular and Surface
Pluripotency Marker Characterization

TiPS maintained on Matrigel were harvested and stained for

the presence of Tra-1-81(BD Pharmingen or Stemgent, San

Diego, CA, both clone Tra-1-81), SSEA-3 (BD Pharmingen, clone

MC631) and SSEA-4 (BD Pharmingen, clone MC813-70).

Intracellular OCT4 (BD, clone 40/Oct-3) staining was performed

on cells fixed with 2% paraformaldehyde and permeablized with

PBS + 0.1% saponin. Cells were stained overnight and analyzed

the next day on an Accuri flow cytometer.

Hematopoietic Differentiation and Colony-Forming Unit
Assays

Undifferentiated TiPS were adapted to feeder-free conditions

on Matrigel coated plates and maintained using mTeSR medium

(Stem Cell Technologies, Vancouver BC, Canada). The colonies

were harvested using TrypLE (Invitrogen) and placed in serum-

free embryoid body (EB) basal media [containing IMDM, NEAA,

Glutamine (Invitrogen) and 20% BIT-9500 (Stem Cell Technol-

ogies) and ROCK inhibitor H1152] in low-attachment plates to

facilitate aggregate formation. Following aggregate formation, the

cells were placed in EB basal media supplemented with growth

factors and cytokines: rhBMP-4 (R&D Systems, Minneapolis,

MN), rhVEGF, zbFGF, rhFlt-3 ligand, rhIL-3, and rhGM-CSF

(Invitrogen) for 12 days. The cells were harvested and the

phenotype generated by each iPSC clone was assessed by surface

staining for CD31, CD34, CD43, CD45, CD41 and CD235a by

flow cytometry. The individualized cells were placed in MethoCult

(Stem Cell Technologies) media for quantifying colony-forming

units per the manufacturer’s instructions.

Assay for Teratoma Formation
Characterized iPSCs cultured on MEFs were injected

intramuscularly into the hind limb of SCID/beige mice (Harlan

Laboratories, Madison, WI). Three mice were injected per cell

line, each with one 6-well plate of cells. Matrigel (BD

Biosciences) was added at 1/3 total volume to the cell suspension

prior to injection. Tumors formed at 5 to 12 weeks and were

processed for hematoxylin and eosin staining and histological

analysis by the McArdle Laboratory for Cancer Research

(University of WI-Madison). All animal work was conducted

according to relevant national and international guidelines under
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the approval of the Cellular Dynamics International Animal

Care and Use Committee.

Cardiac Differentiation
Cardiogenesis was induced via a cell aggregate method. Briefly,

TiPS cells grown on MEFs were harvested with collagenase IV

(Invitrogren) and cells grown on Matrigel were dissociated into

single cell suspension using Sodium Citrate. The cell suspension

was allowed to form aggregates in ultra-low attachment flasks in

the presence of recombinant human hepatocyte growth factor

(HGF) and/or zbFGF. Additionally, ROCK inhibitor H1152 was

added to Matrigel-sourced cell suspensions. Beating aggregates

were dissociated and stained for cardiac troponin T (cTnT)

(Abcam, Cambridge, MA, clone 1C11) on days 14 to 15.

Neuronal Differentiation
The neural differentiation of TiPS cells was performed as

previously described [29]. Briefly, TiPS grown on MEFs were

partially dissociated with collagenase IV and cultured in

suspension as aggregates in Stemline Neural Stem Cell Expansion

Medium (Sigma-Aldrich) supplemented with B27 supplement

(Invitrogen), bFGF (100 ng/ml) and epidermal growth factor

(100 ng/ml, Chemicon, Billerica, MA). Cultures were passaged

weekly using a McIlwain tissue chopper. To induce neural

differentiation, spheres were grown in neural induction medium

(DMEM/F12 plus N2 supplement, Invitrogen) for one week and

then plated onto poly-ornithine/laminin (Sigma-Aldrich)-coated

coverslips in the same neural induction medium supplemented

with cAMP (1 uM, Sigma-Aldrich), ascorbic acid (200 ng/ml,

Sigma-Aldrich), brain-derived neurotrophic factor and glial cell

line-derived neurotrophic factor (both 10 ng/ml, R&D Systems)

for a further 3 weeks. The expression of neuronal maker beta III-

tubulin was analyzed by immunofluorescence staining as previ-

ously described [30].

Supporting Information

Figure S1 DNA Fingerprinting. Short Tandem Repeat (STR)

analysis shows TiPS cell lines are identical to parent activated T-

cells for all 15 allelic polymorphisms detected across the 8 STR

loci analyzed. Representative data from two TiPS lines (TiPS L-1

and TiPS L-2) are shown.

Found at: doi:10.1371/journal.pone.0011373.s001 (3.65 MB TIF)

Figure S2 Alkaline Phosphatase (AP) Staining. TiPS lines TiPS

L-1 and TiPS L-2 are AP positive. Images were acquired on an

HP Scanjet G3110 computer scanner.

Found at: doi:10.1371/journal.pone.0011373.s002 (2.87 MB TIF)

Figure S3 TiPS cell lines display normal karyotype. TiPS cell

lines ‘‘TiPS L-1’’ and ‘‘TiPS L-2’’ were grown for 6 passages on

MEFs, and lines ‘‘TiPS V-1’’ and ‘‘TiPS V-2’’ were grown on

Matrigel for 8 of 18 total passages and 30 of 34 total passages,

respectively. Cells were subjected to G banding analysis and no

clonal abnormalities were detected.

Found at: doi:10.1371/journal.pone.0011373.s003 (4.70 MB TIF)

Figure S4 Vector map of the MMLV retroviral construct used

for reprogramming experiments. ‘‘RG’’ denotes reprogramming

gene.

Found at: doi:10.1371/journal.pone.0011373.s004 (1.91 MB TIF)
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