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Abstract
Attention deficit/hyperactivity disorder (ADHD) is characterized by symptoms of inattention,
impulsivity, and locomotor hyperactivity. Recent advances in neurobiology, imaging, and genetics
have led to a greater understanding of the etiology and treatment of ADHD. Studies have found that
ADHD is associated with weaker function and structure of prefrontal cortex (PFC) circuits, especially
in the right hemisphere. The prefrontal association cortex plays a crucial role in regulating attention,
behavior, and emotion, with the right hemisphere specialized for behavioral inhibition. The PFC is
highly dependent on the correct neurochemical environment for proper function: noradrenergic
stimulation of postsynaptic alpha-2A adrenoceptors and dopaminergic stimulation of D1 receptors
is necessary for optimal prefrontal function. ADHD is associated with genetic changes that weaken
catecholamine signaling and, in some patients, with slowed PFC maturation. Effective
pharmacologic treatments for ADHD all enhance catecholamine signaling in the PFC and strengthen
its regulation of attention and behavior. Recent animal studies show that therapeutic doses of
stimulant medications preferentially increase norepinephrine and, to a lesser extent, dopamine, in
the PFC. These doses reduce locomotor activity and improve PFC regulation of attention and
behavior through enhanced catecholamine stimulation of alpha-2A and D1 receptors. These findings
in animals are consistent with improved PFC function in normal human subjects and, more
prominently, in patients with ADHD. Thus, a highly cohesive story is emerging regarding the etiology
and treatment of ADHD.

Attention deficit/hyperactivity disorder (ADHD) is characterized by symptoms of inattention,
poor impulse control, and increased motor activity.1 In the last 20 years, advances in the fields
of neuroscience and genetics have provided new insights into this common disorder. We have
learned how genetic alterations can affect neural circuits and lead to the symptoms of ADHD,
and how correcting these alterations can lead to rational treatments. Much of the research on
ADHD has pointed to weaknesses in the prefrontal cortex (PFC), the most highly evolved of
the association cortices. The PFC regulates attention and behavior through its widespread
connections to sensory and motor cortices, and to subcortical structures such as the basal
ganglia and cerebellum. Imaging studies have demonstrated that patients with ADHD have
alterations in PFC circuits and demonstrate weaker PFC activation while trying to regulate
attention and behavior. The PFC requires optimal levels of norepinephrine (NE) and dopamine
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(DA) for proper functioning. Genetic studies have consistently noted alterations in genes
involved in catecholamine transmission in patients with ADHD. All pharmacologic treatments
for ADHD strengthen catecholamine signaling in the PFC and ameliorate symptoms. This
article provides a brief summary of the neurobiology of ADHD.

OVERVIEW OF THE PREFRONTAL CORTEX
The PFC is highly developed in humans and consists of the cortex anterior to the motor and
premotor cortices in the frontal lobe. The functions of the PFC are specialized by region. In
right-handed individuals, portions of the left hemisphere are involved with the generation of
language (e.g., Broca’s area), and the right hemisphere is particularly important for the
regulation of attention, behavior, and emotion.2 The dorsal and lateral portions of the PFC
regulate attention and motor responses, and the ventral and medial portions regulate emotion.
2, 3 The PFC has extensive connections throughout the brain to orchestrate thoughts and
responses4 and to provide intelligent decision making, insight, and judgment.5, 6 The PFC is
essential for the so-called executive functions, allowing us to organize and plan for the future
and to inhibit responses to distractions in order to achieve a goal.3 Not surprisingly, the PFC
is the brain structure that is last to mature, with full maturation occurring only in late
adolescence.7–9 The PFC is also especially sensitive to its neurochemical environment: like
Goldilocks, it needs to have everything “just right” for proper function.10 Thus, this brain region
is particularly vulnerable to environmental and genetic insults.

Regulation of Attention
The PFC mediates “top-down” attention, regulating our attention so that we devote our
resources to that which is relevant to our goals and plans.11–15 The PFC allows us to
concentrate and sustain our attention, especially under “boring conditions” such as long delays
between stimuli (e.g., a teacher who talks slowly).16 The PFC helps us to focus on material
that is important but not inherently salient (e.g., studying for a test, reading homework) and to
inhibit internal and external distractions.17–21 The PFC allows us to divide and shift our
attention as appropriate with task demands (so-called multi-tasking)2, 22 and to plan and
organize for the future23 As described above, many of the attentional functions of the PFC are
the purview of the right hemisphere, and lesions to this hemisphere induce distractibility and
poor concentration.24 The PFC accomplishes top-down attentional regulation through its
extensive connections back to the sensory cortices for gating of sensory inputs (Figure 1)4,
25 The PFC is able to suppress processing of irrelevant stimuli and enhance the processing of
relevant stimuli through these extensive connections.

Attention problems in children with ADHD are diagnosed using the Inattention scale in the
Diagnostic and Statistical Manual of Mental Disorders (DSM), Fourth Edition.26 These
symptoms of inattention generally refer to problems with top-down attention, as exemplified
in children who are easily distracted, have difficulty sustaining attention on “boring” material
but are readily captivated by more salient stimuli, e.g., they are able to attend to video games
but are not able to listen to their teacher. Most children with ADHD have these problems with
attention regulation. However, there are a few children who are truly unable to pay attention
(usually diagnosed with attention deficit disorder [ADD], rather than ADHD), and these
individuals may have problems with posterior attention systems in the parietal and temporal
lobes.

The parietal and temporal sensory cortices mediate “bottom-up” aspects of attention.15, 27

These cortical systems process stimuli according to inherent salience (e.g., are the stimuli bold,
loud, brightly colored, moving), rather than their relevance. Research over the last 20 years
has been particularly successful in discovering how visual stimuli are processed and perceived:
the ventral stream through the temporal association cortices evaluates visual features, such as
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lines and colors, to determine what things are.13, 28, 29 Thus, lesions to the inferior temporal
cortices cause agnosias (not knowing what something is).11 In contrast, the dorsal stream
culminating in the parietal cortices determines where things are, and whether they are moving.
30, 31 The parietal association cortex is essential for orienting our attention,32, 33 with the right
hemisphere specialized for orienting attention to parts of visual space, and the left hemisphere
marshalling our attention to a point in time, e.g., if we are expecting an important event to
occur.34 Lesions to the right parietal cortex induce a striking syndrome known as contralateral
neglect, where patients have no conscious experience of stimuli in the left visual field.35, 36

Although most children with ADHD or ADD (attention problems without hyperactivity or
impulsivity) have problems with attention consistent with PFC deficits, there are likely some
children who have weakness in the parietal or temporal cortices, or both, and truly have
difficulties paying attention, e.g., a child who is not engaged even by video games.
Unfortunately, the term “inattention” does not distinguish between these scenarios, and the
current DSM criteria are not helpful in this regard. It will be important that we create better
evaluation scales in the future to discern PFC vs. posterior cortical weakness, as the optimal
medications for treating PFC deficits may not be ideal for treating posterior cortical problems.

Inhibition of Inappropriate Behaviors
The PFC is also essential for the regulation of behavior, for planning future actions, and for
the inhibition of inappropriate responses. For example, lesions to the PFC in monkeys induce
locomotor hyperactivity and impulsive responding, similar to what is observed in children with
ADHD.37–39 The PFC can guide behavioral output through its massive projections to the motor
and premotor cortices, to basal ganglia structures such as the caudate and subthalamic nucleus,
and to the cerebellum by way of the pons (Figure 2).40, 41 Thus, lesions in areas such as the
caudate or cerebellum can sometimes mimic lesions in the PFC, as they are part of a circuit
needed to guide behavioral response. In humans, the right inferior PFC is specialized for
behavioral inhibition.42 Functional imaging studies have shown that the right inferior PFC is
active when subjects successfully inhibit or stop movements2, 42, 43 Conversely, lesions or
weakness to this area impairs the ability to inhibit inappropriate responses.44 A recent
study45 showed that manipulations that weaken the right inferior PFC in normal subjects
impaired the ability to stop an ongoing motor response (this study used a technology called
transmagnetic stimulation, where magnetic pulses are directed at the brain to alter the electrical
activity of the cortex beneath the skull). As described below, imaging studies have often shown
that the right inferior PFC is underactive in patients with ADHD.46

Regulation of Emotion
Whereas the dorsal and lateral portions of the PFC regulate attention and behavior, the ventral
and medial portions of the PFC regulate emotion.2, 47 The ventral surface of the PFC is often
referred to as the orbital cortex, as it sits just above the orbits of the eyes. The ventromedial
PFC monitors and inhibits emotions and emotional habits through extensive projections to the
amygdala, hypothalamus, and nucleus accumbens, as well as to brainstem nuclei mediating
the stress response.48–51 Weakness in ventromedial PFC function (especially in the right
hemisphere) leads to emotional dysregulation, including disinhibited aggressive impulses.
52–54 Symptoms of aggression and oppositionality (e.g., conduct disorder) are often comorbid
with ADHD, particularly in boys.

Neuronal Networks Representing Goals and Rules
The PFC regulates attention, actions, and emotion through networks of PFC neurons. These
networks consist of pyramidal cells that use glutamate as their neurotransmitter (schematically
illustrated in Figure 3) and are able to excite each other to maintain firing even in the absence
of environmental stimulation.55 These networks are able to “keep in mind” information to help
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guide attention and behavior in a thoughtful manner. For example, they can keep in mind
information about where you just left a book you were reading or your reading glasses (e.g.,
“the book is 90° away from the couch”, as illustrated by the network of 90° cells in Figure 3).
Higher-order networks appear to be able to represent goals and plans for the future (e.g., “Sit
in your seat!”, “Do your homework now so you can play tonight”). The neurons in these
networks interact with other pyramidal cells through synapses on dendritic spines.55 These
spines contain NE alpha-2A receptors56 or DA D1 receptors,57 which dynamically alter the
strength of incoming network connections and are essential to PFC function.

CATECHOLAMINE MODULATION OF PREFRONTAL CORTEX
Optimal Catecholamine Levels Are Needed for Proper Function

NE and DA are important components of the arousal systems that arise from the brainstem and
project across the entire cortical mantle, including the PFC.58–60 The PFC requires an optimal
level of NE and DA for proper function: either too little (as when we are drowsy or fatigued)
or too much (as when we are stressed) markedly impairs PFC regulation of behavior and
thought.10 This is often called the inverted U dose response, as illustrated in Figure 4. Indeed,
NE and DA are so critical to PFC function that depleting them is as detrimental as removing
the cortex itself.61 As described below, genetic and imaging studies suggest that many patients
with ADHD have inadequate transmission of NE or DA, or both. Treatments for ADHD all
enhance NE or DA function, or both. Thus, understanding catecholamine actions in the PFC
is essential to our understanding of ADHD. The receptor and intracellular mechanisms by
which NE and DA influence PFC networks have now been characterized and are summarized
here. In brief, NE stimulation of alpha-2A receptors enhances PFC function by strengthening
appropriate network connections (increasing “signals”), and DA stimulation of D1 receptors
exerts its beneficial effects by weakening inappropriate connections (decreasing “noise”).10

Role of Norepinephrine
The beneficial effects of moderate doses of NE occur at postsynaptic alpha-2A receptors on
PFC neurons.56, 62, 63 Research on alpha-2 actions conducted in the 1970s focused on
presynaptic alpha-2 receptors on NE cells and terminals that serve as negative feedback to
reduce NE cell firing and NE release.64 However, it is now known that the majority of alpha-2
receptors in the brain are actually postsynaptic to NE cells,65 situated, for example, on the
dendritic spines of PFC pyramidal cells.56 There are 3 subtypes of alpha-2 receptors: the A,
B, and C subtypes,66 and it is the A subtype that is most important to NE’s beneficial actions
in the PFC.67

NE alpha-2A receptor stimulation improves PFC regulation of attention, behavior, and emotion
by strengthening network connections between neurons with shared inputs.56 This is illustrated
in Figure 3, which shows that stimulation of alpha-2A receptors on the spines of a 90° neuron
increases the strength of inputs from other neurons that respond to 90°. Thus, alpha-2A receptor
stimulation increases “signals” within PFC networks. Alpha-2A receptor stimulation
strengthens network connections by closing “leaky” ion channels near the synapses on dendritic
spines. These hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels pass
both sodium and potassium when they are opened by cyclic adenosine monophosphate
(cAMP), thus shunting nearby inputs. Stimulation of alpha-2A receptors near the HCN
channels stops the production of cAMP, closing the channels and increasing the strength of
nearby synaptic inputs.56

Stimulation of alpha-2A receptors is essential to PFC function, and blockade of these receptors
with yohimbine induces a profile similar to ADHD. In monkeys, infusion of yohimbine directly
into the PFC increases locomotor hyperactivity68 and impulsivity,69 similar to lesions of the
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same area (Figure 2). Infusion of yohimbine in to prefrontal cortex also weakens working
regulation of memory and attention.70 Conversely, stimulation of alpha-2A receptors with
guanfacine lessens distractibility and strengthens behavioral regulation.56, 67, 71–75 Thus,
conditions that lead to inadequate NE stimulation of alpha-2A receptors (including genetic
insults in ADHD, as described below) lead to marked PFC dysfunction.

In contrast to the essential effects of moderate levels of NE, high levels of NE, such as those
occurring during stress or excessive stimulant doses, impair PFC function.76 These detrimental
actions occur through engagement of alpha-1 receptors (and possibly beta-1 receptors) that
have lower affinity for NE.77–79 Stimulation of alpha-1 receptors impairs PFC function by
engaging the phosphotidyl inositol intracellular signaling pathway,80 the pathway that is
altered in bipolar disorder.81, 82 Overactivation of this pathway suppresses PFC cell firing and
markedly impairs PFC function.80

Role of Dopamine
As with NE, DA is essential to PFC function.83 DA acts at the D1 family of receptors (D1 and
D5) and the D2 family of receptors (D2, D3, D4). Studies of DA actions at the D2 family are
just emerging. D2 receptors appear to modulate response-related firing of PFC neurons,84 and
D4 receptors are concentrated on gamma aminobutyric acid (GABA)-ergic interneurons.85
D4 receptor stimulation appears to suppress these inhibitory GABAergic interneurons and thus
allow pyramidal neurons to fire.86 Genetic weakness in the D4 receptor (e.g., the 7-repeat that
is more common in ADHD) should lead to excessive GABAergic inhibition and inadequate
activity of PFC pyramidal cells. It is important to note that the D4 receptor can be stimulated
by both NE and DA, and that NE has higher affinity for D4 receptors than for adrenoceptors.
87 Thus, medications that increase NE availability likely influence D4 receptor transmission.
However, relatively little research has been done on D4 receptor actions in PFC, and they likely
have more complex actions than described here. Instead, most research has focused on the D1
family of receptors, as these are most abundant in the PFC 88. Currently, no drugs distinguish
D1 from D5 receptors; thus, it should be understood that reference to D1 in this review could
apply to actions at either of these receptors.

Moderate levels of DA D1 receptor stimulation improve PFC functions by decreasing “noise”.
89 D1 receptors appear to be on a different set of spines than alpha-2A receptors; the D1
receptors appear to gate incoming inputs, screening out those that are irrelevant to the present
task demands.10 This is schematically illustrated in Figure 3. D1 receptor stimulation prevents
inputs from the 270° neurons from entering the 90° cell. D1 receptors weaken irrelevant inputs
to the neuron by increasing the production of cAMP, opening HCN channels near the synapse
and shunting the incoming information. Thus, DA and NE have complementary beneficial
actions.

However, excessive D1 receptor stimulation (such as occurs during stress) impairs PFC
function by weakening too many network connections. Under these conditions, network
activity collapses, and responding becomes inflexible.89 This may explain the problems with
mental flexibility when children take excessive doses of stimulant medication.

ALTERED PREFRONTAL AND CATECHOLAMINE FUNCTION IN ADHD
ADHD and Deficits in PFC Function

Patients with ADHD have symptoms similar to those caused by lesions to the right PFC.44,
90–92 Imaging studies have shown reduced size and reduced functional activity of the right
PFC in patients with ADHD.46, 93–97 Recent studies have also reported more disorganized
white matter tracks emanating from the PFC in patients with ADHD, consistent with weaker
prefrontal connectivity.98, 99 Other brain regions connected to the PFC, e.g., the caudate and
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cerebellum, have also been reported to be smaller in some studies of children with ADHD.
100 There is also evidence of slower prefrontal maturation in some patients with ADHD.101

However, for many patients, ADHD is a lifelong disorder, as supported by results from imaging
studies showing evidence of weakened PFC function and reduced right PFC volume in adults
with ADHD symptoms.102, 103 Supporting the notion of ADHD as a highly heritable disorder
are imaging studies showing disruptions in prefrontal white matter tracts in both parents and
their children when both have ADHD.98

Genetic Changes in Catecholamine Transmission
As is typical in mental illness, multiple genes contribute a small risk to ADHD symptomology.
104 Many studies report alterations in the genes encoding for molecules involved in
catecholamine signaling, e.g., the DA D1 and D5 receptors,105–108 the DA and NE transporters,
105, 108–110 the D4 receptor,106, 107, 111 the alpha-2A receptor,112–114 and dopamine beta
hydroxylase (the enzyme needed for the synthesis of NE).105, 115, 116 There are also
associations with the catabolic enzyme, monoamine oxidase, and some serotonergic genes.
104 Recent studies have begun to relate genotype to symptomology. For example, genetic
variation in the gene encoding for dopamine beta hydroxylase is related to executive function
and the ability to sustain attention.117, 118 Thus, patients with two copies of the Taq I
polymorphism in ADHD have poorer sustained attention.117 These studies suggest that weaker
NE production may impair the PFC circuits mediating the regulation of attention and behavior.

Imaging Studies Show Changes in Catecholamine Transmission
Neuroreceptor imaging also supports weakened catecholamine transmission in ADHD. These
studies have all been done in adults with ADHD, given the necessity of using radioactive tracers
in positron emission tomography or single photon emission computed tomography. The vast
majority of this work has focused on DA mechanisms in the striatum, as there are currently no
good tracers to image NE or DA levels in the cortex. There have been mixed results with studies
of the DA transporter, with many studies showing increased levels in the striatum,119–121 but
other studies found no effect122 or reported decreases,123 possibly reflecting genetic
heterogeneity in the DA transporter gene. Recent imaging studies have assessed DA release in
the striatum and found evidence of decreased DA release in adult patients with ADHD.124 It
is likely that this reflects global reductions in DA release throughout the brain, as earlier studies
have suggested reduced catecholamine levels in the PFC as well.125 Reduced DA in the
striatum is associated with slowed motor activity, as in Parkinsonism,126 and reduced DA in
the PFC produces locomotor hyperactivity in animals.127 Such findings suggest that it is the
loss of catecholamines in the PFC that is most important for ADHD symptoms.

ADHD TREATMENTS AND THE NORMALIZATION OF CATECHOLAMINE
TRANSMISSION

Therapeutic doses of either stimulant or nonstimulant medications potentiate catecholamine
transmission in the PFC. Thus, these agents would normalize catecholamine transmission in
patients with genetic abnormalities in these pathways.

Stimulants
The stimulants amphetamine (Adderall® [amphetamine], Vyvanse™ [lisdexamphetamine
dimesylate], Shire US Inc., Wayne, Penn.) and methylphenidate (Ritalin®[methylphenidate],
Novartis Pharmaceuticals, East Hanover, NJ; Concerta® [methylphenidate extended release],
McNeil Pediatrics, Ft. Washington, Penn.) block both catecholamine transporters, the
transporter for DA and that for NE. Because there are low levels of DA transporters in the PFC,
NE transporters thus clear both NE and DA in this brain region.128 Previous biochemical
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studies of amphetamine and methylphenidate in rodents used excessively high doses that
increased locomotor activity, impaired PFC function, and had sensitizing effects on pathways
involved with, for example, drug abuse.129 Recently, more appropriate, lower doses have been
identified which produce blood levels in rats similar to those observed in patients with ADHD
who are treated with stimulant medication.130, 131 These therapeutic doses of stimulants
reduce locomotor activity and improve PFC cognitive function in rats just as they do in humans.
130–132 Biochemical analyses of these more relevant stimulant doses revealed that they
substantially increase both DA and NE release in the PFC but have little effect on catecholamine
levels in subcortical areas.131 These data are consistent with those showing that therapeutic
doses of stimulants incur little abuse potential when taken properly. In the rat PFC, therapeutic
doses of stimulants increase NE release more than they increase DA release,131 thus, it is
inaccurate to refer to these agents as simply dopaminergic. Consistent with dual actions on
both NE and DA, the cognitive-enhancing effects of these agents in rodents are blocked by
either NE alpha-2 or DA D1 receptor antagonists.132 However, higher doses of stimulants
impair function of the PFC and induce an inflexible pattern of responding similar to that seen
following uncontrollable stress.131, 132 These findings with high doses of methylphenidate are
likely relevant to the cognitive inflexibility that can occur with excessive doses of stimulant
medication.133

Therapeutic doses of stimulants improve PFC functions and enhance the efficiency of PFC
activity in normal, young adult subjects.134, 135 A similar, but much more pronounced profile
is observed in subjects with ADHD.136–139 Thus, stimulant actions in ADHD are not
paradoxical, but simply more apparent.134, 135

Nonstimulants
Atomoxetine—Atomoxetine (Strattera® [atomoxetine], Eli Lilly, Indianapolis, Ind.)
selectively blocks the NE transporter. Administration of atomoxetine increases both NE and
DA in the rat PFC,140 indicating the importance of the NE transporter for clearing DA as well
as NE in the PFC. Preliminary data indicate that moderate doses of atomoxetine, as with
methylphenidate, improve PFC functions through both NE alpha-2 and DA D1 actions, and
higher doses can impair PFC function in some animals (Arnsten, unpublished). Recent studies
in humans have shown that therapeutic doses of atomoxetine can strengthen response inhibition
in normal controls141 as well as in patients with ADHD.142 The therapeutic effects of
atomoxetine are consistent with results of previous studies showing that desipramine, a tricyclic
antidepressant with high selectivity for the NE transporter, is helpful in treating ADHD-related
symptoms, although it has cardiovascular side effects.143, 144

Guanfacine—Guanfacine acts directly at postsynaptic, alpha-2A receptors in the PFC, where
it mimics the beneficial effects of NE and strengthens PFC regulation of attention and behavior.
56 Animal studies have shown that guanfacine improves a wide range of PFC functions.71,
72, 74, 145–147 As described above, guanfacine improves PFC functions by inhibiting cAMP-
HCN channel signaling in dendritic spines, thus strengthening synaptic inputs onto pyramidal
neurons and strengthening PFC network connectivity.56 The beneficial effects of guanfacine
on PFC function are independent of the drug’s sedating actions,71, 90 which likely occur at all
3 alpha-2 receptor subtypes (the A, B, and C subtypes). For example, the thalamus is rich in
alpha-2B receptors,66 and this structure is key for regulating state of arousal,148 The sedating
actions of alpha-2 agonists also likely occur at presynaptic alpha-2A receptors on NE cell
bodies and terminals; guanfacine has relatively lower affinity for these presynaptic receptors.
149 Guanfacine is currently used in both children and adults with ADHD. It has been shown
to improve ratings on both the Inattention and Hyperactivity/Impulsivity scales, consistent with
its widespread beneficial effects on many PFC functions.150–152 It is especially helpful in
patients who cannot take stimulant medications because of tics, aggressive impulses, or drug
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abuse liability.150 As with the stimulants, guanfacine also can improve normal subjects,153,
154 but it is far more effective in individuals with impaired prefrontal abilities and inadequate
catecholamine function.71, 90 In view of the fact that it works directly at the receptor to mimic
NE, it can be used in subjects having marked catecholamine depletion, as an intact
catecholamine system is not required for its actions.

Clonidine—Clonidine has a very rapid onset of action that can be helpful in treating emergent
situations. However, it has significant sedative and hypotensive actions that limit its clinical
utility.155, 156 Clonidine is less selective than guanfacine for the alpha-2A receptor. It has high
affinity for the alpha-2B and alpha-2C subtypes as well as the alpha-2A receptor,157, 158 and
it also has high affinity for imidazoline I1 receptors.159 Clonidine has potent actions at
presynaptic alpha-2A receptors, being 10 times more effective than guanfacine at these sites.
149 This nonselective profile and potent presynaptic actions likely contribute to clonidine’s
potent sedating effects. In addition, clonidine’s actions at imidazoline I1 receptors in the
brainstem are thought to contribute to its marked hypotensive actions.159, 160

In summary, successful pharmacological treatments for ADHD mimic or enhance the
beneficial effects of catecholamines on PFC function.161

DISCUSSION
Over the last 20 years, our understanding of higher cortical function has evolved so that we
can now begin to explain the etiology and treatment of ADHD. We have learned that the PFC
plays a crucial role in regulating attention, behavior, and emotion. Weaknesses in PFC structure
and function, including alterations in catecholamine transmission, likely contribute to the
etiology of ADHD symptoms. Effective treatments for ADHD optimize catecholamine
signaling in the PFC and normalize PFC regulation of attention and behavior, thus reducing
ADHD symptoms.

Abbreviations

ADD Attention deficit disorder

ADHD Attention deficit/hyperactivity disorder

cAMP cyclic Adenosine MonoPhosphate

DA Dopamine

GABA Gamma aminobutyric acid

HCN Hyperpolarization-activated Cyclic Nucleotide-gated

NE Norepinephrine

PFC Prefrontal cortex
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Figure 1.
The PFC regulates “top-down” attention, allocating and directing attentional resources based
on stimulus relevance. Top-down attention includes stimulus gating, reducing distractibility
and sustaining attention on relevant information. These operations are thought to arise from
PFC projections back to the sensory cortices. In contrast, the posterior sensory cortices mediate
“bottom-up” attention, processing sensory characteristics based on stimulus salience. Most
patients with ADHD have difficulties with top-down attention regulation.
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Figure 2.
The PFC regulates behavior and inhibits inappropriate impulses. In humans, the right inferior
PFC is specialized for behavioral inhibition. Projections from this area to the premotor and
motor cortices, the basal ganglia (striatum and subthalamic nucleus), and the cerebellum (by
way of the pontine nuclei) are likely involved in the inhibition of inappropriate movements
and impulses. In monkeys, blockade of alpha-2A receptors in the PFC induces a pattern of
impulsive responding and locomotor hyperactivity.68,69
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Figure 3.
The PFC guides attention, behavior, and emotion through networks of pyramidal cells. These
pyramidal cells engage in recurrent excitation to represent stimuli (e.g., the spatial positions
90° or 270°, as shown here) or to represent goals or rules. The networks interconnect through
synapses on dendritic spines that contain NE alpha-2A receptors or DA D1 receptors. Network
connectivity is powerfully modulated by the catecholamines: NE alpha-2A receptor
stimulation strengthens network inputs from cells with shared network properties by reducing
the production of cAMP, thus closing HCN channels and enhancing synaptic inputs to the spine
(increasing “signals”). Conversely, optimal levels of DA D1 receptor stimulation weaken
irrelevant inputs to the neuron by increasing the production of cAMP, opening HCN channels
near the synapse, and shunting incoming information (decreasing “noise”). Thus, for the
network representing 90°, alpha-2A receptor stimulation increases the strength of connections
from other 90° neurons, and D1 receptor stimulation weakens the connections from neurons
with dissimilar characteristics (e.g., 270°). Adapted with permission from Arnsten AF
2007.10
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Figure 4.
The regulatory functions of the PFC are highly dependent on its neurochemical state. The
catecholamines NE and DA are released based on our state of arousal. Either too little or too
much catecholamine release is detrimental to PFC function: there is an inverted U dose-
response relationship. Inadequate catecholamine release is associated with fatigue and ADHD,
and excessive catecholamine release occurs during uncontrollable stress or very high doses of
stimulant medications. NE has its highest affinity for alpha-2A receptors and has lower affinity
for alpha-1 and beta-1 receptors. Thus, different receptors are engaged based on the amount
of NE released in the PFC. Therapeutic doses of stimulants, atomoxetine, or guanfacine likely
normalize catecholamine transmission in patients with inadequate DA or NE levels, or both,
thus bringing PFC function to more optimal levels at the top of the inverted U.
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