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IN PHYSIOLOGY, LONG-RANGE POWER-LAW CORRE-
LATIONS HAVE BEEN STUDIED FOR MANY YEARS, 
E.G., IN HEARTBEAT DYNAMICS,1,2 RESPIRATION 
dynamics,3-5 brain waves,6-8 and gait time series.9-11 Such corre-
lations characterize a persistent variation of the given signal on 
many time scales. For example, the probability of persistently 
larger (or smaller) values over extended periods of time is char-
acteristically increased. Long beat-to-beat or breath-to-breath 
time intervals are more likely to be followed by longer intervals 
than by shorter ones, and vice versa.

This correlation structure of the data can be classified by 
fractal or multifractal scaling analysis.12-15 Calculated scaling 
exponents are affected by pathologic conditions, sympathova-
gal balance, cardiopulmonary regulation, and circadian rhythm, 
paving the way towards an identification and discrimination of 
physiologic states, such as exercise versus rest,16,17 wake versus 
sleep,18 across circadian phases19 or different sleep stages,13,20,21 
and for the development of diagnostic markers for diseases or 
physiologic risks, such as cardiac risk.22 In particular, short-term 

scaling exponents were shown to be more powerful predictors 
of mortality than standard measures of heart-rate variability.23

Another parameter characterizing short-term variations of 
heartbeat intervals is the recently introduced deceleration ca-
pacity (DC) index. It is calculated by applying the phase recti-
fied signal averaging (PRSA) technique24 to heartbeat interval 
time series, and describes how quickly the heart rate deceler-
ates. DC has been shown to be a powerful risk predictor of mor-
tality in patients surviving an initial myocardial infarction,25 as 
it is characteristically diminished in high-risk patients. 

There have been very few studies of aging effects on these 
characteristic measures,26,3,27,28 and there is a recent study com-
paring a group of young with a group of elderly subjects during 
different sleep stages.29 However, no study has systematically 
examined how these scaling measures change across a wide 
range of age groups during different sleep stages. Heart rate 
variability, and in particular parasympathetic autonomic regula-
tion, significantly decrease with aging30-32 and with pathology. 
In addition, the deteriorating impact of aging on sleep quality, 
sleep quantity, sleep efficiency, and sleep structure is generally 
accepted. For reviews on sleep-related consequences of normal 
aging see Bliwise33 and Espiritu34 and references therein. Aging 
manifests itself in many ways, including a declined ability to 
initiate and maintain sleep, shorter total time of sleep, and de-
creased deep sleep (slow wave sleep) and REM sleep. It is ac-
companied by increased light sleep (stages 1 and 2), as well as a 
larger number and frequency of arousals, and an elevated wake 
duration after sleep onset.35-37 Sleep disorders and diseases have 
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been identified with an increased cardiovascular probability 
of morbidity and mortality in the elderly. It has been reported 
that nocturnal changes in respiratory function occur with age 
and lead to sleep apnea, hypopnea, and respiratory arousals. 
Besides, age-related changes in the thalamocortical regulatory 
mechanisms36 and the neuroendocrine system38 have been re-
ported and associated with the deterioration of health and qual-
ity of sleep. Interestingly, at the age of 50 years cortisol levels 
suddenly rise, accompanied by a worsening of sleep fragmen-
tation and a decline in REM sleep.39 Here, we systematically 
study the effect of aging and sleep stages upon cardiovascular 
oscillations and correlations, as well as respiratory correlations 
in a large cohort and for a wide range of ages. 

METHODS

Subjects and Protocol
This paper studied the data of 180 healthy subjects (85 males 

and 95 females) at ages from 20 to 89 years. Within the SIES-
TA project37,40 196 healthy subjects (94 males and 102 females) 
underwent full-night polysomnography and were monitored 
for 2 subsequent nights, resulting in a total of 392 polysom-
nographic recordings. All subjects gave informed consent, and 
the study was approved by the local ethics committees of all 
sleep laboratories involved. General exclusion criteria were a 
history of drug abuse or habitation (including alcohol), psycho-
active medication or other drugs, e.g., β-blockers, or night-shift 
work. All subjects reported no symptoms of neurological, men-
tal, medical, or cardiovascular disorders. Additional exclusion 
criteria for healthy subjects comprised: (1) significant medical 
disorders, (2) a Mini Mental State Examination (MMSE) score 
< 25,41 (3) a Pittsburgh Sleep Quality Index (PSQI) global score 
> 5,42 (4) a usual bedtime before 22:00 or after 00:00, (5) a Self-
rating Anxiety Scale (SAS) raw score ≥ 33,43 and (6) a Self-rat-
ing Depression Scale (SDS) raw score ≥ 35.44 During the study 
the consumption of coffee, alcohol, and cigarettes was limited 
to each subject’s habitual rate. 

We excluded one 95-year-old female (the only subject above 
90 years of age) and one 69-year-old male whose ECG exhibits 
clear signs of pacemaker interventions. We also removed 37 
single-night recordings due to an apnea-hypopnea-index (AHI) 
≥ 10 per hour and another 5 recordings due to missing or dam-
aged sleep stage annotations. Altogether, this left us with 346 
full-night polysomnographic recordings from 180 disease-free 
subjects (161 from males and 187 from females). Note that only 
one night was used for some subjects. The typical duration of 
the recordings was 7 to 8 hours. Therefore we analyzed approx-
imately 2,500 hours of heartbeat data and the same for respira-
tion. The data sets were binned in 7 age groups (Figure 1). For 
some of the calculations males and females were separated.

Measurements
Full-night polysomnographic data was obtained within the 

EU project SIESTA at 7 sleep laboratories located in 5 Europe-
an countries.37,40 Each recording consisted of an electroenceph-
alogram (EEG) using at least 6 leads, a 2-lead electrooculogram 
(EOG), a 2-lead electromyogram (EMG, chin and leg), orona-
sal airflow, respiratory body movements (belts around chest 
and abdomen), snoring (microphone), oxygen saturation, and 

a single-channel electrocardiogram (ECG, modified V1 lead 
as typical for polysomnographic recordings). Sleep stages 
were identified according to the sleep scoring system of Re-
chtschaffen and Kales45 by 3 trained technicians (2 independent 
scorers and 1 adjudicator) familiar with polysomnographic data. 
In this study we concentrate on ECG and oronasal airflow data. 
ECG was sampled at 100 Hz, 200 Hz, or 256 Hz; while airflow 
was sampled at 16 Hz, 20 Hz, 100 Hz, or 200 Hz, depending 
on the laboratory and the equipment. The detailed experimental 
setup has been reported elsewhere.40

Data Preparation
In order to study correlations and oscillations within respira-

tory data and heartbeat data for different sleep stages, as well 
as night-time wake, we split all recordings into segments cor-
responding to wake, light sleep (stage 1), light sleep (stage 2), 
deep sleep (stages 3 and 4 joined),46 and REM sleep. Since sleep 
stage determination during transitions is sometimes complicat-
ed and possibly unreliable, we removed the first and last 30 s 
from each segment. We omitted the results of light sleep stage 
1 in this paper because of insufficient statistics (see Figure 1).

Heartbeat time positions (R-peaks) were extracted from the 
ECG data using the semi-automatic peak detector Raschlab 
developed by the cardiology group of Klinikum Rechts der 
Isar, Munich Germany.47 A beat classification (normal beat, 
ventricular beat, artifact) was assigned to each R‑peak by the 
detector. Then we calculated the series of RR time intervals be-
tween each pair of consecutive heartbeats. An RR interval was 
excluded from our calculations if (1) the beat at the beginning 
or at the end of the interval was not normal, (2) the calculated 
interval was shorter than 330 ms or longer than 2000 ms, or 
(3) the interval was more than 30% shorter or more than 60% 
longer than the preceding interval. The purpose of the last filter 
was to eliminate extrasystoles and ectopic beats unnoticed by 
the peak detector. We discarded all sleep stage segments that 
contained less than 100 normal intervals or had more than 5% 
of the intervals excluded.

Recorded oronasal airflow data were processed by determin-
ing the times and values of the signals’ maxima and minima, 
representing expiration and inspiration, respectively. Since 
noise in the data mainly consists of spikes (outliers), a simple 
threshold filter is sufficient. All data points exceeding a thresh-
old of 95% of the maximum value or dropping below 95% of 
the (negative) minimum value within a moving time window 
are set to the corresponding threshold values. Data was resam-
pled at 4 Hz before identifying maximum and minimum values. 
As well, we employed a classification scheme assigning to each 
event a measure of reliability depending on (1) the length of 
the identified breathing cycle, (2) the difference between cutoff 
threshold and extremal point, and (3) a comparison with aver-
ages over 3 preceding and 3 following breathing cycles.

All methods were applied separately for each subject and 
each night, taking into account all reliable segments for the 
same sleep stage. Preceding detrended fluctuation analysis 
(DFA, see below) all excluded intervals were cut and the gaps 
were joined. This procedure has been shown to not affect the 
DFA results, even if as much as 50% of the data is removed.48 
For phase-rectified signal averaging (PRSA, see below), the ex-
cluded data points were skipped in the averaging step because 
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a removal of data points 
could disturb the timing.

Detrended Fluctuation 
Analysis (DFA)

DFA, first introduced 
by Peng et al. for study-
ing DNA sequences, has 
been intensely applied 
to studies of correlations 
in noisy, non-stationary 
time series.49 Bunde et 
al. improved the method 
describing higher-order 
detrending.13 It has been 
validated on surrogate 
(control) time series with 
additional correlations 
and trends.50,51,48

The method quantifies 
fluctuations on different 
time scales, s, i.e., differ-
ent numbers of heartbeat 
or respiratory intervals. 
For each s the integrated 
(cumulated) signal, of 
length N, is split into non-
overlapping pieces (seg-
ments) of length s. For 
each segment an n-th or-
der polynomial fit is sub-
tracted, and the remaining 
mean-square fluctuations 
are averaged. Repeating 
the procedure for many 
scales s yields the square 
of the fluctuation func-
tion, which scales according to a power-law with exponent α, 
F2

DFAn ~ s2α. The exponents, α, can easily be extracted by linear 
fits of log(FDFAn(s)) versus log(s). Uncorrelated fluctuations lead 
to α = 1/2, while α > 1/2 indicates positive temporal correla-
tions, and α < 1/2 anti-correlations.

Fluctuation functions obtained from heartbeat data usually 
exhibit a crossover between 2 scaling regimes. Thus, we de-
fine 2 slopes, αRR,1 for small scales (6 ≤ s ≤ 16 heartbeats) and 
αRR,2 for larger scales (50 ≤ s ≤ 200 heartbeats). Since there is 
no clear crossover, respiration can be characterized by just one 
fluctuation exponent αRES. Under the assumption of an average 
breath cycle spanning 4 heartbeats52 we have defined an associ-
ated fitting range of 12 ≤ s ≤ 50 breaths to allow comparison 
with αRR,2.

Short-term correlations quantified by αRR,1 are related to the 
HF-band as can be derived in a simple approximation (see foot-
note following acknowledgments). Scaling exponents αRR,2 and 
αRES, on the other hand, describe long-range correlations asso-
ciated with the VLF band. Thus they reflect cerebral dynam-
ics rather than autonomic control. Hence, DFA results for large 
scales elucidate additional features of cardiopulmonary control 
and coupling.

Phase-Rectified Signal Averaging (PRSA) Method
PRSA is a powerful tool for extracting and displaying quasi-

periodic oscillations in noisy, non-stationary signals.24 It allows 
for the identification of complex control leading to nearly peri-
odic oscillations despite phase resetting and noise. Focusing on 
particular time scales, it is complementary to the DFA procedure, 
which analyzes the scaling behavior by comparing variations on 
different time scales and characterizing the underlying noise. In 
addition, PRSA can be employed to study causal relationships 
between events, such as deceleration or acceleration of heartbeat.

The algorithm is rather simple. In the first step, anchor points 
are selected in the time series. In the standard form of the al-
gorithm, anchors are defined for moderate increases in heart 
beat intervals, i.e., when the current heartbeat interval is longer 
than the preceding one, x(t) > x(t − 1). Here, we neglect very 
large changes (> 10%) in consecutive heartbeat intervals, which 
are most likely associated with artifacts in the data. We note 
that in the original version of the PRSA method25 the limit for 
large changes was set to > 5% because this earlier study was 
designed to analyze data from post-infarction patients. Since 
healthy subjects have a large heart rate variability, we found 
that increases in consecutive heartbeat intervals between 5% 

Figure 1—(a) Age and gender characteristics of the considered study cohort of disease-free humans (males blue, females 
orange). The total numbers of data sets (nights) are shown for each age group. (b) Proportion of sleep stages on total time 
in bed for all subjects sorted by age (from left to right). The colors indicate the states, from bottom to top: wake state - dark 
blue, light sleep stage 1 - yellow, light sleep stage 2 - green, deep sleep stages 3 and 4 - red, and REM sleep - light blue. 
(c) Sleep stage distribution averaged over 10 years for all subjects (large bars in the center), and separately for females 
(left) and males (right); colors and order as in (b).
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ertheless, when considering group averages, total wake and to-
tal light sleep percentage obviously increase with age, while 
percentages of deep sleep and REM sleep decrease as shown 
in Figure 1c. Young females seem to have less wake and light 
sleep S1, but more REM sleep, when compared with males. For 
elderly (> 60 years) the behavior appears to be the opposite. 
While young males and females exhibit almost the same per-
centage of deep sleep, it decreases much more rapidly in males 
upon disease-free aging.

Correlation Properties of Heartbeat Intervals
Figure 2 shows the heartbeat fluctuation functions, FDFA2 (s), 

of 3 representative subjects from different age groups: (1) 
young (20‑39 years, lowest curves in each panel), (2) interme-
diate age (40‑69 years, center), and (3) elderly (70‑89 years, 
top) in a double logarithmic plot. The fitting regimes for αRR,1 
(characterizing short-term correlations) and αRR,2 (character-
izing long-term correlations) are indicated by gray bars. The 
slopes of the straight solid lines are identical with the fitted val-
ues of αRR,1 and αRR,2.

There are two important observations. First, one clearly sees 
the presence of long-range correlations (αRR,2 ≈ 1 >> 1/2) dur-
ing wakefulness and REM sleep, while long-term correlations 
are weak or absent during light sleep and deep sleep (αRR,2 ≈ 
1/2). This finding is consistent with earlier results.13,21 Secondly, 
age differences in the scaling behavior are apparent, especially 
when comparing αRR,2 for young and elderly subjects during 
wakefulness and REM sleep, and when comparing αRR,1 for 
young and intermediately aged, as well as intermediately aged 
and elderly during all sleep stages.

To study these age dependences systematically we calculated 
DFA2 fluctuation functions for all data sets and fitted αRR,1 and 
αRR,2 in the scaling regimes shaded in Figure 2. To monitor the 
quality of the fits, we also calculated the coefficient of determi-
nation r2 and disregarded fits with r2 < 0.98, since the fluctua-
tion functions are not sufficiently close to a power-law in these 
cases. Note that “healthy” subjects with unrecognized sleep ap-
nea often exhibit deviations from the power scaling law, as the 
duration of the apneas is a characteristic time scale. This leads 
to a crossover in the DFA scaling function at this time scale.28 
Most data for such subjects are automatically disregarded by 
our r2 < 0.98 criterion.

Figure 3 shows our main findings. Mean values and standard 
error of the means for αRR,1, αRR,2, and αRES were calculated from 
the data of all subjects separated into 7 age groups spanning 
time periods of 10 years each. Results for men and women are 
shown separately. We have also compared the results for first 
and second nights (not shown) and found no systematic differ-
ences.

The corresponding distributions of individual scaling expo-
nents for all data sets are shown in Figure 4, combining all age 
groups. The dark gray histograms are associated with the data 
included in Figure 3, while the additional light gray histogram 
bars include the results of non-reliable fits. One can see that the 
distributions are very close to Gaussian so that a Student t-test 
can be applied for checking the significance of differences.

Table 1 reports the numerical means and standard deviations 
(instead of standard errors of the means, as in Figure 3) for the 3 
α parameters and the 4 states in young, intermediately aged, and 

and 10% are rather common and normal. Thus, in this study 
we used a > 10% cutoff. In addition, we carefully removed all 
ventricular beats prior to the PRSA analysis.

The anchors are related to deceleration events, and thus, 
parasympathetic activation. Surroundings of length 2L are then 
defined around each anchor point, including the data from L 
previous points and L − 1 future points. Finally, all windows 
are aligned at the anchor positions and the PRSA curve xPRSA( j) 
is obtained by calculating the arithmetic average over all win-
dows separately for each point j, j = − L,…,0,…, L −1. 

Taking 4 points from the center of the PRSA curve, which is 
equivalent to choosing L = 2, is sufficient to define the param-
eter deceleration capacity 

DC = (1/4)[xPRSA(0) + xPRSA(1) – xPRSA(–1) – xPRSA(–2)]  

DC has been shown to be a superior predictor of mortality in 
post-infarction patients, compared with the current gold stan-
dard, left ventricular ejection fraction (LVEF).25

Artifacts or outliers in the data can easily be handled by dis-
regarding them in the selection of anchor points and in the av-
eraging procedure. Note that a different number of data points 
might contribute to the PRSA averages at different locations.

Data Analysis and Statistics
For each data recording, and for each sleep stage, we calcu-

lated the values of αRR,1, αRR,2, αRES, and DC, taking into account 
all reliable segments. In addition, we determined, for each α, 
the sum of squared residuals χ2 for the linear fit in the double 
logarithmic plots, as well as the sum of squared deviations from 
the mean (SOS = Σ(log FDFA2 (s) – log FDFA2 (s))2). The coeffi-
cient of determination, r2 = 1 − χ2 / SOS, indicates the reliability 
of the fits; r2 = 1 for a perfect fit and r2 << 1 for significant 
deviations from a power-law behavior in the corresponding fit-
ting regime. The α values were considered to be reliable if (1) 
FDFA2(s) could be calculated for the whole regime and (2) r2 ≥ 
0.98. For deceleration capacity (DC) we only considered values 
in the range 0 ≤ DC ≤ 40 ms to be reliable. Within each age 
group we obtained statistical properties (mean, standard error, 
median, quartiles Q25 and Q75) based on reliable α and DC 
values only. However, we also present the distributions of the α 
values for unreliable fits for comparison.

RESULTS

Distribution of Sleep Stages
Figure 1a reports the study cohort with age and gender dis-

tribution. Figure  1b shows the share of the total time in bed 
for all states, separately for each record; and it is horizontally 
ordered by increasing age of the subjects. Each individual’s age 
is indicated by the black curve, referring to the right axis. For 
Figure 1c, these data have been binned in age groups amounting 
to 10 years each. Separate results for males and females are also 
shown. Since effects of aging upon quantitative sleep param-
eters based on the SIESTA database (but without considering 
gender differences) were studied and reported earlier,37 we will 
not discuss this in detail here.

However, in Figure 1b, it can be seen that inter-individual 
sleep notedly fluctuates, even within the same age class. Nev-
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Figure 2—Examples of DFA2 heartbeat fluctuation functions for different sleep stages and representative subjects from three age groups, from bottom to 
top: young - dark gray diamonds, intermediate age - light gray circles, and elderly - gray triangles up. Gray shaded bars indicate the fitting regimes for αRR,1 
(6 ≤ s ≤ 16 heartbeats) and αRR,2 (50 ≤ s ≤ 200 heartbeats). The slopes of the solid black lines are identical with these fitted exponents. For comparison 
gray dash-dotted lines indicate slopes of α = 1/2 (uncorrelated behavior) and α = 1 (1 / f noise). Fluctuation functions and fits are vertically shifted for clarity.

Figure 3—Age dependence of (a-d) heartbeat short-term fluctuation exponents αRR,1, (e-h) heartbeat, and (i-l) respiration long-term fluctuation exponents 
αRR,2 and αRES for wakefulness, light sleep S2, deep sleep S3 and S4, and REM sleep. The mean values for all subjects (black diamonds), men (dark gray 
open triangles up), and women (light gray open triangles down) are shown with error bars representing the standard errors of the means. Black solid lines 
indicate linear fits to the means based on all age groups, except for αRR,1, where 2 separate fit regimes (20-59 and 50-89 years) were chosen and for deep 
sleep, where insufficient statistics in elderly did not allow fitting. Note that α values with r2 < 0.98 or incomplete fitting regimes were disregarded. The dotted 
lines mark α = 1/2 (uncorrelated behavior) and α = 1 (1 / f noise).
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reliability. However, in the intermediate age group of 40‑69 
years, the values for females are lower than those for males, at 
a P < 0.03 significance level during wakefulness, deep sleep, 
and REM sleep (see Table 1). These differences might be an 
indication of an earlier decay in αRR,1 for females.

Besides the most interesting age dependence, our analysis 
showed significant differences in αRR,1 values across sleep stag-
es for all age groups (except the 80‑89 year group, where the 
statistics are not sufficient). These differences are comparable 
to the age difference within each sleep stage. Specifically, for 
the 20‑29 year group, we find a significant difference between 
sleep stages, with the lowest αRR,1 values during deep sleep, 
higher values during light sleep and highest values during REM 
and wake (Figures 3a-d, P < 0.01 for deep sleep versus light 
sleep and light sleep versus wake, and P < 0.001 for deep sleep 
versus REM sleep). For the 50- to 59-year-old group, where the 
maximum in αRR,1 occurs, our results show a similar pattern of 
lowest values during deep sleep and higher values during light 
sleep, REM sleep, and wake (Figures 3a-d), with P < 0.01 for 
deep sleep versus light sleep; P < 0.001 for deep sleep versus 
REM sleep; and no significant differences between wake, REM 
sleep, and light sleep. Comparing the 20‑29 year-old group with 
the 50-59 year-old group, we find statistically significant age 
related differences within each sleep stage (deep sleep P < 0.01, 
light sleep P < 0.001, REM sleep P < 0.001) but not wake 
(P > 0.05). These age differences are statistically similar to the 
differences across sleep stages for each of the 2 groups. These 
observations indicate that the effect of sleep regulation on αRR,1 
in heartbeat intervals is comparable to the effect of aging.

For larger time scales αRR,2 ≈ 0.9 > > 1/2 indicates that there 
are long-term correlations in both, wake and REM sleep that 
are almost absent in NREM sleep (light sleep and deep sleep, 
αRR,2 ≈ 0.6). This confirms the scaling behavior observed previ-
ously in a much smaller cohort of young subjects,13,21 as well 
as in a group of elderly subjects,29 suggesting a common de-
pendence of αRR,2 on sleep stages for all age groups. Note that 
data from the 2 oldest groups must be disregarded during deep 
sleep because of insufficient statistics (also indicated by large 
error bars).

Looking at the age dependence of αRR,2, we observe signifi-
cant changes during REM and wake (see Figures 3e, h). During 
REM sleep, αRR,2 increases from αRR,1 = 0.86 for young adults 
(aged 20‑29) up to values αRR,2 = 1.05 in the very elderly (aged 
80‑89). This increase is statistically significant for the young 
and middle age groups, while we find no significant difference 
when comparing intermediate age and elderly subjects (see 
Figure 3h and Table 1). For wakefulness αRR,2 decreases from 
αRR,2 = 1.06 to αRR,2 = 0.83 in the course of normal disease-free 
aging. This decrease is statistically significant both when com-
paring intermediate age and the elderly as well as young and 
elderly subjects, while we found no significant difference when 
comparing the young and the intermediate age groups (see Fig-
ure 3e and Table 1). During light sleep and deep sleep, no sig-
nificant age dependence is observed in αRR,2 (see Figures 3f and 
g and Table 1).

Correlation Properties of Respiration
Regarding respiration we present results for inter-breath in-

tervals obtained from maxima in the oronasal-airflow signal. 

elderly subjects. The significance of the differences between 
these 3 age groups is indicated in the table by different symbols 
that were defined according to different P-values obtained from 
a t-test.

A very interesting age dependence is observed in heartbeat 
correlations on short time scales, i.e., in the exponent αRR,1. We 
find a systematic and significant increase, in the age range from 
20 to 59 years, for each sleep stage, but not during wake (where 
our analysis shows no significant difference between the 20‑29 
year and the 50‑59 year group, t‑test: P > 0.05). This increase 
is almost independent of gender (Figures  3a-d and Table  1). 
Above 60 years of age, a systematic and significant decrease in 
αRR,1 occurs with further aging, except during deep sleep, where 
statistics are insufficient in the elderly groups. Note that the to-
tal time spent in deep sleep is reduced in elderly subjects (Fig-
ure 1), and is usually accompanied by an increased occurrence 
of ectopic beats. In our analysis this results in the rejection of 
whole segments of data during deep sleep when dealing with 
elderly subjects (thus, the average αRR,1 value for the 80‑89 year 
old group during deep sleep as shown in Figure 3c is based on 
only 8 αRR,1 values from 6 subjects). The general picture of a 
maximum in αRR,1 in the age regime of 50‑60 years is, never-
theless, independent of the considered sleep stage (or wake). 
This is the same for both, males and females, indicating a high 

Table 1

Measure αRR,1 αRR,2 αRES

Wake
Young 1.12 ± 0.25† 1.02 ± 0.15†○ 0.69 ± 0.16*
Middle 1.13 ± 0.33○ 0.98 ± 0.15 0.66 ± 0.12
Elderly 0.87 ± 0.35† 0.89 ± 0.14‡ 0.62 ± 0.10

Light sleep S2
Young 0.96 ± 0.26 0.65 ± 0.11 0.54 ± 0.07
Middle 1.12 ± 0.29† 0.62 ± 0.13 0.53 ± 0.08
Elderly 0.95 ± 0.35‡ 0.60 ± 0.14 0.54 ± 0.10

Deep sleep S3 and S4
Young 0.80 ± 0.29 0.59 ± 0.13 0.49 ± 0.09
Middle 0.93 ± 0.29‡○ 0.60 ± 0.15 0.49 ± 0.11○
Elderly 0.84 ± 0.35 0.60 ± 0.15 0.52 ± 0.07

REM sleep
Young 1.11 ± 0.28 0.88 ± 0.13† 0.75 ± 0.11*
Middle 1.23 ± 0.33‡○ 0.95 ± 0.15† 0.74 ± 0.12○
Elderly 1.00 ± 0.36† 1.00 ± 0.13 0.69 ± 0.12

Mean values and standard deviations for fluctuation exponents α during 
wakefulness, light sleep stage S2, deep sleep S3 and S4, and REM sleep 
distinguishing 3 cohort subsets: young (age 20-39), intermediately aged 
(age 40-69), and elderly (age 70-89). The null-hypothesis that values 
for a pair of cohort subsets are drawn from distributions with identical 
mean was checked by a 2-sided heteroscedastic Student t-test. Three 
significance levels are indicated by symbols, P < 0.001 (†), P < 0.01 (‡), 
and P < 0.03 (*). The symbols (†, ‡, *) in the line for young subjects 
refer to the test comparing young and elderly, the symbols in the line for 
intermediately (middle) aged subjects to comparing them with young, and 
the test in the line for elderly refers to comparing elderly with middle aged. 
Additionally, the symbol ○ indicates significant differences (P < 0.03) 
between males and females in the same age group.
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jects during REM sleep, the scaling exponent αRES of respiratory 
dynamics also decreases when compared with nonsmokers (P < 
0.03). The number of smokers among the elderly (n = 4) was 
insufficient to assure meaningful statistics. We did not find ef-
fects of smoking upon the scaling exponent αRR,2, characterizing 
the long-term heartbeat correlations. The observed differences 
related to smoking are smaller when compared with the age-
dependent and sleep-stage dependent differences presented in 
Figure 3 and Table 1.

Regular alcohol intake in a certain period of their life prior 
to the recordings was reported by 31 subjects (out of 180 sub-
jects; no information is available on 2 subjects). Combining all 
age groups, we find that the short-term scaling exponent αRR,1 
of heartbeat dynamics is significantly larger for the subjects 
with regular alcohol intake across all sleep stages – with 19% 
increase during wake (P < 0.001) when compared with sub-
jects without a history of regular alcohol intake; 12% increase 
during REM sleep (P < 0.01), 13% increase during NREM 
sleep (P < 0.01). For the respiration scaling exponent αRES, we 
found a 5% increase for the alcohol group during NREM sleep 
(P < 0.01). We observed no significant changes in the long-term 
scaling exponent αRR,2 of heartbeat dynamics. By considering 
separate age groups, we found a significant increase in αRR,1 dur-
ing REM and in αRES during NREM sleep (both with P < 0.03) 
for the group of younger subjects (age: 20‑39 years) who had 
regular alcohol intake. For the group of intermediately aged 
subjects (age: 40‑69 years) who had episodes of regular alcohol 
intake, we found a significant increase in the short-term scal-

We have also checked other respiration 
proxies (inter-breath intervals from belt 
recordings and based on signal maxima 
or minima), but found the differences too 
small to warrant a separate reporting in 
this paper. Neglecting age dependence, 
one finds similar scaling behavior as for 
heartbeat, i.e., αRES > 1/2 for wake states 
and REM sleep, as well as αRES ≈ 1/2 for 
deep sleep (Figures 3i-l and Table 1). This 
is consistent with earlier observations in 
a much smaller cohort.4 Furthermore, it 
seems that weak long-term correlations 
are present in respiration during light sleep 
and absent during deep sleep (see also the 
histograms in Figure 4). The overall cor-
relations are much weaker than those ob-
served for heartbeat data. Given that the 
histograms are almost identical for males 
and females (not shown), during all stud-
ied sleep stages and wakefulness, we con-
clude there are hardly any gender effects. 
Although we note that intermediately aged 
females have (weakly significant) smaller 
and larger averages during deep sleep and 
REM sleep, respectively (Figures 3k-l).

Looking at the age dependence, one 
recognizes an opposite aging effect during 
REM sleep when compared with heart-
beat: αRES decreases with age while αRR,2 
increases (Figures  3h, 3l). For wakeful-
ness, both exponents αRES and αRR,2 decrease (Figures  3e, 3i). 
Note, however, that the observed age dependences in αRES dur-
ing wake and REM are weakly significant (see Table  1). No 
significant age dependencies in respiratory correlations are ob-
served during NREM sleep.

Influence of Tobacco and Alcohol on Cardiac and Respiratory 
Dynamics

To asses the influence of smoking on the correlation proper-
ties of cardiac and respiratory dynamics across different sleep 
stages and how they change with aging, we separately analyzed 
and compared smokers and nonsmokers. In the SIESTA da-
tabase, 39 of the healthy subjects were identified as smokers 
and 136 as nonsmokers. There is no information available for 5 
subjects in the database. For the subjects that were identified as 
smokers there is no information recorded in the database on the 
number of cigarettes per day or on the period (years) over which 
subjects have been actively smoking prior to the SIESTA study. 
We have tested whether any of the scaling exponents (αRR,1, 
αRR,2, αRES), characterizing cardiac and respiratory dynamics for 
smokers, are significantly different from the values observed 
for non-smokers. By differentiating 3 age groups (age: 20‑39 
years, 40‑69 years, and 70‑89 years) and 4 sleep stages (wake, 
light sleep, deep sleep, and REM sleep), we found significant 
changes with smoking in 2 cases: (1) in young subjects during 
wake, the scaling exponent αRR,1, characterizing short-term cor-
relations in heartbeat fluctuations, decreases when compared 
with nonsmokers (P < 0.01); and (2) in intermediately aged sub-

Figure 4—Histograms of (a-d) αRR,1, (e-h) αRR,2, and (i-l) αRES in wake state, light sleep S2, deep 
sleep S3 and S4, and REM sleep. Light gray histograms show the distributions for all 348 data sets 
considered in this study, while the α values from fits with r2 < 0.98 or incomplete fitting regimes 
were excluded for the dark gray histograms. Dotted lines indicate random uncorrelated behavior α 
= 1/2 and strongly correlated behavior α = 1. Note that the bins were chosen twice as wide for (a-d) 
compared with (e-l).
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When exploring individual DC 
values we recognized for most sub-
jects, lower values during REM 
sleep and deep sleep than during 
light sleep and wakefulness. To test 
this observation, Figure 6 shows the 
mean ratios over DCREM and their 
standard deviations. In the case of 
a lower DC during REM sleep, the 
ratios are larger than 1. This is ob-
served for young subjects during 
wake, and for all age groups during 
light sleep S2, i.e., DCREM < DCwake 
and DCREM < DClight sleep. The results 
during deep sleep were inconclusive. 
Employing a paired t‑test comparing 
all DC-value combinations we found 

highly significant differences (P < 0.0001) for the combinations 
wake vs. REM sleep, light sleep vs. REM sleep, wake vs. deep 
sleep, and light sleep vs. deep sleep. Marginally significant dif-
ferences (P < 0.05) were found for wake vs. light sleep. The DC 
values during deep sleep and REM sleep were not significantly 
different.

DISCUSSION
Our study leads to the following four main observations: (1) 

There is a significant aging effect on the short-term correlation 
properties of heartbeat time series, since a maximum in αRR,1 
occurs around 50‑60 years of age. We also observe compa-
rable differences across sleep stages for the young and inter-
mediate age groups. (2) The long-term correlation properties 
of heartbeat and respiration data exhibit similar characteristic 
dependencies on sleep stages and wake: long-term correlations 
and effects of aging are observed only during wakefulness and 
REM sleep. Heartbeat correlations increase with age in REM 
sleep and decrease during wake, while respiratory correlations 
decrease with age both during REM and wake. (3) Differences 
between males and females of the same age are not significant 
for most scaling parameters in the studied cohort, except for 
a significantly lower average in αRR,1 for intermediately aged 

ing exponent, αRR,1, of cardiac dynamics only during wake. The 
number of elderly subjects (age: 70‑89 years) in our database 
who reported episodes of regular alcohol intake is insufficient 
for a meaningful statistical analysis.

Alcohol consumption on the day before the recordings was 
reported only by 30 subjects (38 night recordings). Combin-
ing all age groups, we find a slight increase (below significance 
level) in the exponent αRR,1 during REM and NREM sleep, and 
a significant increase in αRES during NREM sleep.

Deceleration Capacity of the Heart
Figure 5 shows our results for the deceleration capacity of 

the heart (DC parameter) as a function of age, shown sepa-
rately for the sleep stages and wake. A significant decay from 
younger subjects towards older subjects is obvious in all states. 
The slope of the decay is, however, smaller for females than 
for males (see different symbols and fits printed in the figure 
but not shown). In particular young females (age 20‑29) exhibit 
surprisingly low DC values, especially during wake. If one ex-
cluded this age group from the study, the DC slope for males 
and females during wakefulness would be the same. In general, 
DC values for males and females become more similar with 
aging for all states.

Figure 6—Age dependence of DC ratios: (a) DCwake / DCREM, (b) DClight sleepS2 / DCREM, and (c) DCdeep sleep S3&S4 
/ DCREM for all subjects (black filled diamonds), males (dark gray open triangles up), and females (light gray 
open triangles down).

Figure 5—Deceleration capacity (DC) versus age for (a) wakefulness, (b) light sleep S2, (c) deep sleep S3 and S4, and (d) REM sleep for all subjects (black 
filled diamonds), males (dark gray open triangles up), and females (light gray open triangles down). We plotted median values and both quartiles Q25 and 
Q75 as lower and upper errors bars, respectively. Solid straight lines are linear fits to the medians for all subjects; the formulas of the separate fits for males 
and females are printed in the top right corner. Black and gray dashed lines indicate risk levels previously defined for infarction patients: high cardiac risk DC 
< 2.5 ms and low cardiac risk DC < 4.5 ms.
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1.09 for the same subjects five years later (altogether ≈ 550 
hours of data), reporting no significant age differences. Our 
results show no significant difference in αRR,1 between young 
(age 20‑39 years) and elderly (age 70‑89 years) for deep sleep, 
light sleep, and REM, and a significant difference only during 
wake (see Table 1).

As mentioned before, none of the previous studies looked 
at intermediate age groups and therefore the pronounced max-
imum in αRR,1 around 50‑60 years of age, for all sleep stages 
as well as wakefulness, was missed. We suggest that the un-
derlying effect of healthy aging could be an increase in αRR,1 
as indicated by the trend present from 20 to 55 years of age 
(see Figure 3). If the increase continued for the next 35 years, 
i.e., up to 90 years of age, the values of αRR,1 would reach 1.4 
or 1.5, i.e., values typical for an uncorrelated random walk. 
This usually does not happen, though, because another effect 
leads to a drop of αRR,1 for subjects of ages above 50‑60 years. 
The drop seems to start somewhat earlier in women. A satisfy-
ing explanation of this observation would seem to require a 
change in the related control mechanisms which is sufficiently 
fundamental to affect all sleep stages and wakefulness. We 
speculate that this change might be related to the rise in eve-
ning cortisol levels associated with increased sleep fragmen-
tation and a decline in REM sleep. Such a rise was reported to 
begin at the age of 50 years.39 High cortisol levels have been 
associated with physiological stress and increased cardiac 
risk. We note that reduced short-term correlation exponents 
were shown to be better indicators than standard HRV param-
eters for predicting mortality in post-infarction patients.23,22 
However, we also note that the αRR,1 values for the elderly sub-
jects are comparable to the αRR,1 values for the young subjects 
during all sleep stages except for wake, where αRR,1 is signifi-
cantly lower in elderly (see Figures 3a-d, Table 1). We cannot 
exclude that the age-related drop in αRR,1 might be a reflection 
of a detrimental effect of this endpoint on individual survival. 
This means that the study of older subjects might favor in-
dividuals who had particularly favorable lower αRR,1 values 
throughout their entire life, whereas those with less favorable 
larger values had a lower probability of survival and were less 
likely to be included.

Regarding only the elderly subjects, there is a relevant tech-
nical point affecting the mean values of αRR,1. We observed an 
additional decrease in αRR,1, down to values even close to 0.5, 
in the oldest subjects if bad fits with coefficient of determina-
tion r2 < 0.98 were not disregarded in our analysis and ectopic 
beats were not carefully removed (ectopic beats have the effect 
of random spikes in the positively correlated heartbeat interval 
time series that leads to a decrease in the scaling exponent on 
short time scales resulting in αRR,1 ≈ 0.548). This indicates that 
an increasing number of ectopic beats and effects of sleep ap-
nea (leading to deviations from the power-law scaling behav-
ior of the fluctuation function28) might be partly responsible for 
the decrease in αRR,1 in clinically healthy, elderly subjects with 
possibly increased cardiac risk. We note that the coefficient of 
determination is usually not checked in instances where αRR,1 is 
used as an indicator for predicting cardiac risk and mortality 
in post-infarction patients.23,22,54 In general, the aging charac-
teristics of αRR,1 should be taken into account when using it for 
diagnostic purposes in post-infarction patients.

females. (4) Deceleration capacity (i.e., the ability of the heart 
to slow down) decreases linearly with age and reduces signifi-
cantly during deep sleep and REM sleep when compared with 
light sleep and wakefulness.

Previous studies have also analyzed the short-term and long-
term correlation behavior of heartbeat and breathing intervals 
in healthy subjects. However, previous studies considered 
much less data (approx. 500 h, compared to our 2,500 h), did 
not distinguish sleep stages, and only compared a single group 
of young with a single group of elderly subjects.26,3,27,28 Oth-
ers distinguished sleep stages but did not study age dependen-
cies and focused mainly on healthy young subjects (age ≈ 25 
years).13,20,21,4 Only one study so far has considered the effect of 
aging across different sleep stages based on a group of young 
subjects (age ≈ 33 years) and a group of elderly subjects (age 
≈ 78 years).29 Since intermediate age groups of 50‑60 year-old 
subjects have not been studied, the pronounced maximum in 
short-term heartbeat correlations has not been previously ob-
served.

Short-Term Correlation Properties of Heartbeat
While earlier studies have suggested that multi-scale com-

plexity and fractal scaling behavior break down with healthy 
aging,53,26 a recent work,28 utilizing the same data sets as in 
Iyengar et al.26 as well as a second independent database, did 
not find significant differences between young and elderly 
healthy subjects in the heartbeat scaling behavior after care-
fully excluding artifacts. Iyengar et al. found αRR,1 = 0.90 for 
young (age ≈ 27 years) and αRR,1 = 1.12 for elderly (age ≈ 
74 years) subjects based on 40 hours of data recorded from 
20 subjects during wake in a resting semi-recumbent posi-
tion. Their results show the opposite trend when compared 
with our results of αRR,1 = 1.12 for the 20‑29 year-old group 
and αRR,1 = 0.88 for the 70‑79 year-old group during wake 
(see Figure 3a). This is perhaps due to apnea-related artifacts 
in the data from elderly subjects which were not taken into 
account in Iyengar et al.26 but significantly alter the scaling 
exponent at both short and long time scales as demonstrated 
by Schmitt et al.28

However, our results for young subjects are consistent with 
recent studies. Penzel et al.21 found αRR,1 = 1.21 during wake-
fulness, 1.18 during REM sleep, 1.00 during light sleep, and 
0.82 during deep sleep in a data set of 14 healthy subjects 
with an average age of 33 years (220 hours of data). Guzman-
Vargas and Angulo-Brown27 studied 36 hours of data from 
ten young and eight elderly subjects during wake using a dif-
ferent technique; their results correspond to αRR,1 ≈ 1.13 and 
1.48, respectively. Clearly, the values for young subjects are 
consistent with ours, but the values for elderly subjects are 
higher than ours. We speculate that the unexpectedly large 
value 1.4827 might be due to outliers among their eight elderly 
subjects. In addition, slightly larger α values are usually found 
when different states are not analyzed separately due to non-
stationarities at the transitions between the states. Recently, 
Schmitt et al.28 found αRR,1 = 1.09 for 19 young subjects (age 
≈ 26 years) and αRR,1 = 1.22 for 16 elderly subjects (age ≈ 74 
years) during wake in a resting semi-recumbent position. In 
addition they found αRR,1 = 1.12 for an independent group of 
29 elderly subjects (age ≈ 76 years) during sleep and αRR,1 = 
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similar behavior when comparing αRR,2 for the 30‑39 year-old 
group with the 70‑79 year-old group, with P = 0.02 during REM 
and P > 0.02 for the other sleep stages and wake (see Figure 3). 
However, when we included the 20‑29 year-old group and the 
80‑89 year-old group, we found a significant difference in αRR,2 
with age during REM and wake. In contrast, we did not find an 
age dependence in the long-term scaling behavior of the heart-
beat and breathing intervals during light sleep and deep sleep. 
Moreover, while we observed a significant increase with age 
in the strength of the long-term correlations for heartbeat in-
tervals during REM (Figure 3h), we found the opposite trend 
of decreasing αRR,2 with age during wake (Figure 3e). We cur-
rently do not have a physiological explanation for the decrease 
in αRR,2 with age during wake, considering that αRR,2 reflects pre-
dominantly sympathetic tone, which was previously found to 
increase with age.

The pronounced long-term correlations, i.e., larger αRR,2 for 
heartbeat and αRES for respiration we observe during REM sleep 
and wakefulness, indicate an enhanced control of higher brain 
regions on these autonomic functions when the brain is in a 
more active state. The enhanced control causing long-term cor-
relations is obviously absent during NREM sleep, in agreement 
with earlier hypotheses.4,13,55 This interpretation is strengthened 
by the observation of long-term correlations in the fluctuations 
of brain wave amplitudes and frequencies studied based on 
EEG data for wakefulness,56 as well as separately for differ-
ent sleep stages,8 since the latter study revealed that long-term 
brain-wave correlations exist during REM sleep and wakeful-
ness only.

Deceleration Capacity of the Heart
The decay of DC with age observed in this study is in 

full qualitative agreement with previously published re-
sults obtained from 24-h Holter-ECG recordings in 1455 
post-infarction patients.57 In that study we found DCall[ms] = 
12.2−0.10·age[y], DCmales[ms] = 12.4−0.11·age[y],

 
DCfemales[ms] 

= 12.2–0.07·age[y] but did not distinguish between wakeful-
ness and sleep or sleep stages. These findings are in accordance 
with the general understanding that there is a loss in total vagal 
output with normal aging. A suppressed parasympathetic tone 
leads to a lower DC value, which is a measure of parasympa-
thetic efficiency. A recent study revealed a significant gender 
difference in sympathovagal balance with higher vagal tones 
in females during all sleep stages.58 Assuming DC is directly 
correlated with parasympathetic outflow, this should lead to a 
larger DC value in females than males. However, we found the 
opposite dependence here and in the independent study of 24-h 
Holter ECGs.57 We can imagine two possible interpretations of 
this finding. Either the ability of the heart to decelerate quickly 
is not directly associated with the amplitude of parasympathetic 
output, or less parasympathetic output in males is more effi-
ciently transcribed into actual deceleration than in females.

Furthermore, it is known that during REM sleep HF pow-
er, a proxy for parasympathetic tone, is diminished relative to 
other sleep stages and wakefulness. Concordantly, we found 
slightly lower DC values during REM sleep than during light 
sleep for most subjects. A lower DC has been associated with 
an increased mortality in post-infarction patients.25,57 Increases 
in sympathetic output accompanied by reduced vagal activity 

Long-Term Correlation Properties of Heartbeat and Respiration
Similar to the case for the short-term correlations in heart-

beat intervals, previous studies regarding the age dependence 
of long-term correlation properties of heartbeat and respiration 
in healthy subjects have not yielded a consistent picture. Early 
works found significant differences between young and elderly 
subjects, see, e.g., αRR,2 = 0.99 versus 0.75 in Iyengar.26 More 
recent studies reported no significant difference in αRR,2 between 
young and elderly during wake, see, e.g., αRR,2 = 1.13 versus 
1.1727 and αRR,2 = 0.76 versus 0.78.28 The latter study also re-
ported αRR,2 = 0.88 during sleep for elderly subjects (age ≈ 76 
years) and αRR,2 = 0.97 for the same individuals five years later 
(P = 0.01).

For respiration during wake, Peng et al.3 reported a gender 
difference, finding αRES = 0.68 (0.70) versus 0.60 (0.67) for 
males (females) and, again, young versus elderly subjects. Al-
though we found similar results when comparing young and 
elderly during wake, we did not find a significant gender dif-
ference. However, all these studies did not distinguish between 
physiologically different states like sleep stages, and thus, these 
values cannot be directly compared with ours. For both heart-
beat and inter-breath intervals, we found that there is a stark 
contrast between the clearly long‑term correlated behavior 
observed during wakefulness and REM sleep and the nearly 
uncorrelated behavior observed during NREM sleep. We also 
observed significant changes, with aging, during wakefulness 
and REM, but not during light sleep and deep sleep (see Fig-
ures 3e-l).

Most studies separating sleep stages looked at healthy young 
(age ≈ 25 years) subjects only.4,13,21,55 A comparison of scaling 
and other characteristics of heartbeat intervals between young 
and elderly subjects, during different sleep stages, was present-
ed in Schmitt et al.,29 reporting a similar stratification pattern for 
both young and elderly across sleep stages. These earlier stud-
ies yielded results consistent with our findings, e.g., αRR,2 = 0.94 
(wake), 0.60 (light sleep), 0.55 (deep sleep), and 0.81 (REM 
sleep) for a group of young (age 25 years old) subjects21; and 
αRR,2 = 0.97 (wake), 0.74 (light sleep), 0.61 (deep sleep), and 
0.89 (REM sleep) for a group of 13 young (age 33 years old) 
subjects.29 These results can be compared with the correspond-
ing values αRR,2 = 1.06 (wake), 0.68 (light sleep), 0.60 (deep 
sleep), and 0.86 (REM sleep) for the 20‑29 year-old group in 
this paper for heartbeat, as well as αRES = 0.57 (NREM sleep) 
versus 0.85 (REM sleep)4 compared with αRES = 0.55 (light 
sleep) versus 0.73 (REM sleep) for respiration in our study. 
Schmitt et al.29 also studied 24 elderly subjects (age ≈ 78 years) 
finding αRR,2 = 1.03 (wake), 0.63 (light sleep), 0.57 (deep sleep), 
and 1.02 (REM sleep), compared with αRR,2 = 0.91 (wake), 0.61 
(light sleep), 0.67 (deep sleep), and 0.97 (REM sleep) in this 
paper for the corresponding age group of 70‑79 years. This in-
dicates a very similar stratification pattern in αRR,2 across sleep 
stages for elderly subjects in both studies. Moreover, this strati-
fication pattern in αRR,2 is robust, as we observe it also for young 
subjects in agreement with Schmitt et al.29 Clearly, it is not pos-
sible to find age dependencies by comparing these values with 
those for young subjects. Schmitt et al.29 correctly conclude that 
there are no significant effects of aging observed in their data 
when comparing αRR,2 for young (≈ 33 years old) and elderly 
(≈ 78 years old) across different sleep stages. We observed a 



SLEEP, Vol. 33, No. 7, 2010 953 Age-Dependent Cardio-Respiratory Dynamics—Schumann et al

We found that age significantly and systematically influences 
the short-term correlations of heartbeat, for all sleep stages and 
wakefulness. A striking maximum of the short-term correlation 
parameter αRR,1 occurs at around 50‑60 years of age. The ob-
served behavior is very similar for males and females. We spec-
ulate that the effect of healthy aging is an increase of αRR,1 with 
age that is reversed by a rise in evening cortisol levels reported 
to begin at the age of 50 years. Alternatively, the reduced αRR,1 
could also be related to extrasystoles and ectopic beats in young 
and elderly subjects, respectively. Including fluctuation func-
tions that exhibit problematic scaling behavior (often associat-
ed with sleep apnea episodes) further reduces the effective αRR,1 
in elderly subjects. We believe that the aging characteristics of 
αRR,1 should be taken into account when using this parameter for 
diagnostic purposes in post-infarction patients. However, full-
night data can be used without limitations, since sleep stage 
only weakly effects αRR,1.

Studying the auto-correlation behavior of heartbeat and 
respiration on longer time scales, we observed a clear differ-
ence between wakefulness and REM sleep on one hand and 
NREM sleep on the other. Pronounced long-term correlations 
occur during REM sleep and wakefulness only. They are prob-
ably related to an enhanced control of higher brain regions on 
these autonomic functions when the brain is in a more active 
state. In the case of heartbeat, we observed a slight decay of 
these long-term correlations with age, during wakefulness, and 
a slight increase during REM sleep. In the case of respiration 
we observed only a slight decay during both wakefulness and 
REM sleep.

Thus, the age dependence of heart rate and breathing rate cor-
relations may be significantly more complex than a mere break-
down of multi-scale complexity and fractal scaling with aging.

Fluctuation characteristics have already been successfully 
applied to generate surrogate heartbeat data that is statistically 
indistinguishable from real recordings.61 The age-related effects 
on short- and long-range variability discovered in this study 
might allow for further improvements, and ultimately lead to 
a more realistic model of cardiorespiratory regulation during 
sleep. We believe that the results should also be taken into ac-
count when developing novel scoring parameters to enhance 
the detection specificity for sleep related disorders.

The observed sleep-stage related changes in deceleration ca-
pacity (DC) can be compared with changes in long-term heart-
beat correlations during different sleep stages to improve the 
understanding of cardiovascular regulation during sleep. In ad-
dition, the results could be applied to make ECG-based detec-
tion of sleep stages possible, instead of using more complicated 
brain recordings. Another possible application is the identifica-
tion of anomalous autonomic regulation associated with certain 
disorders. We recently suggested a generalization of the PRSA 
method (bivariate phase rectified signal averaging = BPRSA) 
enabling multivariate studies of quasi-periodicities.62 For ex-
ample, one can separately analyze the behavior of heartbeat in-
tervals at the phases of inspiration and expiration, or tackle the 
question how increases or decreases in heartbeat intervals affect 
respiratory rhythms and/or blood pressure. We are planning to 
apply BPRSA to heartbeat and respiration to further study car-
diorespiratory control mechanisms during sleep and investigate 
respiratory gating.63

were related to ventricular arrhythmias that may cause sudden 
cardiac death.59 Assuming these physiological conclusions are 
also applicable to healthy subjects, our findings suggest an in-
creased cardiac risk during REM sleep when compared with 
light sleep or quiet wake. Together with the observation that 
most time spent in REM sleep takes place in the early morning 
hours the results of our analysis suggest an increase in cardio-
vascular risk during the morning hours. This is in agreement 
with earlier empirical observations based on hourly counts of 
sudden cardiac deaths and myocardial infarctions throughout 
the sleeping hours.60

Very few subjects had DC values exceeding the intermedi-
ate risk or the high risk limits (indicated by the dashed lines in 
Figure 5)25 Note, however, that the risk limits have been deter-
mined for 24-h ECG recordings sampled at 128 Hz, and thus, 
it remains unclear whether the same limits apply to our sleep 
study of healthy subjects.

Limitations
In this study we concentrated on the effects of chronological 

age on short-term and long-term fluctuations of heartbeat and 
respiration. Although many risk factors and declining health 
have been associated with chronological age, it is a rather rough 
estimator for physiological age (i.e., functional age). It still re-
mains to be explored how chronological and physiological age 
are correlated and to what extent chronological age is an indica-
tor of physiological condition and function.

Another important issue is the definition of the term “healthy” 
especially in aged subjects. To our knowledge there is no gen-
eral agreement on inclusion and/or exclusion parameters for 
healthy subjects. We are convinced that “healthy” should also 
consider biological age. During this study we realized that even 
supposedly healthy middle-aged and elderly subjects, without 
reported health complaints, show, to some extent, altered (rela-
tive to young healthy subjects) patterns in heartbeat and respira-
tion. For instance, we found several short apnea-like episodes 
in data from disease-free elderly subjects. These episodes did 
not, however, lead to an exclusion of the subjects, because the 
all-night AHI index remained below 10 per hour. As well, an en-
hanced occurrence of ectopic beats and reduced heart rate vari-
ability is observed in several elderly subjects. Again, we have 
not excluded these subjects, only removed the ectopic beats 
from the data. However, from cardiological studies we know 
that some of the older subjects that were declared healthy, in 
full agreement with the SIESTA protocol would not be consid-
ered healthy in a more restrictive study protocol concentrating 
specifically on cardiac conditions. The results shown here pres-
ent a retrospective analysis, and we had to accept recordings 
with some cardiac disturbances. Based on our experience with 
beat-detection and artifact removal, we suggest recording data 
from more ECG leads in full-night polysomnographic studies.

Summary and Outlook
In conclusion we have investigated and quantified the ef-

fects of normal aging on heartbeat-to-heartbeat and breath-to-
breath variability during wakefulness, light sleep, deep sleep, 
and REM sleep. Our study is based on 2,500 hours of full-night 
recordings in a large group of 180 disease‑free (“healthy”) sub-
jects ranging in age from 20 to 89 years.
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FOOTNOTE FROM PAGE 945
A scale correction depending on the detrending-order has 

to be applied,50 since observed crossovers are larger than real 
ones: DFA2 sreal ≈ sobserved / 2.5. A considered scaling range [6,16] 
heartbeats hence transforms to a real scaling range of [2.4,6.4] 
heartbeats corresponding to the frequency band [0.156,0.417] 
Hz under the simplified assumption of an average heartbeat in-
terval of 1s. The HF band is usually associated with [0.15,0.4] 
Hz.
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