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Introduction
The accurate segregation of chromosomes during mitosis is  
essential for the reproduction and development of all organisms. 
Defects in chromosome segregation can cause cell death or 
chromosome aneuploidy, a condition that is associated with  
human diseases including cancer (Holland and Cleveland, 2009; 
Thompson et al., 2010). The fidelity of chromosome segrega-
tion depends on the assembly of a microtubule-binding site 
called the kinetochore on each sister chromatid of a replicated 
chromosome. Kinetochores attach to microtubules emanating 
from opposite poles of the mitotic spindle and are required for 
metaphase chromosome alignment and the anaphase chromo-
some movements that are necessary for accurate segregation 
(Cheeseman and Desai, 2008; Santaguida and Musacchio, 2009).

Centromeres are the specialized chromosomal regions 
present throughout the cell cycle upon which kinetochores are 
assembled during mitosis. In human cells, centromere DNA 
typically consists of megabase-length arrays of -satellite  
repeats (Choo et al., 1991). However, in rare instances, func-
tional centromeres have been observed at chromosomal loca-
tions that lack discernable -satellite repeats (Voullaire et al., 
1993; Marshall et al., 2008), which suggests that that DNA  

sequence is not required for centromere function in human cells. 
Fundamental to centromere function is the replacement of  
histone H3 with the histone H3 variant centromere protein A 
(CENP-A, also called CenH3) within centromeric nucleosomes 
(Palmer et al., 1987, 1991). CENP-A is localized to all active 
centromeres regardless of the underlying DNA sequence and is 
essential for kinetochore formation and chromosome segrega-
tion (Palmer et al., 1987; Stoler et al., 1995; Meluh et al., 1998; 
Buchwitz et al., 1999; Henikoff et al., 2000; Howman et al., 
2000; Takahashi et al., 2000; Blower and Karpen, 2001; Oegema 
et al., 2001; Régnier et al., 2005). CENP-A nucleosomes are 
therefore thought to act as an epigenetic mark that specifies cen-
tromere identity.

In addition to CENP-A chromatin, human centromeres con
tain at least 16 nonhistone proteins (called CENP-C, CENP-H,  
CENP-I, CENP-K through CENP-U, CENP-W, and CENP-X)  
that are collectively referred to as the constitutive centromere- 
associated network (CCAN; Saitoh et al., 1992; Sugata et al., 2000;  
Goshima et al., 2003; Foltz et al., 2006; Izuta et al., 2006; 
Okada et al., 2006; Hori et al., 2008; Amano et al., 2009). 
CENP-C, CENP-H, CENP-N, CENP-M, and CENP-T copurify 

Centromeres contain specialized nucleosomes in 
which histone H3 is replaced by the histone  
variant centromere protein A (CENP-A). CENP-A  

nucleosomes are thought to act as an epigenetic mark 
that specifies centromere identity. We previously identified  
CENP-N as a CENP-A nucleosome-specific binding pro
tein. Here, we show that CENP-C also binds directly and 
specifically to CENP-A nucleosomes. Nucleosome bind-
ing by CENP-C required the extreme C terminus of 
CENP-A and did not compete with CENP-N binding, which 
suggests that CENP-C and CENP-N recognize distinct  

structural elements of CENP-A nucleosomes. A mutation 
that disrupted CENP-C binding to CENP-A nucleosomes  
in vitro caused defects in CENP-C targeting to centromeres. 
Moreover, depletion of CENP-C with siRNA resulted in the 
mislocalization of all other nonhistone CENPs examined, 
including CENP-K, CENP-H, CENP-I, and CENP-T, and 
led to a partial reduction in centromeric CENP-A. We 
propose that CENP-C binds directly to CENP-A chroma-
tin and, together with CENP-N, provides the foundation 
upon which other centromere and kinetochore proteins 
are assembled.
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Figure 1.  CENP-C binds directly to CENP-A nucleosomes. (A) [35S]methionine-labeled CENP-C was incubated alone () or in the presence of -satellite 
DNA or nucleosomes (300 nM). The mixtures were resolved on a native gel, and [35S]methionine-labeled CENP-C was detected with a phosphorimager. 
The position of CENP-C bound to DNA or nucleosomes is indicated. (B) A schematic showing the junctions of the CENP-A (blue) and histone H3 (red) 
chimeras used in this study. The numbers below the diagram refer to amino acids positions (A.A.) within CENP-A. Helical elements (black boxes, labeled ) 
and loops (labeled L) found within the histone fold of CENP-A and the region encompassing the CATD are shown above for reference. (C) Wild-type 
nucleosomes or nucleosomes containing CENP-A/H3 chimeras (500 nM) were incubated with [35S]methionine-labeled CENP-C and resolved on a native 
gel. [35S]methionine-labeled CENP-C alone () was used as a negative control. The position of nucleosome-bound CENP-C is indicated. (D) Clustal W align-
ment of the C terminus of human histone H3 and CENP-A orthologues from humans (Hs), mice (Mm), chickens (Gg), X. laevis (Xl), C. elegans (CeHCP3),  
S. pombe (SpCnp1), and Saccharomyces cerevisiae (ScCse4). The identical residues within each protein are highlighted with a black background, 
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whereas conservative amino acid changes are colored gray. The first and last amino acid positions of the residues contained within the alignment are 
shown on the left and right side of each sequence, respectively. The positions of loop 2 (L2) and helix 3 (3) within CENP-A are shown above for reference. 
(E) [35S]methionine-labeled CENP-C was incubated alone () or in the presence of the indicated nucleosomes and analyzed as in A. (F) The crystal structure 
of histone H3 is shown. Amino acids positions analogous to the CENP-A CATD (red ribbon) and residues C-terminal to helix 3 (green dots) are highlighted. 
Only one of the C-terminal extensions is colored green on the right panel for clarity.

 

with CENP-A nucleosomes (Foltz et al., 2006), which sug-
gests that CCAN proteins interact directly with centromeric 
chromatin during centromere and kinetochore assembly. 
Consistent with this possibility, electron microscopy and super-
resolution light microscopy data have shown that CCAN 
proteins are the most chromatin-proximal elements of kineto-
chores in mitosis (Saitoh et al., 1992; Joglekar et al., 2009; Wan 
et al., 2009).

A systematic biochemical screen designed to identify pro-
teins that are important for the recognition of centromeric chro-
matin showed that the CCAN protein CENP-N binds directly 
and specifically to CENP-A nucleosomes in a DNA sequence-
independent manner (Carroll et al., 2009). Thus, CENP-N 
“reads” epigenetic information that is encoded within CENP-A 
nucleosomes. CENP-N is only required for targeting a subset of 
CCAN proteins to centromeres, however, which indicates that 
alternative mechanisms for centromeric chromatin recognition 
must exist.

CENP-C is a good candidate for having a direct role in 
the specific recognition of centromeric chromatin. CENP-A is 
required for CENP-C centromere localization, but other CCAN 
proteins, including CENP-N, CENP-K, and CENP-I, are not 
(Goshima et al., 2003; Okada et al., 2006; Cheeseman et al., 
2008; Carroll et al., 2009). Furthermore, structure and function 
studies have identified overlapping regions of human CENP-C  
that bind directly to DNA and are sufficient for centromere 
localization in vivo (Sugimoto et al., 1994, 1997; Yang et al., 
1996; Politi et al., 2002; Trazzi et al., 2002; Trazzi et al., 2009). 
CENP-C does not bind preferentially to centromere DNA 
(Yang et al., 1996), however, and it is unclear as to how the 
sequence-independent DNA-binding activity of CENP-C alone 
could specify its centromere-specific localization observed in 
human cells.

Here, we show that CENP-C preferentially binds to 
CENP-A nucleosomes over H3 nucleosomes or DNA alone. We 
identify the extreme C terminus of CENP-A as being necessary 
and sufficient for the interaction of nucleosomes with CENP-C, 
defining a novel structural element of centromeric chromatin 
likely to be important for centromere assembly and function. The 
recognition of CENP-A nucleosomes is critical for CENP-C 
centromere localization, which subsequently specifies the recruit-
ment to centromeres of all other CCAN proteins tested. We pro-
pose a model for centromere assembly that integrates the dual 
recognition of CENP-A nucleosomes by CENP-N and CENP-C.

Results
CENP-C binds directly and specifically to 
CENP-A nucleosomes
To understand the mechanisms by which CENP-C is recruited 
to centromeres, we reexamined the possibility that CENP-C 

interacts with CENP-A nucleosomes using our previously 
described gel-shift assay (Carroll et al., 2009). Full-length 
[35S]methionine-labeled CENP-C produced in reticulocyte 
extract was mixed with reconstituted nucleosomes that con-
tained either CENP-A or histone H3 and a 186-bp fragment of 
-satellite DNA, or with the -satellite DNA alone (Fig. S1,  
A and B). Each mixture was resolved on a nondenaturing acryl-
amide gel, and the migration pattern of labeled CENP-C was 
compared with control reactions that contained no nucleosomes 
or DNA. A fast-migrating, albeit diffuse, CENP-C species was 
detected in the presence of -satellite DNA (Fig. 1 A), which is 
consistent with previous studies showing that human CENP-C is 
a DNA-binding protein (Sugimoto et al., 1994, 1997; Yang et al.,  
1996). CENP-C did not bind to H3 nucleosomes, but did  
bind much more efficiently to CENP-A nucleosomes than  
it did to DNA alone (Fig. 1 A). About fivefold more CENP-A 
nucleosomes were typically required to detect CENP-C binding 
than were required to detect CENP-N binding. The compara-
tively weak binding of CENP-C to CENP-A nucleosomes and 
the poor resolution of the bound species likely contributed to 
the inability to identify CENP-C/CENP-A nucleosome bind
ing in our previous study (Carroll et al., 2009). Nevertheless, 
CENP-C, like CENP-N, interacts directly and specifically with 
CENP-A nucleosomes.

We reconstituted nucleosomes that contained histone H3/ 
CENP-A chimeras to define the structural elements of CENP-A  
that are important for CENP-C binding (Figs. 1 B and S1,  
A and C). CENP-C bound efficiently to nucleosomes in which 
the N-terminal tail of H3 replaced the corresponding region of 
CENP-A (CENP-A–H3NTD), but did not bind to nucleosomes 
in which the CENP-A N-terminal tail was appended to the  
histone fold of H3 (H3-CANTD; Fig. 1 C). CENP-C also bound 
to CENP-A nucleosomes containing a deletion mutant that 
lacked the first 25 amino acids of the CENP-A N-terminal tail 
(gCENP-A; Fig. 1 C). These data indicate that the N-terminal 
tail of CENP-A is dispensable for CENP-C binding and that 
the histone fold of CENP-A is necessary and sufficient for the 
direct interaction of CENP-C with nucleosomes.

A region comprising loop 1 and helix 2 within the histone 
fold of CENP-A, called the CENP-A centromere-targeting  
domain (CATD; residues 75–114), is sufficient for CENP-N 
binding when substituted into the corresponding region of  
histone H3 (Black et al., 2004; Carroll et al., 2009). We asked 
whether the CATD region of CENP-A was also sufficient for 
CENP-C binding. Reconstituted nucleosomes containing the 
H3-CATD chimera did not interact with CENP-C (Fig. 1 C), 
which suggests that CENP-C and CENP-N recognize different 
structural elements within CENP-A nucleosomes. Nucleosomes 
that contained a histone chimera with the CATD and the remaining 
C-terminal amino acids from CENP-A (H3-CATD+C) did, how-
ever, bind to CENP-C as well as wild-type CENP-A nucleosomes 

http://www.jcb.org/cgi/content/full/jcb.201001013/DC1
http://www.jcb.org/cgi/content/full/jcb.201001013/DC1
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left), which suggests that the region of CENP-C required 
for kinetochore assembly is not important for the binding of 
CENP-C to CENP-A nucleosomes (Milks et al., 2009; Tanaka 
et al., 2009). Deletion of the first 536 amino acids of CENP-C  
(537–943) or more (690–943, 759–943), however, resulted in 
a loss of CENP-A nucleosome binding. Systematic truncation 
from the C terminus indicated that a CENP-C mutant contain-
ing only amino acids 1–537 was able to bind to CENP-A  
nucleosomes (Fig. 2 B, center). Thus, the CENP-C dimerization do
main (removed in the 1–759 truncation) and the Mif2 homology/ 
CENP-C signature motif (removed in the 1–690 truncation) are 
not important for the recognition of CENP-A nucleosomes by 
CENP-C (Brown, 1995; Lanini and McKeon, 1995; Talbert 
et al., 2004; Cohen et al., 2008; Trazzi et al., 2009). Further 
deletion of the CENP-C C terminus to amino acid 426 (1–426) 
eliminated CENP-A nucleosome binding (Fig. 2 B, middle).  
We next generated a series of CENP-C truncation proteins 
with deletions in both N- and C-terminal residues. A CENP-C  
truncation mutant that contained only residues 426–537 (re-
ferred to CENP-C426–537 from here on) bound efficiently to 
CENP-A nucleosomes (Fig. 2 B, right), which indicates that 
this region represents a minimal CENP-A recognition module 
within CENP-C that is both necessary and sufficient for nucleo-
some binding.

Examination of the CENP-C truncation mutants that 
bound to CENP-A nucleosomes revealed that the number 
and distribution of bound species changed as different re-
gions of CENP-C were removed (Fig. 2 B). Several distinct 
bound species were detectable for CENP-C proteins that 
contained the N or C terminus in addition to the minimal  
nucleosome-binding domain (1–537 and 426–943, respec-
tively), whereas a single bound species is detected for  
CENP-C426–537. Previous work indicates that both the N- and 
C-terminal regions of CENP-C are capable of self-association 
(Fig. S2; Sugimoto et al., 1997; Cohen et al., 2008; Trazzi  
et al., 2009). The multiple bound species observed using larger 
CENP-C fragments in the presence of CENP-A nucleosomes 
most likely represent different oligomerization states of CENP-C 
bound to mononucleosomes.

The minimal CENP-A–binding module of CENP-C 
contained the same nucleosome specificity as full-length 
CENP-C. CENP-C426–537 bound weakly to -satellite DNA 
when compared with CENP-A nucleosomes reconstituted 
with the same DNA fragment and did not bind at all to re
constituted H3 nucleosomes (Fig. 2 C). Moreover, analysis of 
the interaction of CENP-C426–537 with nucleosomes that con-
tained the histone H3/CENP-A chimeras described in Fig. 1  
showed that the CENP-A C-terminal LEEGLG motif was nec
essary and sufficient for both CENP-C426–537 and full-length 
CENP-C binding (Fig. 2, D and E).

The region of CENP-C identified here as being impor-
tant for CENP-A nucleosome binding corresponds closely 
to regions of human CENP-C that bind directly to DNA and 
are sufficient for centromere localization (Fig. S2; Sugimoto  
et al., 1994, 1997; Yang et al., 1996; Politi et al., 2002; Trazzi 
et al., 2002). To date, it has been unclear as to how sequence-
independent DNA binding could specify the centromere  

(Fig. 1 C). Determinants within CENP-A that are C-terminal to the 
CATD are therefore required for CENP-C binding.

The region C-terminal to the CATD of CENP-A consists 
of loop 2 and helix 3 of the histone fold. Sequence alignments 
showed that, although this region is highly conserved between 
human CENP-A and histone H3, CENP-A contains a short 
nonconserved extension at its extreme C terminus (Fig. 1 D). 
The alignment of CENP-A orthologues from several species 
indicated that the addition of several amino acids and/or the  
divergence from H3 is common feature of CENP-A C-terminal 
residues (Fig. 1 D). To determine if the C-terminal extension of  
human CENP-A was important for CENP-C binding, we re-
constituted nucleosomes with histone chimeras in which the 
residues after helix 3 of the histone fold were swapped between 
H3 and CENP-A (Fig. S1 C). Nucleosomes that contained  
CENP-A with the H3 C terminus (CENP-A-ERA) were unable 
to bind to CENP-C (Fig. 1 E). In contrast, nucleosomes that 
contained H3 with the C terminus of CENP-A (H3-LEEGLG) 
bound to CENP-C almost as well as wild-type CENP-A nucleo-
somes (Fig. 1 E). Thus, the LEEGLG motif at the extreme 
C terminus of CENP-A is both necessary and sufficient for the 
direct interaction of CENP-C with nucleosomes.

Together, these data show that the C-terminal extension 
of CENP-A is a novel functional element within centromeric 
nucleosomes that specifies binding to CENP-C. Based on the 
crystal structure of the H3 nucleosome (Luger et al., 1997), 
the CENP-A C-terminal extension is likely to present a solvent  
accessible surface extending above the face of the nucleosome 
(Fig. 1 F), which is consistent with the possibility that CENP-C 
interacts directly with CENP-A. Alternatively, the C terminus 
of CENP-A could impose unique structural properties upon  
nucleosomes that are recognized by CENP-C.

The minimal centromere localization domain 
of CENP-C is necessary and sufficient for 
CENP-A nucleosome binding
The analysis of CENP-C truncation mutants from numerous  
organisms has defined regions of CENP-C important for kineto-
chore assembly, self-association, sequence-independent DNA 
binding, and centromere localization (Fig. S2; Sugimoto et al., 
1994, 1997; Lanini and McKeon, 1995; Yang et al., 1996; Politi 
et al., 2002; Trazzi et al., 2002, 2009; Cohen et al., 2008; Milks 
et al., 2009; Tanaka et al., 2009). To understand the relationship 
between the CENP-A nucleosome-binding activity of CENP-C 
and the previously defined functional regions of CENP-C, we 
generated a series of truncation mutants to identify a minimal 
region of CENP-C important for CENP-A nucleosome bind
ing (Fig. 2 A). Because some CENP-C truncations migrate dif-
ferently in native gels than full-length CENP-C, we assessed 
CENP-A nucleosome binding by comparing the migration pat-
tern of each [35S]methionine-labeled CENP-C truncation protein  
alone to the pattern in the presence of reconstituted CENP-A 
nucleosomes (Fig. 2 B). In each case, the presence of novel 
CENP-C species in reactions that contained CENP-A nucleo-
somes indicated a direct interaction.

A CENP-C fragment lacking the first 425 amino acids 
(426–943) efficiently bound to CENP-A nucleosomes (Fig. 2 B,  

http://www.jcb.org/cgi/content/full/jcb.201001013/DC1
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localization observed for CENP-C426–537, particularly be-
cause this region of CENP-C lacks domains important for 
interactions with other CENPs (Fig. S2; Milks et al., 2009; 
Tanaka et al., 2009). Our data suggest that the mechanism by 
which CENP-C426–537 is targeted to centromeres is not caused 
by sequence-independent DNA binding but rather by a direct 
and specific interaction with CENP-A nucleosomes.

Figure 2.  Identification of a CENP-A recognition module within CENP-C. (A) Full-length (1–943) and various truncation mutants of [35S]methionine-labeled 
CENP-C were produced in rabbit reticulocyte extracts and resolved on a 12.5% SDS-PAGE gel. The amino acids within CENP-C that are included in each 
protein are indicated below the gel. The positions of molecular weight markers (kD) are indicated to the left of the gel. (B) Each CENP-C protein was incu-
bated alone () or in the presence of 300 nM of CENP-A nucleosomes (+) and resolved on a native gel. (C) CENP-C426–537 was incubated alone () or 
in the presence of -satellite DNA or the indicated nucleosome (10 nM) and resolved on a native gel. (D and E) CENP-C426–537 was incubated alone () 
or in the presence of the indicated nucleosomes (10 nM) and analyzed as above. The specific regions of CENP-A and H3 included in each chimera are 
schematized in Fig. 1 B.

CENP-A nucleosome binding and self-
association independently contribute to 
vertebrate CENP-C centromere localization
To further characterize the interaction between human CENP-C 
and CENP-A nucleosomes, we mutated three conserved  
residues—R522, R742, and F938—that are important for CENP-C  
function and determined the effects of these mutations on 
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greater effect; the myc-tagged XlCENP-C R874/F1393A double  
mutant was not detectable at centromeres above background 
(Figs. 3 C and S3, B and C). Thus, both CENP-A nucleosome 
binding and dimerization independently contribute to the local-
ization of full-length XlCENP-C.

CENP-C forms a stoichiometric complex 
with CENP-A nucleosomes
Our capacity to characterize the CENP-C–CENP-A nucleosome  
complex has thus far relied on using high concentrations of re
constituted CENP-A nucleosomes that are in vast excess of the 
comparatively low levels of CENP-C produced in reticulocyte 
extracts. We therefore expressed in bacteria and purified to 
near homogeneity recombinant wild-type CENP-C426–537 and 
CENP-C426–537 R522A (Fig. S4 A). Recombinant CENP-C426–537 
(rCENP-C426–537) bound efficiently to CENP-A nucleosomes, 
but did not bind to the -satellite DNA alone or to H3 nucleo-
somes (Fig. 4 A). Furthermore, mutation of R522A eliminated 
CENP-A nucleosome binding by rCENP-C426–537 (Fig. 4 B), 
which indicates that the rCENP-C426–537 recapitulated the behav-
ior demonstrated for full-length CENP-C and the CENP-C426–537 
fragment produced in reticulocyte extracts. Importantly, at the high-
est concentration of CENP-C used in this experiment (160 nM),  
the CENP-A nucleosomes were quantitatively shifted to a slower 
migrating species (Fig. 4, A and B). Further increasing the con-
centration of rCENP-C426–537 led to the progressive supershift-
ing of the CENP-A nucleosomes (Fig. S4 B). However, at these 
concentrations of rCENP-C426–537 (400 nM and above), the 
specificity of rCENP-C426–537 for CENP-A over H3 nucleosomes 
was lost. Moreover, R522 was no longer required for CENP-A  
nucleosome binding by rCENP-C426–537 (Fig. S4 C). Collectively, 
these data suggest that the supershifting of CENP-A nucleo
somes results from nonspecific association of rCENP-C426–537  
with nucleosomes or DNA.

We determined whether the rCENP-C426–537 would engage 
nucleosomes in the same manner as full-length CENP-C using 
competition assays. [35S]methionine-labeled CENP-C was incu-
bated with CENP-A nucleosomes either alone or in the presence 
of wild-type or R522A rCENP-C426–537, and each mixture was 
resolved on a native gel. The gel was first stained with ethidium 
bromide to visualize the nucleosomes, then dried and exposed to 
a phosphorimager screen to visualize the full-length CENP-C. 
The CENP-A nucleosomes behaved as expected in that addition 
of wild-type rCENP-C426–537 shifted the nucleosomes to a slow 
migrating species when compared with reactions containing no 
rCENP-C426–537 or the rCENP-C426–537 R522A mutant (Fig. 4 C, 
top). Binding of the labeled CENP-C to CENP-A nucleosomes 
was substantially reduced in reactions that contained wild-type 
rCENP-C426–537 but not in control reactions (Fig. 4 C, bottom), 
which indicates that the rCENP-C426–537 competed for binding 
with the labeled full-length CENP-C. Thus, rCENP-C426–537 does 
engage CENP-A nucleosomes by a mechanism that is similar to  
full-length CENP-C. Increasing the concentration of wild-type  
or R522A rCENP-C426–537 in an otherwise identical experiment  
resulted in supershifted CENP-A nucleosomes, as described 
(Fig. S4 C). However, the [35S]methionine-labeled full-length 
CENP-C still bound to the supershifted CENP-A nucleosomes 

CENP-A nucleosome binding (Meluh and Koshland, 1995;  
Fukagawa et al., 2001b; Song et al., 2002; Heeger et al., 2005; 
Cohen et al., 2008; Milks et al., 2009). Mutation of R742 within 
the CENP-C motif to alanine had, at most, a small effect on nucleo
some binding, whereas mutation of F938 to alanine, which is 
predicted to disrupt CENP-C dimerization (Cohen et al., 2008), 
had no effect on CENP-A nucleosome binding (Fig. 3 A, left). 
Thus, residues important for CENP-C function that lie outside 
the minimal CENP-A nucleosome recognition module are dis
pensable for nucleosome binding, which is consistent with our  
truncation analysis (Fig. 2 B). In contrast, mutation of R522A elim
inated CENP-A nucleosome binding in the context of both full- 
length CENP-C and the CENP-C426–537 fragment (Fig. 3 A).

The current data are ambiguous with regards to the impor-
tance of R522 to CENP-C localization in human cells. R522 is 
required for the centromere localization of CENP-C fragments 
lacking the C terminus (Song et al., 2002); however, the ability 
of CENP-C fragments that include the C-terminal dimerization 
domain, but lack the CENP-A nucleosome recognition module, 
to localize to centromeres suggests that CENP-A nucleosome 
binding may be dispensable for centromere localization in 
the context of full-length CENP-C (Trazzi et al., 2002, 2009).  
The interpretation of these studies is further complicated by the 
presence of endogenous CENP-C in cells that may influence the 
localization efficiency of the transfected CENP-C constructs.

We have previously shown that Xenopus CENP-C  
(XlCENP-C) can be efficiently immunodepleted from egg ex
tracts and replaced with exogenous protein (Milks et al., 2009), 
making this system ideal for the analysis of CENP-C mutants 
without complication from the endogenous protein. Furthermore, 
the amino acids that we mutated in human CENP-C are conserved 
in XlCENP-C, which suggests that the function of these residues 
is similar across species (Fig. S3 A). We therefore made muta-
tions in R874 and F1393 within XlCENP-C, which correspond 
to R522 and F938 in human CENP-C, respectively, to determine 
the contributions of CENP-A nucleosome recognition and dimer-
ization to CENP-C centromere localization (the effects of mu-
tations in XlCENP-C R1210, which corresponds to HsCENP-C 
R742, have been described previously; Milks et al., 2009).

Western blotting and immunofluorescence showed that  
XlCENP-C levels were reduced >90% in CENP-C–depleted ex-
tracts when compared with mock-depleted extracts (Figs. 3 B and 
S3 B). Although the amount of myc-tagged XlCENP-C added 
back was lower than the amount of endogenous XlCENP-C  
normally present in these extracts (Fig. 3 B), the levels of 
myc-XlCENP-C protein in each case were identical, allow-
ing a direct comparison of the localization efficiencies of the 
wild-type and mutant proteins. Quantification of the levels of 
centromere-associated XlCENP-C in isolated sperm nuclei, as 
judged by colocalization with CENP-A, indicated that the myc-
tagged wild-type XlCENP-C was present on centromeres at 
25–50% of the levels of endogenous XlCENP-C from mock-
depleted extracts (Fig. S3, B and C). Most importantly, compar-
ing the levels of the individual myc-tagged XlCENP-C proteins 
at centromeres revealed that the R874A and F1393A mutants 
were reduced 60% when compared with the wild-type myc-
XlCENP-C (Fig. 3 C). Combining the mutations had an even 

http://www.jcb.org/cgi/content/full/jcb.201001013/DC1
http://www.jcb.org/cgi/content/full/jcb.201001013/DC1
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Figure 3.  A conserved arginine residue within CENP-C is required for nucleosome binding and centromere localization. (A) Wild-type (wt) human CENP-C  
or the indicated point mutant was incubated alone () or with CENP-A nucleosomes (+) and resolved on a native gel (left). Alternatively, the wild-type (wt) 
or R522A CENP-C426–537 fragments were incubated with CENP-A nucleosomes (10 nM). (B) Western blot using an anti–XlCENP-C antibody of mock-
depleted or CENP-C–depleted Xenopus extracts containing reticulocyte-produced wild-type XlCENP-C (wt) or the indicated point mutants. Reticulocyte 
extract lacking myc-CENP-C () was used as a control. R874 and F1393 in Xenopus CENP-C are analogous to R522 and F938, respectively, in human 
CENP-C. The molecular weight of XlCENP-C is indicated. (C) Isolated sperm nuclei from CENP-C–depleted Xenopus extracts containing the indicated  
myc-CENP-C protein were stained with anti–XlCENP-A and anti-myc antibodies. Images are maximum-intensity projections of z stacks collected at 0.2-µM steps.  
Bars, 5 µM. (D) Quantification of centromere-associated myc-CENP-C from C. Error bars show the SEM from three independent experiments (>100 centro-
meres were counted for each condition in each experiment).
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directly test whether CENP-N and CENP-C bind to different 
sites on CENP-A nucleosomes. The labeled CENP-N still bound 
efficiently to the slow migrating CENP-A nucleosomes in the 
presence of wild-type rCENP-C426–537 (Fig. 4 D), which demon-
strates that rCENP-C426–537 does not compete with CENP-N for  

in the presence of the rCENP-C426–537 R522A mutant, which con-
firms that the supershifting of CENP-A nucleosomes at high con-
centrations of CENP-C426–537 results from nonspecific binding.

We performed a similar competition experiment except 
that labeled CENP-N was used instead of labeled CENP-C to 

Figure 4.  CENP-C and CENP-N bind to different sites on the same CENP-A nucleosomes. (A) -Satellite DNA or reconstituted nucleosomes (10 nM) were 
incubated with the indicated concentration of rCENP-C426–537 and resolved on native gels. DNA or nucleosomes were visualized after staining with SYBR 
gold. (B) CENP-A nucleosomes (10 nM) were incubated with the indicated concentration of wild-type (wt) or mutant (R522A) rCENP-C426–537 and resolved 
on a native gel. (C) [35S]methionine-labeled CENP-C was incubated alone () or in the presence of 150 nM of CENP-A nucleosomes (+). In addition, bind-
ing reactions contained wild-type (wt) or the R522A mutant (mut) rCENP-C426–537 (300 nM), or buffer alone (). The gel was stained with ethidium bromide 
to visualize nucleosomes (top) and was subsequently dried and scanned on a phosphorimager to visualize the labeled CENP-C (bottom). (D) An identical 
experiment to C except that [35S]methionine-labeled CENP-N was used. (E) Isolated nuclei were digested with micrococcal nuclease, and wild-type or R11A 
mutant GFP–CENP-N was immunoprecipitated using anti-GFP antibodies. Each immunoprecipitate was probed with the indicated antibodies. Control cells 
don’t express GFP–CENP-N.
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centromeric chromatin independently of other CCAN proteins 
(Goshima et al., 2003; Liu et al., 2006). Indeed, CENP-C is still 
present at centromeres, albeit at reduced levels, after depletion 
of CENP-N, CENP-I, or CENP-K (Goshima et al., 2003; Liu 
et al., 2006; Cheeseman et al., 2008; Carroll et al., 2009). The 
localization dependency of other CCAN proteins on CENP-C, 
however, has not been comprehensively determined. We de-
pleted CENP-C with siRNA and examined the localization of 
several other CCAN proteins. CENP-C depletion was efficient 
as indicated by a 90% reduction in both total CENP-C pro-
tein levels and in centromere-localized CENP-C when com-
pared with mock-depleted control cells (Fig. 5, A and B). All 
of the other nonhistone CENPs tested here, including CENP-H,  
CENP-I, CENP-K, and CENP-T, depended on CENP-C for 
their localization in interphase and mitosis (Fig. 5 B; and  
Fig. S5, A and B). Quantification of the centromere-associated 
levels of CENP-K and CENP-T showed that both proteins 
were reduced to the same extent as CENP-C itself in CENP-C– 
depleted cells when compared with mock-depleted cells (Fig. 5 C).  
Furthermore, Western blots showed that, although the abun-
dance of total CENP-K did not change after CENP-C depletion, 
both CENP-H and CENP-T protein levels were dramatically re-
duced in cells lacking CENP-C (Fig. 5 A). Although we could 
not examine CENP-N directly in this experiment, CENP-N  
localization to the centromere has previously been shown to  

binding to CENP-A nucleosomes. CENP-N and the rCENP-C426–537  
therefore bind to different sites on CENP-A nucleosomes, which  
is consistent with our previous data showing that the deter
minants that specify CENP-N and CENP-C binding to nucleo-
somes are distinct (Fig. 1, C and E; Carroll et al., 2009).

We next determined the stoichiometry of the rCENP-C426–537–
CENP-A nucleosome complex under conditions in which 
the CENP-A nucleosomes were quantitatively bound by 
rCENP-C426–537. CENP-A nucleosomes alone or in the presence of 
rCENP-C426–537 were first resolved on a native gel (Fig. 4 E). We 
then isolated from the native gel the unbound and rCENP-C426–537–
bound CENP-A nucleosomes, and subsequently resolved each in 
a denaturing gel. The recovery of CENP-A was poor after isola-
tion from the native gel regardless of whether rCENP-C426–537 was 
included in the reaction, which precluded a direct measurement of 
the ratio of CENP-A to CENP-C in the bound species. However, 
quantification of the ratio of CENP-C to H4 and CENP-C to H2A/
H2B in the bound species revealed a mean relative stoichiometry 
of 1.2:1 and 0.6:1 (n = 2), respectively, which suggests that two 
molecules of rCENP-C426–537 bind to each CENP-A nucleosome.

CENP-C is required for  
centromere assembly
Current models for centromere assembly in human cells  
suggest that CENP-A specifies the recruitment of CENP-C to 

Figure 5.  CENP-C is required for centromere assembly. (A) Western blotting of whole-cell extracts prepared from mock-depleted (control) or CENP-C– 
depleted HeLa cells. The antibody used for each Western blot is indicated on the left. Background bands (*) were present above and below the CENP-T  
band, which is indicated with an arrow. The molecular weight of each protein is indicated. (B) Representative images from control or mock-depleted 
cells stained with Hoechst (DNA) or the indicated antibody. Images are maximum-intensity projections of z stacks collected at 0.2-µM steps. Bars, 5 µM.  
(C) Quantification of the relative levels at centromeres of the indicated protein in mock- or CENP-C–depleted cells. For each antigen, >20 cells and >200 
centromeres were quantified. Error bars indicate the SEM from three independent experiments.

http://www.jcb.org/cgi/content/full/jcb.201001013/DC1
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Xenopus egg extracts. Together, these data indicate that CENP-A  
nucleosomes are the chromatin substrate important for CENP-C 
centromere localization in vertebrates.

A different conclusion was recently reached in chicken 
DT40 cells (Hori et al., 2008). In that study, immunopurified 
CENP-C was associated with H3 nucleosomes, but not CENP-A 
nucleosomes, after the complete digestion of chromatin into mono-
nucleosomes. This result may reflect the evolution of species- 
specific differences in the chromatin-binding specificity of 
CENP-C orthologues. An alternative explanation is that the arrays 
of CENP-A nucleosomes in vertebrate centromeres provide the 
opportunity for multivalent interactions that could stabilize the 
specific association of CENP-C oligomers with centromeric 
chromatin (Zinkowski et al., 1991; Blower et al., 2002; Chueh 
et al., 2005). It has previously been shown that digestion of 
chromatin to mononucleosomes disrupts the interactions be-
tween CENP-A nucleosomes and CENP-C (Ando et al., 2002). 
Removing multivalent interactions between CENP-C oligomers 
and CENP-A nucleosome arrays may allow CENP-C to equili-
brate between H3 and CENP-A mononucleosomes present in 
the extract. The combination of a vast excess of H3 nucleo-
somes relative to CENP-A nucleosomes and a weak affinity of 
CENP-C for DNA may explain the apparent association of 
CENP-C to H3 nucleosomes in this case. A definitive test of the 
chromatin specificity of chicken CENP-C in vivo would be to 
isolate the nucleosomal DNAs associated with immunopurified 
CENP-C and determine their chromosomal origins.

Identification of a novel structural element 
within human CENP-A nucleosomes  
that is likely to be important for 
centromere assembly
Our data show that the C-terminal LEEGLG motif of CENP-A 
is both necessary and sufficient to specify CENP-C binding to 
nucleosomes. Given that CENP-C is essential for centromere 
assembly and function, our data predict that the C-terminal 
LEEGLG motif of CENP-A will be an essential structural ele-
ment of centromeric chromatin. Consistent with this possibil-
ity, residues C terminal to helix 3 of Cse4 (the budding yeast 
CENP-A orthologue) are essential for accurate chromosome 
segregation (Keith et al., 1999). Furthermore, Cse4 can be re-
placed with a histone chimera whose histone fold domain con-
tains only the regions in Cse4 that correspond to the CATD and 
C terminus (Black et al., 2007). Interestingly, in human cells, a 
histone chimera that contains only the CATD region of CENP-A  
is sufficient to support kinetochore assembly and chromosome  
segregation after depletion of >90% of the endogenous CENP-A  

require CENP-H (McClelland et al., 2007), which suggests that 
CENP-C is also required for the localization of CENP-N to cen-
tromeres. In addition, we observed a modest reduction both in 
the overall levels of CENP-A protein by Western blotting and 
in the levels of CENP-A associated with centromeric chroma-
tin (Fig. 5, A and B). An identical phenotype was observed for 
cells depleted of CENP-N, which results from a partial defect 
in targeting newly synthesized CENP-A to existing centromeres 
(Carroll et al., 2009). Together, our data suggest that CENP-C 
is required for the localization and stability of CCAN proteins, 
and that CENP-C contributes to the maintenance of centromere 
identity by ensuring normal levels of CENP-A within centro-
meric chromatin.

Discussion
We propose a model for human centromere assembly based on 
the data presented here and in the existing literature (Fig. 6). 
A critical first step is the direct recognition of CENP-A chromatin 
by CENP-C. Because dimerization is important for CENP-C 
centromere targeting, but not for mononucleosome binding, we 
speculate that each CENP-C dimer binds to two different, possi-
bly adjacent, CENP-A nucleosomes within centromeric chromatin.  
A CENP-C dimer in conjunction with centromeric chromatin then 
provides the foundation upon which the rest of the CCAN is  
assembled. CENP-N also binds directly to CENP-A nucleo-
somes, thus providing additional CENP-A nucleosome contacts 
that reinforce the specificity of the centromere assembly process 
(Carroll et al., 2009). We discuss aspects of this model and their 
implications for centromere assembly and structure below.

Is the interaction of CENP-C with CENP-A 
nucleosomes conserved in vertebrates?
CENP-C has long been thought to make direct contacts with 
centromeric chromatin in vivo, but the centromere-specific ele-
ments recognized by CENP-C have not previously been defined. 
We show here that CENP-C binds preferentially to CENP-A 
nucleosomes over H3 nucleosomes or DNA alone. The region 
of CENP-C that is necessary and sufficient for CENP-A nucleo-
some binding corresponds closely to a region of CENP-C previ-
ously demonstrated to be sufficient for centromere localization 
(Yang et al., 1996; Trazzi et al., 2002). Moreover, mutation of 
R522 within human CENP-C, which reduces the efficiency of 
centromere localization for CENP-C fragments lacking the  
C terminus (Song et al., 2002), disrupts CENP-A nucleosome 
binding in vitro. A mutation in the analogous residue of  
XlCENP-C (R874) also reduced its targeting to centromeres in 

Figure 6.  A model for centromere assembly 
in human cells. CENP-A (red), CENP-C (cyan), 
CENP-N (green), and CENP-L (magenta) nucleo
somes are shown. Other CCAN proteins  
are colored orange. The N and C termini of 
CENP-C are indicated, as is the C terminus 
of CENP-N.
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Kwon et al., 2007). Similarly, mutations in S. pombe genes en-
coding Mis15 (CENP-N), Mis17 (CENP-M), Mis6 (CENP-I), 
and Sim4 (CENP-K) all cause identical phenotypes that suggest 
they function upstream of the nonessential Cnp3 (CENP-C) in 
centromere assembly (Takahashi et al., 2000; Pidoux et al., 
2003; Hayashi et al., 2004; Tanaka et al., 2009). A common 
theme between the centromere assembly pathways in these  
organisms is that the dependency relationships among CCAN 
proteins are remarkably similar. CENP-N, CENP-H, CENP-I, 
and CENP-K (and others) characteristically cluster in one epis-
tasis group, whereas CENP-C typically forms its own epistasis 
group. We suggest that the fundamental difference in centro-
mere assembly in eukaryotic organisms is not the physical  
connectivity of the individual proteins but rather the relative 
importance of the CENP-N– and CENP-C–dependent chroma-
tin recognition modules. Interestingly, both Drosophila and 
Caenorhabditis elegans have clear CENP-C orthologues that are 
required for centromere function but do not appear to have 
orthologues of many other CCAN proteins, including CENP-N 
(Oegema et al., 2001; Heeger et al., 2005). These examples may 
represent extremes in which one centromere recognition module 
has become so dominant that the other was ultimately lost.

Materials and methods
Histone expression and nucleosome reconstitution
Expression and purification of soluble CENP-A/H4, CENP-A–H3NTD/H4,  
H3-CANTD/H4, gCENP-A/H4, H3-CATD/H4, CENP-A–CATD+C, and 
CENP-A–ERA/H4 tetramers was performed as described previously 
(Carroll et al., 2009). Histone H3, H4, H3-LEEGLG, H2A, and H2B 
were expressed, purified, and refolded as described except that soluble  
H3/H4 and H3-LEEGLG/H4 tetramers and H2A/H2B dimers were re-
folded independently and frozen on liquid nitrogen for later use (Luger 
et al., 1999). Nucleosome reconstitution and purification was performed 
as described using a 186-bp fragment of -satellite DNA generated by 
PCR (Luger et al., 1999; Carroll et al., 2009). All the purified nucleo-
somes used in this study contain similar histone-to-DNA ratios (Fig. S1, 
B and C). -Satellite DNA was initially cloned from human genomic 
DNA by PCR using oligos 5-CTTGCTAGCAATCTGCAAGTGG-3 and 
5-CTTGTCGACTACAAAAAGAGTG-3.

Gel shift nucleosome binding assays
CENP-C or CENP-N were expressed in rabbit reticulocyte extracts in the 
presence of 10 mCi/ml [35S]methionine (PerkinElmer) using the TnT Quick-
Coupled Transcription/Translation system (Promega) according the manu-
facturer’s instructions. Typical binding reactions (10 µl total volume) 
contained 1 µl of transcription/translation mix and 300–500 nM of recon-
stituted nucleosomes in 10 mM Tris-HCl, and 20% glycerol, pH 7.4, unless 
indicated otherwise. After 30 min at room temperature, each reaction was 
loaded directly onto a 5% acrylamide gel in 0.5× Tris/Borate/EDTA and 
run for 80 min at 10 mA. Gels were stained with Coomassie blue, dried, 
and imaged using a phosphorimager (GE Healthcare) to visualize labeled 
CENP-N or CENP-C. Alternatively, gels were stained with ethidium bro-
mide (1 µg/ml) or SYBR gold (Invitrogen) to visualize nucleosomes. The 
CENP-C truncation mutants used for binding assays were constructed by 
PCR. CENP-C point mutants were made with the QuikChange site-directed 
mutagenesis kit (Agilent Technologies).

For the gel extraction experiments in Fig. 4 F, nucleosomes were  
resolved on native gels as and stained with ethidium bromide. The unbound  
or rCENP-C426–537–bound nucleosomes were then excised and minced with a 
clean scalpel, and resuspended in 500 µl of isolation buffer (10 mM Tris-HCl, 
1 mM EDTA, 0.1% SDS, pH 7.4). After agitating overnight at 4°C, the gel 
pieces were removed by centrifugation through a low-retention Durapore 
membrane (Millipore), and the extracted proteins were precipitated with 10% 
trichloroacetic acid. Precipitates were resuspended, run on a 17.5% polyacryl-
amide gel, and stained with Coomassie blue or SYPRO ruby (Invitrogen). The 
intensity of each band was quantified using imageJ software.

(Black et al., 2007). The levels of CENP-C at centromeres  
are normal in these cells, which suggests that mechanisms in  
addition to direct binding of CENP-A nucleosomes may  
contribute to the localization of CENP-C to centromeres. Alter-
natively the remaining wild-type CENP-A present within cen-
tromeric chromatin in these cells may be sufficient for CENP-C 
localization, as it has previously been shown that 10% of endog-
enous CENP-A can support efficient CENP-I localization (Liu 
et al., 2006). The genetic replacement of CENP-A with histone 
H3/CENP-A chimeras in vertebrate cell lines will ultimately  
be required to determine if the C-terminal LEEGLG motif of 
CENP-A is essential for vertebrate centromere assembly and 
function (Régnier et al., 2005).

How are distinct CENP-A recognition 
modules integrated in vivo?
We show here that depletion of human CENP-C with siRNA 
caused the mislocalization of CENP-H, CENP-I, CENP-K, and 
CENP-T (Figs. 5 and S5), which presumably also results in the 
loss of CENP-N from centromeres (McClelland et al., 2007). 
Furthermore, although other CCAN proteins are not required 
for CENP-C localization, the levels of CENP-C at centromeres 
are partially reduced in cells depleted of CENP-N, CENP-I, or 
CENP-K (Goshima et al., 2003; Cheeseman et al., 2008; Carroll 
et al., 2009), Thus, the CENP-A nucleosome recognition activi-
ties of CENP-C and CENP-N are functionally linked in vivo.

The molecular mechanisms by which CENP-C and 
CENP-N mutually stimulate each other’s localization to centro-
meres are unclear. Our in vitro analysis indicates that CENP-N 
and CENP-C426–537 can bind to the same CENP-A nucleosome 
in vitro (Fig. 4 D); however, we did not observe any stimulation 
of CENP-N binding to CENP-A nucleosomes in the presence of 
saturating amounts of CENP-C426–537. Thus, additional regions 
of CENP-C and/or other CCAN proteins may be required to 
couple the binding of CENP-C and CENP-N to CENP-A mono-
nucleosomes. Consistent with this possibility, CENP-L, which 
binds directly to the C terminus of CENP-N (Carroll et al., 2009),  
was recently shown to bind to CENP-C in Schizosaccharomyces  
pombe (Tanaka et al., 2009). Alternatively, the binding to dif
ferent CENP-A nucleosomes within centromeric chromatin  
may be required in vivo for CENP-C and CENP-N to enhance 
one another’s centromere localization. The continued effort to 
elucidate the architecture of the CCAN and the distribution of 
CCAN proteins within centromeric chromatin in vivo, coupled 
with the reconstitution of assemblies with more complex chro-
matin substrates, will contribute greatly to our understanding of 
the structure of centromeres.

That all the CCAN proteins tested here required CENP-C 
for their centromere localization suggests that CENP-C binding 
to CENP-A nucleosomes is perhaps the dominant mode of  
centromeric chromatin recognition in human cells. However, 
data from other model systems indicates that there is plasticity 
with regard to the role of CENP-C in centromere assembly. In 
chicken cells, CENP-H, CENP-I, and CENP-K are required for 
the localization of CENP-C to centromeres in interphase, but 
the reverse is not true, a situation that is opposite of that found 
in human cells (Fukagawa et al., 2001a; Nishihashi et al., 2002; 
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Expression and purification of CENP-C426–537

The region of CENP-C encoding amino acids 426–537 was cloned into 
the Asc1 and Pac1 sites of a modified version of pGex6P-1 (GE Health-
care) for expression of GST–CENP-C426–537 in bacteria. 2L of BL21 cells 
harboring the GST–CENP-C426–537 expression plasmid were grown in 2× YT 
at 37°C to an OD600 of 0.2, then switched to 23°C until reaching an 
OD600 of 0.6. GST–CENP-C426–537 expression was induced by the addi-
tion of IPTG to 0.3 mM for 6 h, after which the cells were harvested and 
frozen directly on liquid nitrogen. Cell pellets were ground to a fine pow-
der with a mortar and pestle on liquid nitrogen and stored at 80°C. Cell 
powder was resuspended in 25 ml of lysis buffer (1× PBS, 0.5 M NaCl, 
0.2% Triton X-100, 1 mM EDTA, 2mM DTT, 1 mM PMSF, and 25 µg/ml  
lysozyme), incubated on ice for 30 min, and sonicated. Crude extract was 
clarified by centrifugation at 100,000 g, and the supernatant was loaded 
onto a 2-ml glutathione agarose column (Sigma-Aldrich) equilibrated in  
lysis buffer. The column was then washed with 50 ml of wash buffer (1× 
PBS, 0.25 M NaCl, 0.1% Triton X-100, and 1 mM DTT) followed by 10 ml 
of PreScission Protease elution buffer (20 mM Tris-HCl, 200 mM NaCl,  
0.5 mM EDTA, and 1 mM DTT, pH 7.4). After washing, the glutathione 
agarose was resuspended in 2 ml of PreScission Protease elution buffer 
containing 50 µg of purified GST–PreScission Protease and rocked at 4°C 
for 12 h. CENP-C426–537 was eluted from the glutathione column, concen-
trated, and run over a gel filtration column (Sephadex 75; GE Healthcare) 
in gel filtration buffer (20 mM Hepes and 200 mM NaCl, pH 7.4) to re-
move any remaining contaminating proteins.

siRNA and immunofluorescence
HeLa cells were grown in DME containing 10% fetal bovine serum, 100 U/ml  
penicillin, and 100 µg/ml streptomycin (Invitrogen). CENP-C (5-GCG
AAUAGAUUAUCAAGGAUU-3, 5-GAACAGAAUCCAUCACAAAUU-3, 
5-CGAAGUUGAUAGAGGAUGAUU-3, and 5-UCAGGAGGAUUC-
GUGAUUAUU-3) siRNA pools (Thermo Fisher Scientific) were used ac-
cording to the manufacturer’s instructions. Mock transfections contained no 
siRNA. Western blotting and immunofluorescence of HeLa cells was per-
formed as described previously (Carroll et al., 2009). Antibodies to CENP-H  
and CENP-I were provided by S.-T. Liu (University of Toledo, Toledo, OH). 
Preparation of Xenopus extracts, immunodepletion, and immunoblotting 
were performed as described previously (Milks et al., 2009). Images were 
collected on a microscope (Eclipse 80i; Nikon) with a 60×, 1.4 NA oil 
immersion lens using MetaMorph software (MDS Analytical Technologies) 
and a charge-coupled device camera (CoolSnapHQ; Photonics).

Online supplemental material
Fig. S1 shows a characterization of reconstituted nucleosomes used in this 
study. Fig. S2 shows the domain architecture of CENP-C. Fig. S3 shows 
that XlCENP-C is efficiently depleted from Xenopus extracts. Fig. S4 shows 
that recombinant CENP-C426–537 binds nonspecifically to nucleosomes at 
high concentrations. Fig. S5 shows that CENP-C is required for centromere 
assembly. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201001013/DC1.
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