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ABSTRACT

Motivation: The discovery of new and unexpected biomarkers
in cardiovascular disease is a highly data-driven process that
requires the complementary power of modern metabolite profiling
technologies, bioinformatics and biostatistics. Clinical biomarkers
of early myocardial injury are lacking. A prospective biomarker
cohort study was carried out to identify, categorize and profile
kinetic patterns of early metabolic biomarkers of planned myocardial
infarction (PMI) and spontaneous (SMI) myocardial infarction. We
applied a targeted mass spectrometry (MS)-based metabolite
profiling platform to serial blood samples drawn from carefully
phenotyped patients undergoing alcohol septal ablation for
hypertrophic obstructive cardiomyopathy serving as a human model
of PMI. Patients with SMI and patients undergoing catheterization
without induction of myocardial infarction served as positive and
negative controls to assess generalizability of markers identified
in PMI.
Results: To identify metabolites of high predictive value in tandem
mass spectrometry data, we introduced a new feature selection
method for the categorization of metabolic signatures into three
classes of weak, moderate and strong predictors, which can be
easily applied to both paired and unpaired samples. Our paradigm
outperformed standard null-hypothesis significance testing and other
popular methods for feature selection in terms of the area under the
receiver operating curve and the product of sensitivity and specificity.
Our results emphasize that this new method was able to identify,
classify and validate alterations of levels in multiple metabolites
participating in pathways associated with myocardial injury as early
as 10 min after PMI.
Availability: The algorithm as well as
supplementary material is available for download at:
www.umit.at/page.cfm?vpath=departments/technik/iebe/tools/bi
Contact: christian.baumgartner@umit.at
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Due to the rapid progress in mass spectrometry (MS) and in the
development of related bioinformatics methods in recent years,
novel biomarker discovery efforts for cardiovascular diseases
are increasingly incorporating MS-based profiling of complex
biological mixtures such as blood, urine or tissue (Ackermann et al.,
2006; Gerszten and Wang, 2008; Howie-Esquivel and White, 2008;
Kell, 2007; Lewis et al., 2008a). Biomarkers have a substantial
impact on the care of patients with cardiovascular disease. For
example, troponin is an accepted diagnostic marker for myocardial
infarction, and B-type naturetic peptide aids in diagnosis and
prognostication in myocardial infarction and heart failure (Collinson
and Gaze, 2007; Maisel et al., 2008; Sabatine et al., 2005). However,
there are no sensitive and specific early biomarkers of myocardial
injury, and therefore the complementary power of modern profiling
techniques and emerging bioinformatics tools are being utilized for
the discovery of new biomarkers.

Modern metabolite profiling to analyze low-molecular weight
analytes such as nucleotides, amino acids, organic acids, sugars
or peptides is typically performed by nuclear magnetic resonance
spectroscopy or tandem mass spectrometry (MS/MS) technologies
(Baumgartner and Graber, 2007; Dettmer et al., 2007; Jemal
and Xia, 2006). In particular, targeted MS-based platforms, using
MS/MS coupled with liquid chromatography (LC), allow analysis of
metabolites with high sensitivity and structural specificity, and thus
minimize potentially confounding clinical variables. However, such
platforms still preclude the analysis of large number of samples.
From the clinical perspective, comparisons of metabolite profiles
from quantitative targeted assays in disease versus non-disease
states may bring forth novel biomarkers that have the potential to
substantially improve cardiovascular diagnostics and support risk
prediction of future life-threatening events (Lewis et al., 2008a,b;
Sabatine et al., 2005).
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In general, the process of searching for biomarkers in biological
samples is highly data driven and dependent on the application
of multivariate data mining and statistical bioinformatics methods
(Larrañaga et al., 2006; Osl et al., 2008; Shulaev, 2006). Feature
selection is a common method for identifying significant variables
in multidimensional biomedical data, typically applied prior to
classification and biological interpretation. In addition to traditional
null-hypothesis significance testing, widely used data mining
methods such as filters, wrappers or more powerful meta-learning
approaches are used to substantially reduce the dimensionality of
data and allow for the search of those variables that exhibit the
best discriminatory ability and prediction. Filters rank variables
based on their ability to discriminate predefined cohorts. Different
entropy-, correlation- or rule-based evaluation measures such as the
information gain, reliefF (RF) or associative voting are available
to be applied for feature ranking (Hall and Holmes, 2003; Osl
et al., 2008; Saeys et al., 2007). In contrast wrappers use classifiers
to evaluate the features’ discriminatory ability, exploiting various
heuristic paradigms for the search through the feature space to
identify reliable predictor subsets, but having the drawback of
extensive computational costs. Further improvement in feature
selection is achieved by introducing meta-learning models such as
embedded or ensemble-based methods (Netzer et al., 2009; Saeys
et al., 2008).

In biomarker cohort studies a variety of experimental designs
are used, from case–control studies to more complex cross-over
or serial sampling designs. In particular serial sampling studies
allow patients to serve as their own biological controls and permit
investigation of kinetic characteristics of circulating analytes by
tracking alterations in levels over time. Standard paired null-
hypothesis significance testing or repeated measure analysis are the
common methods of making statistical decisions from dependent
samples (the null hypothesis H0, which usually states that two groups
do not differ is rejected in favor of an alternative hypothesis H1,
which typically states that the groups differ) using the P-value as
an evaluation criterion for the discriminatory ability of variables.
Statistical tests calculate whether confidence in a hypothesis based
solely on a sample-based estimate exceeds a significance level,
but they do not allow for a general, valid, clinically relevant
categorization of selected metabolites because the P-value is a
random variable defined over the sample space (size) of the
experiment. To help circumvent this problem, alternative feature
selection methods appear to be the better choice for selecting and
prioritizing variables, but these methods as described above rely on
concepts of unpaired testing and thus are not readily applicable to
dependent, longitudinal data.

In this article, we introduce a new qualitative and quantitative
evaluation model for prioritizing metabolic signatures in
independent and dependent populations, and perform receiver
operating curve (ROC) analysis to estimate the power of the
method to search for highly predictive biomarkers compared with
statistical significance testing and other popular feature selection
methods. We evaluate the method’s paired variant on data obtained
from applying a targeted MS-based metabolite profiling platform to
serial blood samples drawn from patients undergoing alcohol septal
ablation for hypertrophic obstructive cardiomyopathy (HOCM), a
human model of planned myocardial infarction (PMI) that faithfully
reproduces spontaneous myocardial infarction (Lakkis et al., 1998).
Data on patients with spontaneous myocardial infarction (SMI) and

patients undergoing catheterization without induction of myocardial
infarction (controls) were obtained to evaluate the method from the
perspective of an independent test hypothesis.

2 METHODS

2.1 Targeted LC–MS/MS metabolite profiling
We incorporated metabolites in our platform to cover a broad array of
metabolic pathways and to include ‘sentinels’ in metabolic pathways known
to be involved in human energy homeostasis (i.e. TCA cycle intermediates,
purine biosynthesis, etc) and cardiovascular disease. Metabolites were
excluded if they were not readily detectable by LC–MS/MS analysis. The
detailed protocol of MS analysis was recently published in Lewis et al.
(2008b). Briefly, blood samples were drawn during the procedure and
collected in K2EDTA-treated tubes. Samples were immediately centrifuged
and the supernatant plasma was aliquoted for separation using high-
performance LC (HPLC). Three HPLC columns for separating sugars,
ribonucleotides, organic acids and amino acids were aligned in sequence
with a triple quadrupole mass spectrometer (AB4000Q, Applied Biosystems,
MA, USA) using a turbo ion spray LC/MS interface. Targeted MS/MS
analysis using selective reaction monitoring conditions was performed
allowing monitoring a total of 210 metabolites for each sample. Targeted MS
methods using MS/MS coupled with LC permit highly specific identification
of analytes. Addition of isotope-labeled internal standards for selected
metabolites enabled absolute measurements of analyte concentrations by
integrating peak areas for parent–daughter ion pairs in MS/MS spectra.

2.2 A clinical model of PMI
We chose a clinical model of PMI that faithfully represents spontaneous
myocardial infarction to study kinetics of small molecules in human
plasma over time, as previously reported (Lewis et al., 2008b). We applied
targeted metabolite profiling to serial blood samples obtained from patients
undergoing alcohol septal ablation for HOCM. Serial sampling before
(baseline) and, according to our protocol, at 10, 60, 120 and 240 min after
injury allowed patients to serve as their own biological controls and permitted
kinetic analyses of circulating metabolites, particularly at early stage after
injury.

A total of 31 patients who underwent alcohol septal ablation for the
treatment of symptomatic HOCM were enrolled in this study. The number
of samples, however, partly differed between timepoints at 10 min (n = 31),
60 min (n = 28), 120 min (n = 25) and 240 min (n = 11). Inclusion criteria
as well as detailed patient characteristics can be found in Lewis et al.
(2008b). The protocol was approved by the Massachusetts General Hospital
Institutional Review Board, Boston, MA and all individuals gave written
informed consent.

2.3 Patients with SMI
A cohort of 12 patients undergoing emergency cardiac catheterization for
acute spontaneous ST-segment elevation myocardial infarction (SMI) was
enrolled within 8 h of symptom onset. Blood samples were drawn during
emergency catheterization. A second cohort of nine patients undergoing
elective, diagnostic cardiac catheterization for cardiovascular disease without
acute symptoms of myocardial ischemia was included in this study as a
control cohort. In both groups, blood was drawn prior to the onset of
catheterization and at 10 and 60 min after the procedure was completed.
A total of 26 samples from multiple timepoints in SMI and 18 samples in
controls were included. Note that for some timepoints, not all samples were
available for MS analysis.

2.4 Computational approach for biomarker search,
prioritization and dynamic analysis

2.4.1 Data preprocessing An extensive review of generated LC–MS data
to specified criteria and laboratory action items was performed to ensure
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a high level of reliability, completeness, reproducibility and consistency
in the data. We carefully examined raw data, determining if all requested
metabolites were accounted for, and targeted measurement levels were met,
and then correlated data of historical experiments to ensure that analyte levels
were stable over time. We applied a three-step preprocessing procedure on
technically validated data to provide quality assured datasets for the purpose
of biomarker search: (i) of the 210 measured metabolites, we excluded
metabolites with more than 20% missing values in the dataset (for each cohort
separately) to ensure relatively uniform conditions for statistical analysis;
(ii) to avoid distortion of statistical results, outlier detection was performed.
We applied a common statistical model using the interquartile ranges
(IQRs), defining an outlier as observation outside the range [Q1−k · IQR;
Q3 +k · IQR], with Q1, Q3 = first and third quartiles, IQR = Q3−Q1. We set
k = 3 to only remove ‘extreme’ outliers in the data. In this study, 4.4% of
MS values in PMI and 1.2% in SMI were detected as strong outliers and
removed from the datasets using this approach; and (iii) for kinetic analysis,
we normalized serial PMI data (four timepoints) to the metabolites’ baseline
levels, denoted in percent changes.

2.4.2 Prioritization model for paired and unpaired dichotomous samples
We developed a new univariate feature selection model for the search and
prioritization of metabolic signatures using serial PMI and SMI data.

(1) The model’s variant addressing the paired test problem: because main
features of a diagnostic test [sensitivity, specificity or the area under the
ROC (AUC)] are not defined for paired testing, we first introduced a new,
objective measure for expressing the discriminatory ability in dependent
samples. Therefore the discriminance measure for a paired test problem DA
is defined as the percent change of metabolite levels in a cohort in one
direction versus baseline. As an example, if 50% of cohort subjects yield
increasing or, respectively, decreasing metabolite levels, DA is calculated
to be 0.5 (this value corresponds exactly to AUC = 0.5 in unpaired testing),
denoting no discrimination. If 75 or 100% of subjects show increasing or,
respectively, decreasing levels, DA= 0.75 or 1.0, indicating good or perfect
discrimination.

Based on this definition, we developed the model’s variant pBI, termed
paired Biomarker Identifier, that combines the introduced discriminance
measure DA with a biological effect term calculated as the median percent
change in metabolite levels at timepoint tx versus baseline, �change, divided
by the coefficient of variation (CV) in the normalized data:

pBI =λ·DA∗ ·
√∣∣�change

∣∣
|CV| ·sign

(
�change

)
,

�change =
⎧⎨
⎩

� if�≥ 1

− 1
�

else

(1)

λ is a scaling factor (λ = 100 by default), DA* is the initial measure
DA (range 0.5–1) rescaled between 0 and 1, weighted by the effect term√∣∣�change

∣∣/|CV|. Note that a CV > 1 is set to 1 by default to consider solely

data distributions with smaller variance in normalized data to be interpreted
as a positive biological effect. The function sign() determines the direction of
change. In summary, pBI is built on four statistical determinants that are DA,
magnitude, variance and direction of changes in metabolite levels, permitting
a biologically feasible prioritization of metabolic signatures, as we propose,
into weak, moderate and strong predictors.

To evaluate the power of feature selection, pBI is benchmarked with a
paired, one sample, two-tailed significance hypothesis test (Student’s t-test
or Wilcoxon signed-rank test, the latter if the population is not normally
distributed). To our knowledge there are no adequate feature selection
methods to be compared with that operate on a paired test hypothesis.

(2) The model’s variant addressing the unpaired test problem: to
distinguish between two independent populations we determine the product
of the true-positive rates of both classes (TP2) as an objective measure
for discrimination. For calculating TP2, classifiers such as support vector

machines or logistic regression are used, the latter especially in a biomedical
setting (Cristianini and Shawe-Taylor, 2000; Hosmer and Lemeshow, 2000).
In a diagnostic test, TP2 is defined as the product of sensitivity and specificity
that is an accepted diagnostic parameter tightly associated with the AUC,
denoting the probability of correctly classifying a randomly selected true-
positive and true-negative subject. The product is now to be interpreted as
follows: if sensitivity and specificity is 0.5, TP2 = 0.25, indicating no valuable
discrimination (cf. DA= 0.5, paired testing). To guarantee true-positive and
true-negative values ≥0.5, we set TP2 = 0 if either sensitivity or specificity
is <0.5, thus indicating no discriminatory value, while TP2 = 1.0 depicts
perfect discrimination. Analogous to pBI, we developed the variant uBI,
termed unpaired Biomarker Identifier that is defined as:

uBI =λ·TP2∗ ·
√∣∣�change

∣∣ CVref

CV
·sign

(
�change

)
,

�change =
⎧⎨
⎩

� if�≥ 1

− 1
�

else
with�= x̄

x̄ref

(2)

λ is a scaling factor (λ = 100 by default). TP2∗ is the initial measure TP2

(range 0.25–1) rescaled between 0 and 1, and denotes the discriminatory
ability of a metabolite determined from logistic regression analysis in this
study (Homser et al., 2000). Analogous to DA, the discriminance measure

TP2∗ is weighted by a biological effect term
√∣∣�change

∣∣(CVref
/

CV
)
,

comprising the parameters �change and CV/CVref. The symbol �change

indicates changes in metabolites calculated as a relative increase or decrease
from the levels of a reference group (controls) and is divided by the quotient
CV/CVref, denoting changes in the variance of data across the two cohorts
where CV < CVref is interpreted as a positive biological effect. CV/CVref

values >1 are set to 1 (see also pBI). The function sign() determines the
direction of change. x̄ is the mean value of metabolite levels in both classes.
It should be noted that through rescaling the initial parameters DA and TP2,
the absolute pBI and uBI scores permit a high degree of comparability and
generalizability between both feature selection modalities.

We benchmarked uBI with two widely used feature selection methods
that are the information gain IG [the IG of a feature ai reflects how much
information the feature provides on the class attribute cj , and is calculated
by IG(ai) = E(cj)−E(cj |ai), where E(cj) is the entropy of the class cj and
E(cj |ai) is the conditional entropy of cj given ai] and RF, an instance-based,
multivariate feature selection method built on the assumption that useful
features have significantly different values for instances of different classes
and similar values for instances of the same class as well as standard statistical
hypothesis testing using an unpaired, two sample, two-tailed null-hypothesis
significance test (Student’s t-test or Mann–Whitney U-test if the population
is normally versus not normally distributed) (Hall and Holmes, 2003; Osl
et al., 2008).

2.4.3 Kinetic mapping For visualizing dynamic changes in metabolite
levels, we employed a 2D pseudocolor representation on serial pBI scores
calculated from given metabolites according to the proposed scheme of weak,
moderate and strong predictors.

2.4.4 ROC analysis to estimate the discriminatory ability of selected
metabolites To assess the predictive ability of variables to distinguish
between two independent samples (e.g. cases versus controls), an established
measure of a diagnostic test is the AUC (Fawcett, 2006). It incorporates
sensitivity and specificity as the two main features of the test. In the
ROC curve, specificity is usually denoted as 1–specificity. An AUC of 1
depicts a test with perfect discrimination, while an AUC of 0.5 denotes an
uninformative test (45◦ diagonal line in the graph). Alternatively, the product
of sensitivity and specificity can be used as a further accepted feature of a
diagnostic test. In this study, we also use ROC analysis to compare different
feature selection methods and to estimate their power to rank variables
according to their discriminatory ability. A χ2-statistics was applied for
testing differences between ROC curves being statistically significant.
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2.4.5 Cross validation to generalize findings As PMI and SMI cohorts
in this study are of small size, we applied a cross-validation strategy to
estimate the degree of reliability of results on a single derivation cohort.
Generally, in classification stratified 10-fold cross-validation is an accepted
statistical practice of partitioning a sample of data into 10 subsets where each
subset is used for testing and the remainder for training, yielding an averaged
overall error estimate. For feature selection, the dataset is also subdivided
into 10 partitions. The process is repeated 10 times, using nine partitions
for generating the feature ranking where rankings of each partitioning are
finally aggregated and expressed by a mean ± SD rank (Witten and Frank,
2005). We therefore applied 10-fold cross-validation to the process of feature
selection and ranking on PMI data (each timepoint separately) and SMI data
to reduce variability in findings. As another layer of validation, we compared
the results of both models (PMI versus SMI) to emphasize the methodological
and biological plausibility of identified biomarkers.

3 RESULTS

3.1 DA and categorization of metabolites using pBI
scores

We applied the new discriminance measure DA to paired testing in
order to define three classes of biomarkers of PMI: weak predictors,
defined by a DA cutoff of 0.6 (selected metabolites with DA< 0.6
have less or no predictive value), moderate predictors defined by
the cutoffs of 0.7 and 0.8 (0.7 ≤DA< 0.8), and strong predictors
equal to or above the threshold DA= 0.8. Using the transformed
measure DA* as implemented in Equation (1), rescaled DA cutoffs
(i.e. DA* = 0.2, 0.4 and 0.6) thus allow direct comparison with the
corresponding measure TP2* defined for independent samples.

We estimated the strength of the method pBI versus paired
Student’s t-test/Wilcoxon signed-rank test to select predictors
using ROC analysis. DA cutoffs as described above were used
to define the dependent variable (dichotomous), and pBI scores
and P-values calculated for analytes at all four timepoints served
as independent variables. A total of 173 metabolites, comprising
sugars, ribonucleotides, organic and amino acids, were included
in this analysis after data preprocessing as described in Section 2.
Subsequently standard logistic regression analysis was applied to
calculate the pBI score thresholds for the proposed categorization
scheme. Table 1 and Figure 1 show the detailed results. It can be seen
that AUC values ≤0.994 for DA* = 0.2, 0.4 and 0.6 underscore the

Table 1. Power of pBI (AUC) and score cuttoffs for analyte categorization
on PMI data

Strong
predictors

Moderate
predictors

Weak
predictors

DA (DA*) cutoff 0.8 (0.6) 0.7 (0.4) 0.6 (0.2)
|pBI| score cutoff 73 44 21
|pBI| score AUC 0.994 0.996 0.995
P-value AUC 0.943 0.912 0.842
H0: area(pBI) =

area(P-value)
χ2 27.5 63.1 145.5

P > χ2 0.0000 0.0000 0.0000

ROC analysis for estimating the power of the method pBI versus paired statistical
hypothesis testing (P-value) to select variables according to their predictive value.
A χ2-test was applied to determine statistical significance between ROC curves. Logistic
regression analysis was used to estimate pBI score cutoffs for classifying metabolites
as weak, moderate and strong predictors. A total of 702 data points, comprising 173
metabolites × four timepoints (excluding 15 NaN values) were used for ROC analysis.

expected high performance of the method pBI. It was our objective
to design a new scoring model that is tightly associated with the
discriminance measure DA (DA*), integrating additional metabolic
information expressed by the magnitude, variance and direction
of metabolite changes, and thus permitting feasible prioritization
of candidate biomarkers identified in longitudinal studies. Using
paired significance testing, AUC values (0.94, 0.91 and 0.84) were
statistically and significantly lower than pBI values (χ2-statistics,
P < 0.001; Table 1), confirming that pBI better ranks variables with
regard to their predictive value compared to P-value ratings.

As shown in Table 1, the pBI score thresholds were estimated
as follows: ≥21 for classifying weak, ≥44 for moderate and ≥73
for strong predictors. It should be noted that pBI may also allow a
further prioritization of metabolites beyond the cutoff for ‘strong’
predictors, however relying on the general discriminatory ability of
analytes determined by the complexity of the underlying metabolic
pathways. For example in less-intricate (monogenic) diseases such
as inborn errors of metabolism scores >100–500 in small sets
of metabolites are more likely, and are therefore termed as ‘key’
or ‘primary’ markers, showing extremely elevated levels (up to
10–100-fold higher levels versus reference), and DA or TP2 values
close to 1.0 (Baumgartner and Baumgartner, 2006).

3.2 DA and categorization of metabolites using uBI
scores

Analogous to pBI, we compared uBI’s power to select variables
with an unpaired Student’s t-test/Mann–Whitney U-test, and two
popular entropy- and correlation-based feature selection methods
that are the IG and RF using the SMI data (Table 2). Estimating the
model’s performance for weak predictors (TP2* = 0.2), uBI revealed
the largest AUC, achieving statistical significance (P = 0.0269)
compared with the other methods. For this predictor class, we
estimated an uBI score threshold of 27 that is only 6 score points
higher than for pBI. Using TP2* = 0.4, uBI also revealed the largest
AUC for the moderate predictor class, however, without achieving

Fig. 1. ROC curves and AUCs estimated for pBI versus paired statistical
hypothesis testing. We used the cutoffs DA* = 0.2 (weak predictors),
DA* = 0.4 and 0.6 (moderate and strong predictors, ROC curves not shown)
to define the dependent variable for ROC analysis. The inverse P-values and
absolute pBI scores were used in this analysis.
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Table 2. Power of uBI (AUC) and score cutoffs for analyte categorization
on SMI data

Strong
predictors

Moderate
predictors

Weak
predictors

TP2 (TP2*) cutoff 0.7 (0.6) 0.55 (0.4) 0.4 (0.2)
|uBI| score cutoff – 50 27
|uBI| score AUC – 0.990 0.994
P-value AUC – 0.980 0.971
IG AUC – 0.980 0.937
RF AUC – 0.857 0.938
H0: area(uBI) =

area(P-value) =
area(IG) = area(RF)

χ2 – 1.06 9.19

P > χ2 – 0.7856 0.0269

ROC analysis for estimating the power of the method uBI versus unpaired statistical
testing (P-value), and IG and RF to rank variables according to their predictive value.
A total of 102 metabolites were considered for analysis to estimate the uBI cutoffs for
categorization. Too little data were available to perform a representative ROC analysis
for TP2* = 0.6.

Fig. 2. ROC curves and AUCs estimated for uBI versus unpaired statistical
testing (P-value), IG and RF are depicted. TP2(TP2*) is set to 0.4 (0.2)
for defining the weak predictor class. TP2 is the product of sensitivity and
specificity. The inverse P-values and absolute uBI scores were used in this
analysis.

statistical significance. The score cutoff for this class was calculated
to be 50 (cf. 44 in pBI).

Not enough data was available beyond TP2* = 0.6 to carry out
this analysis. Assuming a positive intercept of roughly 5 score
points between PMI and SMI cutoffs, it seems to be likely that the
threshold for strong predictors lies in the range of 75–80. However,
despite the limited data available for this analysis, uBI yielded
the best performance of ranking variables with respect to their
discriminatory ability for both the weak and moderate predictor
classes. The corresponding ROC curves for the weak predictor class
are depicted in Figure 2.

3.3 Kinetic analysis of metabolites in PMI
We studied peripheral blood samples in a cohort of 31 patients
to analyze alterations in analyte levels across multiple timepoints.
Figure 3 shows a 2D pseudocolor plot of pBI scores for a selected

Fig. 3. Kinetic map of amino acids on PMI data at 10, 60 and 240 min
after myocardial injury using the pBI scores. Red color increments indicate
decreasing levels and blue indicates increasing levels.

group of metabolites (amino acids) at 10 min (t10), 60 min (t60)
and 240 min (t240) after myocardial injury. Scores are sorted by
column t10 in descending order to focus on the investigation of early-
appearing biomarker candidates. A 2D plot of additional interesting
metabolites is shown in Supplementary Figure A. Within the class
of amino acids, e.g. alanine showed decreased concentration levels
≤60 min, while other early metabolites like threonine and serine
changes persisted between 10 and 240 min after injury. Interestingly,
isoleucine/leucine (Ile/Leu) yielded increased levels as early as
10 min, but decreased levels >60 min after injury and again changes
in levels with reverse direction of >240 min. According to the pBI
score scheme, all these metabolites revealed moderate predictive
value. Tryptophan, phenylalanine and tyrosine classified as strong
predictors at the 10- and 60-min timepoint appeared to be promising
biomarker candidates. However, these metabolites also changed with
cardiac catheterization alone, indicating their lack of specificity
for myocardial injury, and therefore were excluded from further
analysis.

Interestingly, further candidates of early-appearing metabolites
include products of purine and pyrimidine catabolism (ATP, ADP,
hypoxanitine, xanitine and malonic acid) being classified as strong
predictors, trimethylamine N-oxide (TMNO), which is associated
with injury-mediated modulation of dietary compounds, kynurenine
and a spectrum of weak predictors including inosine, which has
been shown to reduce cardiomyocyte apoptosis (Bäckström et al.,
2003; Goldhaber et al., 1982). Figure 4, for example, singles out the
dynamic characteristic of hypoxanthine in a bar graph according to
the pBI scoring categorization scheme.

3.4 Prioritization of metabolic markers in SMI
We evaluated the uBI model on data provided from patients with
SMI presenting for acute coronary angiography versus patients
undergoing elective, diagnostic cardiac catheterization without
acute coronary syndromes serving as controls. For this analysis,
a total of 102 metabolites after data preprocessing were available.
Supplementary Figure B shows the prioritized list of metabolites
using the uBI score scheme, the values obtained from the methods
IG, RF and unpaired statistical testing, the relative increase or
decrease of metabolite levels in SMI from those of the reference
cohort expressed as median percent change, as well as the product
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Fig. 4. Kinetic characteristic of hypoxanthine: categorization of pBI scores
across the timepoints at 10, 60 and 240 min after PMI are exemplarily shown
(height of bars). Values above bars denote median (IQR) of relative changes
in levels versus baseline in percent.

of sensitivity and specificity (TP2) and AUC for each single
analyte. Interestingly, malonic acid alone, which is a product of the
pyrimidine catabolism, revealed highest predictive value expressed
by an AUC = 0.86 and a product of 0.75 (cross-validated) and thus
is classified as strong predictor. Not surprisingly, lactic acid, a
metabolite related to myocardial anaerobic metabolism, showed a
high AUC value of 0.74 as well and was classified as a moderate
predictor.

3.5 Validation of metabolic markers in SMI
The exact time of onset of SMIs relative to sample collection was
heterogeneous (between 1 and 4 h, 162 ± 102 min), and sample size
and number of metabolites were smaller in SMI. However, we found
good concordance in direction of changes and absolute pBI and uBI
scores in multiple metabolites between SMI and PMI at timepoints
60, 120 and 240 min. Examples of the top-ranked metabolites
include: malonic acid [SMI: −97 versus PMI: 84 (60 min), −39
(120 min) and −76 (240 min)] or lactic acid (SMI: 37 versus PMI:
−11, 30 and 89). In our recently published study on PMI (Lewis
et al., 2008b), we also focused on a group of metabolites that
includes aconitic acid, hypoxanthine, TMNO and threonine that
changed significantly in a sustained pattern at each of the 60-, 120-
and 240-min timepoints after PMI, showing analogous behavior in
direction and magnitude of changes in SMI as well.

These results demonstrated that pBI and uBI are feasible models
to qualitatively and quantitatively assess altered metabolic patterns
in static and dynamic phenotypes, and confirm that metabolic
biomarkers derived in the PMI model were similarly changed in the
SMI samples, underscoring the effectiveness and the generalizability
of this approach.

4 DISCUSSION AND CONCLUSION
A successful metabolic profiling biomarker discovery study in
clinical metabolomics relies on a carefully planned experimental
design, appropriate clinical study execution, and the use of emerging
analytical and bioinformatics tools. We applied a targeted MS-based
metabolite platform, which provides high analyte specificity, to

blood samples obtained from patients with planned and spontaneous
myocardial infarction.

The objective was to search for highly discriminatory metabolic
biomarkers participating in pathways associated with myocardial
infarction, particularly in the initial hours after myocardial injury
when clinically available protein-based biomarkers are not yet
elevated. Coupling this technology platform with biostatistics
and bioinformatics permits, after careful technical validation
and preprocessing of data, the identification, prioritization and
verification of biochemicals to characterize the organism’s response
to an intervention or disease.

To estimate the discriminatory ability of selected single and
multiple biomarkers as potential tools for diagnostics, risk prediction
or disease screening, we have introduced a new scoring model,
termed pBI and uBI, for the univariate search and categorization of
altered static and dynamic patterns in multidimensional metabolic
data. The proposed data mining method aims at enhancing the
predictive power of selected analytes by combining objective
measures of discrimination such as DA or TP2 with metabolic
determinants expressed by changes in magnitude, variance and
direction in metabolite levels versus baseline (pBI) or versus an
independent reference group (uBI). It should be emphasized that
our model (i) can be applied to both dependent and independent
samples, (ii) overcomes the problem of interpreting ‘relative’ P-
values that exceed or do not exceed significance levels when
applying statistical null-hypothesis testing, (iii) revealed higher
performance than statistical testing and other feature selection
methods for ranking variables according to their predictive value
and (iv) provides a reliable biomarker categorization scheme of high
diagnostic and prognostic relevance.

Beyond the utility to study static phenotypes, we chose a serial
sampling design in PMI, first to search for correlations and kinetic
relations between early- and later-appearing metabolites, thus giving
a deeper insight into kinetic mechanisms of metabolites involved in
pathways associated with myocardial injury. Secondly, due to the
profound degree of interindividual variability observed in multiple
cohort studies and limitations of the technology that still suffers from
moderate signal-to-noise ratios, serial sampling studies overcome
these restrictions because each patient serves as his or her own
biological control, which significantly reduces the platform-based
variability.

Presently used indicators of myocardial injury such as cardiac
troponin or the myocardial isoform of creatine kinase are not readily
detectable until at least 4 h after myocardial injury (Zimmerman
et al., 1999). In this study, we identified significant metabolite
alterations in the PMI cohort that were unambiguously apparent
as early as 10 min after injury and validated using a stratified cross-
validation strategy. We utilized our scoring model to visualize and
prioritize dynamic changes across a spectrum of timepoints using a
2D pseudo color representation that allows for a quick and extensive
review for kinetic patterns inherent in the data. It should be noted
that because of the small sample size in both PMI and SMI cohorts,
statistical reliability of pBI and uBI score thresholds is somewhat
limited. Future studies with more data will be necessary to further
enhance statistical significance of results. Nonetheless, it could be
seen that determined uBI score cutoffs in SMI data show good
concordance with pBI cutoffs estimated in PMI, and thus underscore
the high degree of comparability and reliability between both scoring
model variants.
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To assess generalizability, we compared findings in PMI and
SMI, serving as another layer of validation that underscores the
methodological and biological plausibility demonstrated in this
study. A pool of interesting metabolites associated with myocardial
injury could be identified and verified, some of which by applying
our scoring scheme at the level of weak, moderate or strong
predictors, while other metabolites did not fulfill these criteria,
but revealed high concordance in direction and magnitude of
changes without achieving statistical significance. Nevertheless,
differences in predictive value of metabolic biomarker candidates
found in PMI versus SMI need to be further discussed from the
perspective of heterogeneous sample collection relative to the exact
onset of SMI, interindividual variability apparent in regular case–
control versus longitudinal studies, and also due to differences in
subcellular mechanisms in PMI compared with ‘normal’ patients
with myocardial infarction.

In summary, we demonstrated the power of coupling the
application of a metabolomics platform to patients with PMI and
SMI with efficient statistical bioinformatics methods for aiding in
the discovery of new blood biomarkers in disease. Nevertheless,
metabolomics remains resource intensive, but with emerging
technologies high-throughput metabolite profiling promises to
become a reality. We were able to identify a series of metabolites
participating in pathways tightly associated with myocardial
infarction or human cardiovascular disease in general (i.e. purine and
pyrimidine metabolism, the tricarboxylic acid cycle and its upstream
contributors, and anaerobic glycolysis), some of which changed as
early as 10 min after injury, a time frame in which no currently
available clinical biomarkers are present. We confirmed changes in
metabolic pathways that are known to be modulated by myocardial
injury from animal models of myocardial infarction and highly
invasive sampling during cardiopulmonary bypass in humans. For
example, we detected sequential purine degradation products (ATP,
ADP, hypoxanthine and xanthine), TCA cycle intermediates and
intermediates of anaerobic glycolysis (lactic acid) (Bäckström et al.,
2003; Goldhaber et al., 1982, Mei et al., 1996, Turgan et al., 1999;
Zimmerman et al., 1999). We were also able to find plasma metabolic
markers of myocardial injury.

The developed scoring model greatly exceeds traditional
feature selection methods including statistical significance testing,
and enabled us to identify, categorize and verify candidate
biomarkers based on their predictive value in paired and unpaired
testing. We propose our new feature selection method as an
efficient bioinformatics tool for biomarker discovery in clinical
metabolomics to aid in diagnostics and risk prediction of
cardiovascular disease.

Funding: Austrian Genome Program GEN-AU, project
‘Bioinformatics Integration Network’ (to C.B. and M.N.);
NIH (K23HL091106 to G.D.L. and R01 HL072872, U01HL083141
and R01DK081572 to R.E.G.); the Donald W. Reynolds Foundation
(to R.E.G.); Foundation Leducq (to R.E.G.); American Heart
Association Fellow-to-Faculty Award (to G.D.L.); Established
Investigator Award (to R.E.G.).

Conflict of Interest: none declared.

REFERENCES
Ackermann,B.L. et al. (2006) The role of mass spectrometry in biomarker discovery

and measurement. Curr. Drug Metab., 7, 525–539.

Baumgartner,C. and Baumgartner,D. (2006) Biomarker discovery, disease
classification, and similarity query processing on high-throughput MS/MS
data of inborn errors of metabolism. J. Biomol. Screen., 11, 90–99.

Baumgartner,C. and Graber,A. (2007) Data mining and knowledge discovery in
metabolomics In: Masseglia,F., Poncelet,P. et al. (eds) Successes and New
Directions in Data Mining. IGI Global, Hershey, PA and London, UK, pp. 141–166.

Bäckström,T. et al. (2003) Cardiac outflow of amino acids and purines during
myocardial ischemia and reperfusion. J. Appl. Physiol., 94, 1122–1128.

Collinson,P.O. and Gaze,D.C. (2007) Biomarkers of cardiovascular damage and
dysfunction–an overview. Heart Lung Circ., 16(Suppl. 3), S71–S82.

Cristianini,N. and Shawe-Taylor,J. (2000) An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge University Press,
Cambridge.

Dettmer,K. et al. (2007) Mass spectrometry-based metabolomics. Mass Spectrom. Rev.,
26, 51–78.

Fawcett,T. (2006) An introduction to ROC analysis. Pattern Recognit. Lett., 27,
861–874.

Gerszten,R.E. and Wang,T.J. (2008) The search for new cardiovascular biomarkers.
Nature, 451, 949–952.

Goldhaber,S.Z. et al. (1982) Inosine: a protective agent in an organ culture model of
myocardial ischemia. Circ. Res., 51, 181–188.

Hall,M.A. and Holmes,G. (2003) Benchmarking attribute selection techniques for
discrete class data mining. IEEE Trans. Knowl. Data Eng., 15, 1437–1447.

Hosmer,D.W. and Lemeshow,S. (2000) Applied Logistic Regression. 2nd edn. Wiley,
New York, NY.

Howie-Esquivel,J. and White,M. (2008) Biomarkers in acute cardiovascular disease.
J. Cardiovasc. Nurs., 23, 124–131.

Jemal,M. and Xia,Y.Q. (2006) LC-MS development strategies for quantitative
bioanalysis. Curr. Drug Metab., 7, 491–502.

Kell,D.B. (2007) Metabolomic biomarkers: search, discovery and validation. Expert
Rev. Mol. Diagn., 7, 329–133.

Lakkis,N.M. et al. (1998) Echocardiography-guided ethanol septal reduction for
hypertrophic obstructive cardiomyopathy. Circulation, 98, 1750–1755.

Larrañaga,P. et al. (2006) Machine learning in bioinformatics. Brief. Bioinform., 7,
86–112.

Lewis,G.D. et al. (2008a) Application of metabolomics to cardiovascular biomarker and
pathway discovery. J. Am. Coll. Cardiol., 52, 117–23.

Lewis,G.D. et al. (2008b) Metabolite profiling of blood from individuals undergoing
planned myocardial infarction reveals early markers of myocardial injury. J. Clin.
Invest., 118, 3503–3512.

Maisel,A.S. et al. (2008) Timing of immunoreactive B-type natriuretic peptide levels
and treatment delay in acute decompensated heart failure: an ADHERE (Acute
Decompensated Heart Failure National Registry) analysis. J. Am. Coll. Cardiol.,
52, 534–540.

Mei,D.A. et al. (1996) Simultaneous determination of adenosine, inosine, hypoxanthine,
xanthine, and uric acid in microdialysis samples using microbore column high-
performance liquid chromatography with a diode array detector. Anal. Biochem.,
238, 34–39.

Netzer,M. et al. (2009) A new ensemble-based algorithm for identifying breath gas
marker candidates in liver disease using ion molecule reaction mass spectrometry
(IMR-MS). Bioinformatics, 25, 941–947.

Osl,M. et al. (2008) A new rule-based data mining algorithm for identifying metabolic
markers in prostate cancer using tandem mass spectrometry. Bioinformatics, 24,
2908–2914.

Sabatine,M.S. et al. (2005) Metabolomic identification of novel biomarkers of
myocardial ischemia. Circulation, 112, 3868–3875.

Saeys,Y. et al. (2007) A review of feature selection techniques in bioinformatics.
Bioinformatics, 23, 2507–2517.

Saeys,Y. et al. (2008) Robust feature selection using ensemble feature selection
techniques. In Proceedings of the European conference on Machine Learning and
Knowledge Discovery in Databases. Part II, Antwerp, Belgium. Vol. 5212 of Lecture
Notes in Artificial Intelligence, Springer, Berlin, Heidelberg, pp. 313–325.

Shulaev,V. (2006) Metabolomics technology and bioinformatics. Brief. Bioinform., 7,
128–139.

Turgan,N. et al. (1999) Urinary hypoxanthine and xanthine levels in acute coronary
syndromes. Int. J. Clin. Lab. Res., 29, 162–165.

Witten,I.H. and Frank,E. (2005) Data mining: Practical Machine Learning Tools and
Techniques. 2nd edn. Morgan Kaufmann Publishers, San Francisco.

Zimmerman,J. et al. (1999) Diagnostic marker cooperative study for the diagnosis of
myocardial infarction. Circulation, 99, 1671–1677.

1751


