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ABSTRACT

Motivation: Granzyme B (GrB) and caspases cleave specific protein
substrates to induce apoptosis in virally infected and neoplastic
cells. While substrates for both types of proteases have been
determined experimentally, there are many more yet to be discovered
in humans and other metazoans. Here, we present a bioinformatics
method based on support vector machine (SVM) learning that
identifies sequence and structural features important for protease
recognition of substrate peptides and then uses these features to
predict novel substrates. Our approach can act as a convenient
hypothesis generator, guiding future experiments by high-confidence
identification of peptide-protein partners.
Results: The method is benchmarked on the known substrates of
both protease types, including our literature-curated GrB substrate
set (GrBah). On these benchmark sets, the method outperforms a
number of other methods that consider sequence only, predicting at
a 0.87 true positive rate (TPR) and a 0.13 false positive rate (FPR)
for caspase substrates, and a 0.79 TPR and a 0.21 FPR for GrB
substrates. The method is then applied to ∼25 000 proteins in the
human proteome to generate a ranked list of predicted substrates of
each protease type. Two of these predictions, AIF-1 and SMN1, were
selected for further experimental analysis, and each was validated as
a GrB substrate.
Availability: All predictions for both protease types are publically
available at http://salilab.org/peptide. A web server is at the same
site that allows a user to train new SVM models to make predictions
for any protein that recognizes specific oligopeptide ligands.
Contact: craik@cgl.ucsf.edu; sali@salilab.org
Supplementary information: Supplementary data are available at
Bioinformatics online
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1 INTRODUCTION
Protein–peptide specificity is an important biological phenomenon.
There are many systems in which a protein recognizes a specific
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amino acid sequence, often falling on a flexible, solvent-exposed
region of another protein. Such systems include the modular
scaffolding PDZ domains, which recognize specific sequences on
the C-terminal tails of their substrates (Jemth and Gianni, 2007);
multifunctional SH3 domains, which recognize a linear motif of
the form Pro-Xaa-Xaa-Pro (Kaneko et al., 2008); and class I MHC
proteins, which bind nine-residue peptides with specificity varying
across different MHC molecules (Sieker et al., 2009).

Here, we focus on the protein–peptide specificity of the pro-
apoptotic proteases granzyme B (GrB) and caspases interacting with
their respective protein substrates. GrB is a serine protease delivered
by natural killer cells into virally infected and tumor cells (Pardo
et al., 2009; Russell and Ley, 2002). The caspases are a family
of endogenous cysteine proteases activated by extracellular death
ligands and environmental stresses (Nicholson and Thornberry,
2003). Both protease types recognize and cleave specific peptide
sequences containing an aspartic acid residue on their target
substrates, activating different pathways that lead to cell death.
Identifying these substrates has led to a wealth of knowledge about
how the proteases contribute to apoptosis, how the cleavage events
lead to cell death, and which substrates to target for therapeutic
purposes.

Substrates of the two protease types have been discovered with
a variety of experimental techniques, ranging from low-throughput
gel-based methods to proteomic efforts that can identify hundreds
of cleaved proteins (Bredemeyer et al., 2005; Casciola-Rosen et al.,
1999; Dix et al., 2008; Mahrus et al., 2008). However, different
datasets overlap only partially, indicating that many substrates
remain to be identified. For example, two proteomics studies,
respectively, reported 261 and 292 caspase cleavage sequences,
although the high-confidence overlap between the two sets was only
64 [Fig. 1A in Johnson and Kornbluth (2008)].

To reduce this gap, accurate computational techniques could
be used to predict protein–peptide interactions for guiding further
focused experiments. A number of approaches have been taken in the
systems described. For PDZ interactions, examples of such methods
include position-specific scoring matrices (PSSMs; Stiffler et al.,
2007) and Bayesian inference (Chen et al., 2008). SH3 binding
partners have been predicted with neural networks (Ferraro et al.,
2005; Zhang et al., 2006) and MHC class I interactions have been
predicted with support vector machines (SVMs; Jacob and Vert,
2008). Finally, molecular docking methods have been developed to
analyze both systems (Bui et al., 2006; Hou et al., 2009).
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Fig. 1. Flowchart of procedure. Peptides are scored with the SVM trained
on sequence and structure features; the peptides that pass the cutoffs derived
from benchmarking are the final candidates for experimental validation.

Computational methods have also been applied to predict
substrates recognized by GrB and caspases. These methods take
advantage of both protease types having a near-absolute requirement
for Asp at the P1 position, while allowing degenerate preference for
different residue types in the positions immediately surrounding P1.
These studies rely on fixed sequence searches. (Wilkins et al.,
1999), PSSMs based on frequencies of residue types in known
cleavage sites (Garay-Malpartida et al., 2005; Lohmüller et al.,
2003; Verspurten et al., 2009) and positional-scanning combinatorial
substrate libraries (PS-SCLs; Backes et al., 2005; Boyd et al., 2005),
SVMs using residue composition around the cleavage site (Wee
et al., 2006), and Bayesian neural networks (Yang, 2005).

Cleavage sequences for both GrB and caspases are generally
thought to occur on flexible, disordered regions of substrates
(Hubbard, 1998). However, it was previously shown in an analysis
of caspase substrate structures that many of these known cleavage
sites are in α-helices and even occasionally on β-strands (Mahrus
et al., 2008; Timmer et al., 2009). This observation motivates
the choice of a machine learning algorithm that relies on the
structure as well as sequence information. Here, we describe such
a protocol incorporating SVM learning. The method is trained
and benchmarked on separate pools consisting of known GrB and
caspase cleavage sequences. It is then applied to the human proteome
to generate a list of high-confidence predictions for experimental
validation. Two such candidates are the proteins AIF-1 and SMN1,

which are experimentally validated as being cleaved by GrB. The
approach has the potential to provide greater coverage of substrates
for both GrB and caspases, and can be easily adapted to other
protein–peptide systems through our web server that can learn from
any user-supplied protein–peptide training set.

2 METHODS

2.1 Structural characteristics of sequences
Datasets of known cleavage sequences were compiled for benchmarking,
and all human proteome octapeptides with Asp in the fourth position were
processed for the application step (Section 3). Comparative models were
generated by the automated modeling pipeline ModPipe (Pieper et al.,
2009), and only good quality models [those predicted to have >80% of
their C-α atoms within 3.5 Å of the native state, as assessed by the model
evaluation algorithm TSVMod (Eramian et al., 2008)] were considered
(Fig. 1, step 2b). It has been previously shown that secondary structure
features computed from accurate comparative models are similar to those for
crystallographic structures (Chakravarty and Sanchez, 2004). For a solved
structure or a comparative model, the DSSP program was used to assess
secondary structure (mapping results ‘H’, ‘G’ and ‘I’ to α-helix; ‘B’ and ‘E’
to β-sheet; and ‘S’, ‘T’ and ‘L’ to loop) and solvent accessibility (Kabsch and
Sander, 1983; Fig. 1, step 2c). When a structure or model was not available,
sequence-based algorithms were used to predict secondary structure (Fig. 1,
step 2a; Jones, 1999). A sequence-based algorithm was also used to predict
disorder on all known substrates regardless of whether a structure or model
was available (Jones and Ward, 2003). A cleavage sequence was defined as
being in a loop if four or more of its residues were predicted to be in this
conformation, devoid of regular secondary structure; similarly, a cleavage
sequence was defined to be solvent accessible if four or more of its residues
were >16% exposed to solvent (Kabsch and Sander, 1983). Error bars
represent two times an SD, which is calculated for a binomial experiment
with (n∗p∗ (1−p))1/2; values for n can be found in Supplementary Figure 1a.
Training on octapeptides spanning P4 to P4′ gave the best performance
relative to peptides of other lengths and positions (data not shown).

2.2 Scoring of potential cleavage sites by an SVM
SVMs are machine learning algorithms that can be used for classification.
They create a kernel function hypersurface that maximally separates two sets
of n-dimensional training set (i.e. classified) vectors, followed by predicting
an unclassified vector as falling on one side or the other of the separation.
Each dimension in the vector is a feature number, which has a corresponding
value. Here, a single cleavage sequence had eight features representing its
oligopeptide sequence. Each residue was assigned a feature number by the
formula n∗20+i, where n represents the zero-based position in the peptide
sequence of the residue and i represents the position of the residue in a zero-
based alphabetical ordering of all residues. Thus, a glutamate (i=3) in the
second position (n=1) would have the feature number 23. The value for all
sequence features was 1.

The outputs of the structural assessment algorithms were used to create
additional features for each cleavage sequence. Each of these algorithms
assigned a value to each residue in the cleavage sequence. The program
Disopred outputs values from 0 to 1 that correspond to the predicted degrees
of disorder. DSSP outputs a calculated solvent accessibility fraction and both
DSSP and PSI-PRED output a predicted structure type of loop, α-helix or
β-sheet. These algorithms each added eight features to a cleavage sequence,
where the structure types were assigned the values 1, 2 and 3 corresponding
to loop, helix and sheet, respectively, and the other values were the raw score
outputs of the algorithms.

The SVM-light software was used to execute the SVM algorithm
(Joachims, 1999; Fig. 1, step 3). A radial basis kernel function was used,
sampling different values of the parameters C (selecting from 1, 10, 100
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and 1000) and γ (0.01, 0.1, 1, 10 and 100) to find those that performed best
in the assessment, as has been done previously (Wee et al., 2006).

2.3 Benchmarking of scoring by jackknifing
A jackknife procedure was employed to test different scoring functions, in
which 90% of the positives for each type of protease were randomly selected
into a training set, and the remaining 10% were placed in a test set, along
with the known negatives. The ratio of negatives to positives in the test
set was 39 : 1 for the GrB benchmark and 35 : 1 for the caspase procedure,
reflecting the ratio of negatives to positives observed in respective known
substrates. Scores for the peptides were ranked and the false positive rate
(FPR) against the true positive rate (TPR) was assessed at different score
thresholds (Fig. 1, step 4). The jackknife procedure was repeated 1000 times
and the results were averaged. Error bars for the averaged FPR µ at each
TPR represent two times an SD, which is calculated over the distribution of
FPRs for all iterations (x from i to N) by ((1/N)

∑
(xi −µ)2)1/2.

To ensure that random assignment of all experimentally identified peptides
into different training and testing sets did not artificially influence predictive
accuracy due to some similarities between the two sets, a separate jackknifing
procedure was performed and compared the original to random assignment.
Here, for each peptide x in the test set, no other peptide y was included in
the training set if y was derived from a protein with >25% sequence identity
to the protein from which x was derived. These included other peptides on
x’s protein itself. We describe this restriction as ‘homolog-filtering’.

2.4 Comparison of the protocol to other approaches
We applied to the datasets the following published methods: (i) an SVM
trained on sequence information, using the original encoding and parameter
sampling scheme (Wee et al., 2006); (ii) the GrabCas method, which
incorporates in vitro PS-SCLs into a PSSM, using default parameters; (iii) a
PSSM based on the frequency of residue types appearing in each position
in the training set, incorporating the generalized PoPS algorithm to score a
sequence (Boyd et al., 2005).

2.5 Experimental validation on select substrates
The method was applied to all octapeptides in the human proteome
with Asp in the fourth position. Certain peptides were selected for
experimental validation using the following procedure. The expression
of a predicted substrate at the mRNA level was determined by
consulting the BioGPS database (https://biogps.gnf.org/; Fig. 1, step 5).
The availability of a literature-validated antibody was determined by
consulting http://www.labome.com. K562 cells were grown in Iscove’s
modified Dulbecco’s medium, 10% FBS, 1× Glutamax, 1× Penn/Strep to a
density of ∼5×105 cells/ml. K562 cells were harvested by centrifugation,
washed in PBS, and lyzed in MPER™ (Thermo Scientific, Rockford, IL)
at 1×107 cells/ml according to the manufacturer’s instructions. Protein
concentration was determined by BCA assay (Thermo Scientific, Rockford,
IL).

Pichia-expressed human GrB (Thornberry et al., 1997) and Escherichia
coli-expressed human caspase-3 and -8 (Stennicke and Salvesen, 1999) were
purified as previously described. K562 MPER™ lysates were diluted 1 : 2
into 500 mM HEPES pH 8.0, 100 mM NaCl, 0.01% Tween-20 to raise the
pH for optimal GrB activity and diluted 1 : 2 into MPER and 20 mM DTT for
optimal caspase activity. GrB or a mixture of caspase-3 and -8 were added
for either 1 h or ∼19 h before quenching proteolysis by adding LDS sample
buffer (Invitrogen, Carlsbad, CA) and incubating at 70◦C for 10 min. The
final concentration of exogenous protease (GrB or total caspase) was 1µM,
500, 250, 100, 50 and 25 nM. Untreated lysate was incubated for 19 h to
account for the activity of endogenous proteases. Caspase-inhibited lysates
were pretreated with 100µM z-VAD-FMK (Bachem, Torrance, CA) and
100µM z-DEVD-FMK (Bachem, Torrance, CA) for at least 1 h at 37◦C and
then treated with GrB as described. To verify that the exogenous protease
added to the lysate was active, immunoblots against validated substrates

were performed as described: pro-caspase-3 for GrB, PARP for caspase-3
and BID for caspase-8 (Supplementary Fig. 3).

7µg of total protein from each protease-treated and -untreated sample
were subjected to electrophoresis on denaturing and reducing NuPAGE
Bis-Tris gels (Invitrogen, Carlsbad, CA). Proteins were then transferred to
Polyvinylidene Fluoride (PVDF) membranes and blocked in Tris buffered
saline Triton X-100 (TBST) containing 5% (w/v) milk. Membranes were
then incubated with substrate-specific antibodies, washed and incubated
with HRP-conjugated secondary antibodies (BioRad, Hercules, CA).
Immunoblots were developed on film with the ECL Plus detection system
(GE Healthcare, Piscataway, NJ). To verify that equal amounts of protein
were being compared across samples, GAPDH levels were quantified in
parallel with either a rabbit anti-GAPDH or mouse anti-GAPDH antibody
and appropriate Cy3 or Cy5 conjugated secondary antibody (GE Healthcare,
Piscataway, NJ). Fluorescence was quantified on Typhoon Scanner (GE
Healthcare, Piscataway, NJ). A representative GAPDH immunoblot is
shown in Supplementary Figure 3. All primary antibodies were from
either (Cell Signaling, Beverly, MA) or (Santa Cruz Biotechnology,
Santa Cruz, CA).

3 RESULTS

3.1 Benchmark sets
For each protease type, two sets of octapeptides were compiled
to benchmark the method (Fig. 1, steps 1a and 1b). These
sets included peptides cleaved (‘positives’) and not cleaved
(‘negatives’) by the proteases, respectively (Supplementary Fig. 1a).
For GrB, the positives include 54 cleavage sequences from
literature (i.e. our ‘GrBah’ dataset; Supplementary Table 1) and
305 cleavage sequences from a proteomics experiment that used
combined fractional diagonal chromatography for isolating peptides
(Van Damme et al., 2008). These positives spanned the P4 to P4′
positions using the traditional protease nomenclature (Schechter and
Berger, 1968). Positives for caspase substrates were drawn from the
literature-curated Casbah dataset (Lüthi and Martin, 2007) as well as
a separate proteomics dataset obtained in experiments with the Jurkat
cell line (Mahrus et al., 2008). The negatives for both protease types
were all octapeptides in known protein substrates that are outside of
the experimentally identified cleavage site and contain Asp in the
fourth position (Supplementary Fig. 1b). While it is possible that
some of these negatives are in fact cut by the protease and were
missed experimentally, many of the positives in the benchmark sets
were confirmed by studies that afford a high degree of coverage. The
use of octapeptides outside the cleavage site is therefore a suitable
source for a statistical description of the negatives’ properties.

3.2 Difference in peptide sequence between positives
and negatives

The frequencies of amino acid residue types appearing at each
position in the peptides were calculated for positives of both protease
types and the combined set of negatives. Instead of the qualitative
sequence logos commonly used to plot residue-type frequencies
(Crooks et al., 2004), we created a representation allowing for a
more quantitative comparison of residue characteristics and identity
(Fig. 2a). A large degree of degeneracy is observed in the positives,
with both GrB and caspase substrates allowing for six or more
residue types appearing at frequencies >5% at six of the eight
subsites in the peptide. Aside from the requirement for Asp at the
P1 site, the most stringent specificities are for large hydrophobic
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Fig. 2. Sequence and structural properties of cleavage sequences. (a) A stacked histogram showing the relative frequency of each residue type at each position
in the cleavage sequence for substrates of GrB (G) and caspases (C), and negatives (N). The numbering spans positions from P4 to P4′. Letters on the plots
represent the one-letter code for each amino acid residue type, followed by its percentage at that position. X (gray) represents the total percentage for all
residue types that are present in the position at <5% relative frequency. Amino acid residue types are grouped by general characteristic (Green: hydrophobic;
orange: small non-polar; red: charged acidic; blue: basic; purple: polar). (b) Structural properties of protease cleavage sequence positives and negatives as
assessed by DSSP for substrates where a solved structure or good quality comparative model was available. Numbers may not add to 100% as some peptides
did not have more than four residues in any one of the three secondary structure conformations. (c) Structural properties as assessed by predictive methods
that consider the protein primary sequence only. Disopred predicted disorder in all substrates. PSI-PRED predicted secondary structure, in cases where a
structure or model of the substrate was not available.

residues at the GrB P4 site (occurring in 62% of all substrates), and
for small non-polar residues at the caspase P1′ site (occurring in
74% of all substrates). Residue-type frequencies in the positives for
both protease types differ from those in the negatives.

3.3 Enrichment of structural features in cleavage
sequences

Structural features were assessed for enrichment in known cleavage
sequences compared with the negatives (Fig. 2b and c). Previous
reviews of protease substrates (Hubbard, 1998) show that the
cleaved sequence is more likely to be exposed to solvent, flexible,
disordered and lacking secondary structure. In solved structures and
comparative models, cleavage sequences are indeed more likely to
be in a loop than the negatives, with 65.3% ± 13.3% of GrB sites
and 65.0% ± 10.9% of caspase sites being in such a conformation

compared with 52.2% ± 2.1% of the negatives. Solvent accessibility
was greatest in the caspase substrates (97.3% ± 3.7% of cleavage
sequences), followed by the negative set (86.5% ± 1.5%), and
then by the GrB substrates (81.6% ± 10.8%). When structures or
comparative models were not available, predictions gave a similar
enrichment, although the magnitude of cleavage sequences in a loop
conformation for all three sets was increased between 12% and 20%.
This agreement in the relative distributions (Fig. 2b and c) suggests
that any errors in PSI-PRED are generally not limiting in predicting
the secondary structure of cleavage sites in the substrates to which it
was applied. Finally, the amount of predicted disorder (i.e. sequences
that are flexible, dynamic and unresolved in an electron density map
obtained by X-ray crystallography) was also greater by 12% for GrB
substrates and by 37% for caspase cleavage sequences than in the
negatives.
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Fig. 3. Benchmark results. Results from different methods applied to four
different datasets, represented by ROC curves. The line from (0,0) to (1,1)
represents a random predictor; a perfect classifier would go from (0,0)
to (0,1) and then to (1,1). The critical point of the ROC curve is where
each curve intersects the line from (1,0) to (0,1). Full test sets included
all known substrates for the respective protease type, and Literature test
sets excluded the large proteomic datasets, retaining only the GrBah and
Casbah substrates. SVM (Structure) was developed in the current study;
SVM (Sequence) was taken from a previous study that trained on cleavage
sequence residue type only (Wee et al., 2006); PSSM implemented the
GrabCas method for GrB substrates (Backes et al., 2005), while for caspases
it was trained on frequency of residue types at each position in known
cleavage sequences, using the PoPS (Boyd et al., 2005) algorithm. All ROC
plots were interpolated through a number of points equal to the number of
test set positives in each dataset (Supplementary Fig. 1a).

3.4 Benchmarking of scoring functions
Using a jackknifing procedure and the datasets, we benchmarked
a scoring function for predicting whether or not an octapeptide
is a substrate of a given protease type, incorporating an SVM
trained on both structure and sequence (Section 2). Receiver operator
characteristic (ROC) plots were generated to assess the ability of
the scoring functions to distinguish between positives and negatives
(Fig. 3). The critical point of the ROC plot represents the optimal
tradeoff between coverage and accuracy (i.e. the minimal combined
false positive and false negative rates) and was used to compare the
performance of different methods.

Due to preferences of these proteases for specific residue types
around cleavage sites, as well as the enrichment of certain structural
features at these sites, we hypothesized that the best classifier would
incorporate these aspects of proteolysis. Indeed, the SVM trained
on these features did well to discriminate between positives and

negatives in the benchmark sets [Fig. 3; ‘SVM (Structure)’]. The
GrB benchmark set was classified with a 0.79 TPR at a 0.21 FPR
at its critical point. Furthermore, these rates improved (0.87 TPR
at 0.14 FPR) when the SVM was trained on all known GrB substrates
but assessed on a test set consisting of only the literature-curated
GrBah dataset. The caspase benchmark produced similar results on
both datasets. Error bars for the FPRs across 1000 iterations were
assessed and calculated as less than 0.002 for all points; these are
omitted from the figure as they are smaller than the width of the
curve itself.

Due to the potential for biasing an estimate of prediction accuracy
by including peptides from similar proteins in both the training and
testing set, we performed the jackknifing procedure with homolog
filtering (Section 2). When this condition was imposed, the TPRs
and FPRs did not change significantly (Supplementary Fig. 2). This
observation implies that including peptides from related proteins
across the two sets does not significantly influence the estimate of
the prediction accuracy. The likely reason is that the features used
by the classifier depend on the peptides themselves and not on the
proteins from which they were derived.

3.5 Comparison with other methods
The results of the method were compared with those obtained by
two previously described methods tested on the same datasets.
An SVM trained on sequence only predicted GrB substrates with
a 0.76 TPR at a 0.25 FPR at its critical point when assessed on the
full test set [Fig. 3, ‘SVM (Sequence)’]. GrabCas achieved a 0.71
TPR at a 0.29 FPR on the same test set (Fig. 3, ‘PSSM’). Similar
discrepancies were observed on the GrBah test set and on both
caspase test sets, here using the PoPS algorithm as the basis for
the PSSM (Section 2).

3.6 Criteria for selecting targets for experimental
validation

The method was applied to all human proteome octapeptides
with Asp in the fourth position to produce a score for each
potential cleavage sequence. Two proteins, Apoptosis Inducing
Factor 1 (AIF-1) and Survival Motor Neuron 1 (SMN1), fulfilled
the following criteria for experimental followup: (i) they were not in
any benchmark dataset, (ii) the corresponding mRNA was expressed
in the K562 cell line (highly susceptible to granzyme-induced cell
death), (iii) a validated antibody was available and (iv) evidence
supported a role in apoptosis. To test whether these candidates were
cleaved by GrB or caspases, K562 lysates were treated with varying
concentrations of exogenous protease for either 1 h or 19 h. As the
benchmark set contains substrates of both initiator and executioner
caspases, a mixture composed of caspase-8 and -3 was chosen. To
determine if exogenously added GrB was the causative protease,
K562 lysates were pretreated with broad-spectrum caspase inhibitors
before GrB addition.

3.7 Cleavage of AIF-1 by GrB
AIF-1 is a mitochondrial flavoprotein that translocates to the nucleus
during apoptosis and facilitates DNA fragmentation. Interestingly,
AIF-1 has a high-scoring GrB cleavage sequence (VPQD126KAPS)
that is partially solvent exposed and in a loop conformation, as
determined in its X-ray structure. Addition of GrB to K562 lysates
results in the appearance of a ∼55 kDa proteolytic product that
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Fig. 4. Immunoblots of predicted GrB substrates. K562 lysates were treated with increasing concentrations of GrB or a mixture of caspase-3 and caspase-8
for either 1 h or 19 h. The final concentration of exogenously-added protease was 1µM, 500, 250, 100, 50 and 25 nM. For caspases, the final concentration
refers to the concentration of total caspase (caspase-3 plus caspase-8). The no protease controls were incubated at 37◦C for 19 h to account for the activity
of endogenous proteases. The caspase-inhibited lysates were pretreated with 100µM z-VAD-FMK and 100µM z-DEVD-FMK at 37◦C and then treated
with GrB. Bands corresponding to full-length (FL) protein, proteolytic fragment 1 (PF1) and proteolytic fragment 2 (PF2) are indicated with arrows. Controls
showed that the SMN1 antibody cross-reacts with GrB (Supplementary Fig. 4). The GrB band is indicated by an arrow and asterisk.

is both time and concentration dependent [labeled as proteolytic
fragment 1 (PF1) in Fig. 4]. A second ∼50 kDa proteolytic fragment
[labeled as proteolytic fragment 2 (PF2) in Fig. 4] is detected only at
the highest concentrations of GrB after 19 h. The anti-AIF1 antibody
was raised against a peptide sequence derived from the C-terminus
of the protein. The antibody will therefore recognize both full-
length protein and any proteolytic product containing this C-terminal
epitope, making cleavage at VQPD126 the most likely explanation
for the observed 55 kDa product. AIF-1 did not contain high-scoring
caspase cleavage sites. In agreement with this prediction, the same
proteolysis pattern is observed when GrB is added to K562 lysates
pretreated with caspase inhibitors (Fig. 4). Furthermore, addition
of exogenous caspase to K562 lysates resulted in no detectable
proteolysis of AIF-1. These data indicate that proteolysis of AIF-1
is directly dependent on GrB.

3.8 Cleavage of SMN1 by GrB
Proteolysis of SMN1 is observed during apoptosis in neurons;
one study demonstrated that cleavage occurs at ICPD252SLDD
and suggested a caspase as the causative protease (Kerr et al.,
2000). When evaluated with our method, this site instead scored
poorly with the caspase SVM model but scored well with the GrB
SVM model (Fig. 5). To determine if SMN1 is a GrB substrate,
GrB-treated K562 lysates in the presence and absence of caspase
inhibitors were immunoblotted for SMN1. Both the appearance of
the ∼37 kDa and ∼23 kDa proteolytic products (labeled PF1 and
PF2 in Fig. 4) are caspase independent. SMN1 did contain a high-
scoring caspase cleavage sequence, located six residues C-terminal
to the predicted GrB cleavage site. Addition of exogenous caspase
to K562 lysate resulted in the appearance of a ∼37 kDa proteolytic
product, consistent with cleavage near the predicted GrB site
(Fig. 4).

Fig. 5. Details of novel GrB substrates. (a) Solved structure of AIF-1 (PDB
ID 1M6I), highlighting Asp126. Cleavage at this site is consistent with the
observed banding patterns on the immunoblot. (b) A peptide on AIF-1
centered on Asp392 that scores well when examining sequence only, but
poorly when structure is considered, likely due to being largely inaccessible
to solvent. (c) Another high scoring site on AIF-1 at Asp417; it is unclear why
this site is not cleaved despite favorable sequence and structure properties.
(d) Scores for the SMN1 protein for all octopeptides with Asp in the fourth
position, as assessed by SVMs trained on GrB and caspase substrates,
respectively. The ‘GrB’ and ‘Caspase’ columns indicate the scores that the
respective SVMs assigned to each peptide, and TPR and FPR signify rates
that these scores would fall on in the benchmark set.
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3.9 CDK4 is not cleaved by GrB
Proteins were predicted to be negatives if all candidate cleavage
sequences did not score higher than a threshold defined by the SVM
critical point. To determine if a predicted negative is cleaved by
GrB and caspases, immunoblotting for CDK4 in protease-treated
lysates was performed. In all cases, a slight reduction in the amount
of full-length protein is evident only after 19 h at 37◦C and at high
concentration of exogenous protease (Fig. 4), validating our negative
predictions.

4 DISCUSSION

4.1 Overview
In an effort to increase the coverage, accuracy and efficiency of
identifying protease substrates, we developed and benchmarked
a bioinformatics method that takes advantage of the current
knowledge about known substrates as well as general rules of
protein structure (Fig. 1). Its predictive power was quantified by the
degree to which it distinguishes between positives and negatives
in a benchmark set. To demonstrate the utility of the approach,
we applied it to predict novel substrates of the GrB protease and
caspases, followed by experimental validation of two biologically
important predictions,AIF-1 and SMN1. These results thus benefited
from the synergy of sequence- and structure-based predictions
combined with biological intuition to select targets for validation.
The computational method has two main benefits. First, it acts as a
hypothesis generator; when applied to all proteins in a proteome of
interest, it produces a list of high-confidence predictions suitable
for a focused and efficient experimental followup. Second, the
computational method lends insight into the structural aspects that
determine whether a site can be cleaved.

4.2 Proteome-wide prediction of protease substrates
The method was applied to all proteins in the human proteome to
identify those most likely cleaved by GrB and caspases, resulting
in many predictions made with high confidence. For example, the
top 500 predicted caspase substrates with Gene Ontology (GO;
Ashburner et al., 2000) annotation received a score corresponding
to a 0.002 FPR and a 0.110 TPR in the ROC plot (Fig. 3).
GO assignments for these sequences suggest their role in apoptosis
(21 proteins), signaling (53), transcription regulation (51) and
proteolysis (18), all of which are hallmarks of many known
substrates targeted by caspases to induce cell death. Similar results
are observed for predicted GrB substrates (Supplementary Table 2).

Once experimentally validated, these substrates lend critical
insight into apoptosis. A case in point are the two GrB substrates
validated in this study, AIF-1 and SMN1, which are potentially
involved in two novel apoptotic pathways initiated by GrB cleavage.
All predictions are available at http://salilab.org/peptide. Each
predicted substrate site is annotated with the structural assignments
that were used to make the predictions, the TPRs and FPRs for
their scores, and links to the MODBASE database of comparative
protein structure models to view any known structures or models of
the substrate.

4.3 Cleavage of SMN1 and AIF-1 by GrB
The high-confidence predictions generated by this method are
valuable for both streamlining experimental validation (Fig. 4) and

generating novel hypotheses regarding the roles of substrates in
cell death. AIF-1 is tethered to the inner mitochondrial membrane
(IMM); therefore, its translocation to the nucleus requires both
mitochondrial outer membrane permeabilization (MOMP) and
proteolysis of the IMM tether. The cathepsins B, S and L have
been shown to proteolyze AIF-1 around residue 100, 26 residues
N-terminal to the predicted GrB cleavage site (Yuste et al., 2005).
The redundancy of multiple proteases liberating AIF-1 from the
mitochondria might represent a strategy to overcome anti-apoptotic
resistance mechanisms, such as Hsp70 overexpression. Hsp70 has
been shown to inhibit import of AIF-1 to the nucleus (Ravagnan
et al., 2001). GrB cleaves and inactivates Hsp70 (Loeb et al., 2006)
and therefore might facilitate AIF-1 nuclear import.

SMN1 cleavage was first observed during neuronal apoptosis
induced by viral infection and ischemic injury in mice (Kerr et al.,
2000). Mutation of Asp252 to Ala abolished cleavage, leading to the
speculation that caspase was the causative protease. Interestingly,
SMN1 cleavage was induced by adding brain extracts from either
ischemically injured or virally infected mice, raising the possibility
that cytotoxic T lymphocyte (CTLs) and therefore GrB was present
in the extracts.

In a separate study, SMN1 cleavage has been observed in a
differentiated neuronal cell line during growth factor withdrawal.
CTLs are absent in this ex vivo study, thereby excluding GrB
and implying a caspase as the causative protease (Vyas et al.,
2002). Interestingly immunoblotting for SMN1 in the neuronal
lysate suggested that proteolysis is inefficient, consistent with our
observation that SMN1 is proteolyzed far more efficiently by GrB
than the caspases. In light of evidence for a role of CTLs in
both ischemic brain injury (Yilmaz and Granger, 2010) and virally
infected neurons (Neumann et al., 2002), GrB should be examined
as the causative protease for SMN1 cleavage in vivo.

4.4 Benefit of incorporating structural features in
classifier training

The method was compared with several previous approaches
benchmarked on the same datasets. One study using an SVM trained
on sequence features did well to discriminate between positives
and negatives (Wee et al., 2006), but was still outperformed by
the current SVM that incorporates structure as well as sequence
features (Fig. 3). This improvement shows that structural features
of the cleavage sequence can add predictive value to a substrate
identification method. Additionally, the method outperformed two
other methods based on PSSMs. The first method, GrabCas, uses the
results of in vitro small peptide libraries to predict GrB substrates
(Backes et al., 2005; Thornberry et al., 1997). These in vitro libraries
often do not fully reflect the observed protein-peptide specificity in
known biological substrates. In contrast, our SVM training set does
include biological substrates. The second method, PoPS, was trained
only on the observed frequencies of residue types at each position
in the caspase training set (Boyd et al., 2005). This PSSM does not
take into account cooperativity across residue pairs. In contrast, the
pair correlations can be encoded in our SVM.

It was shown previously that caspase cleavage sites can occur
in regions of regular secondary structure (Mahrus et al., 2008).
Here, we show that GrB substrates display the same tendency.
Indeed, >35% of known cleavage sequences in both GrB and
caspase substrates fall on a region that has regular secondary
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structure (Fig. 2b). One possibility is that these regions undergo
local unfolding prior to cleavage by the protease. These observations
demonstrate the limitations of making predictions based on sequence
and then filtering for expected secondary structure, as opposed to
using a machine learning algorithm that makes unbiased predictions
by combining sequence and structure in an integrated fashion.

An example of the power of incorporating structure into prediction
is shown by comparing two potential cleavage sequences in AIF-1,
VPQD126KAPS (Fig. 5a) and VETD392HIVA (Fig. 5b). Both
sites were evaluated with the sequence-based SVM (Wee et al.,
2006) as well as our SVM that includes structural information.
VPQD126KAPS, which was suggested experimentally as the GrB
cleavage site (Fig. 4), was scored with the sequence-based SVM
corresponding to a 0.73 FPR. When structural features were
incorporated, this site scored with much higher confidence at a
0.17 FPR. The site is on a fully exposed, flexible portion of the
solved AIF-1 structure. VETD392HIVA, on the other hand, evaluates
at a 0.05 FPR when scored with the sequence-based SVM, but
falls to a lower confidence 0.34 FPR when structural features
are included. This site is almost completely buried and portions
of it fall on a β-strand. The difference between these two sites
demonstrates the importance of considering structural information
when predicting protease cleavage sites. Interestingly, a third
sequence at IDSD417FGGF is not cleaved despite having favorable
sequence and structure features (Fig. 5c); further understanding of
the dynamics of GrB-substrate recognition is needed to determine
why this is the case.

4.5 General applicability of the approach
The protocol presented in this study was applied to predict
substrates for GrB and caspases, two types of proteases that
recognize extended, specific oligopeptide sequences possessing
certain structural features. However, the approach is generally
applicable to predict interaction partners for any protein that
recognizes its peptide partners based on the features encoded in our
method. Thus, we provide a web server (http://salilab.org/peptide)
that allows users: (i) to construct and apply a new SVM based
on a user-provided training set; (ii) to benchmark the ability of
the SVM to predict interaction partners for a protein of interest;
(iii) to use the newly generated SVM to make proteome-wide
predictions; and (iv) to make the SVM and its predictions publically
available for use by others. As a result, our approach may become
a widely useful hypothesis generator that can increase the pace of
biological discovery by guiding future experiments in a variety of
protein–peptide systems.
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