
New role for plasmin in sodium homeostasis

Christopher J. Passeroa, Rebecca P. Hugheya,b, and Thomas R. Kleymana,b
aRenal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine
bDepartment of Cell Biology and Physiology, University of Pittsburgh School of Medicine

Abstract
Purpose of review—Hypertension and edema are clinical manifestations of the extracellular
volume expansion generated by abnormal renal sodium handling. Perturbations in epithelial sodium
channel (ENaC) activity disrupt volume homeostasis. ENaC activity can be enhanced by proteases
that cleave its long extracellular domains. Recent evidence suggests that this mechanism may be
involved in individuals with volume overload and proteinuria.

Recent findings—Several observations indicate a link between proteinuria and hypertension, with
proteinuria preceding and predicting the onset of incident hypertension in some individuals. Recently,
enhanced cleavage of ENaC's extracellular loops was identified in kidney tissue of proteinuric mice.
Plasmin, a serine protease known for its role in fibrinolysis, has been implicated as an activator of
ENaC in proteinuric states as (i) nephrotic urine activates ENaC expressed in a mouse collecting duct
cell line, (ii) aprotinin-affinity precipitation of nephrotic urine abolishes its ability to activate ENaC,
(iii) plasmin is a major component within aprotinin-affinity purified nephrotic urine and is absent in
non-proteinuric urine, and (iv) plasmin activates ENaC by cleaving the extracellular loop of its γ
subunit.

Summary—Enhancement of ENaC activity by proteases represents a likely mechanism for
extracellular volume overload relevant to some individuals with proteinuria. Proteases not normally
found in the urine can enter the urinary space across damaged glomeruli and activate ENaC. Further
understanding of this mechanism may guide targeted therapeutics in individuals with proteinuria,
edema, and hypertension.
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Introduction
Expansion of extracellular volume develops in proteinuric diseases, such as the nephrotic
syndrome, and can manifest clinically as edema and hypertension. In the aldosterone-sensitive
distal nephron, the epithelial sodium channel (ENaC) provides fine control of salt and fluid
reabsorption. Derangements in ENaC activity affect blood pressure and extracellular volume
(1-4). It is now clear that extracellular proteases enhance ENaC activity (5), a mechanism that
is likely relevant to proteinuric states where proteases not normally found in urine can enter
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the urinary space across damaged glomeruli. In this review, we examine how the protease
plasmin contributes to volume expansion in proteinuric states through aberrant proteolytic
activation of ENaC.

Proteinuria and volume expansion
Proteinuria appears to be more than just a marker of target end organ damage. Proteinuria is
generally considered abnormal if urinary losses are greater than 150-200 mg of protein per day
(6). Albuminuria, a surrogate marker for proteinuria, is considered abnormal in quantities
>30mg per day (7). Proteinuria not only reflects glomerular damage, but also functions as a
risk factor for cardiovascular disease, stroke, and end stage renal disease (8-10). Proteinuria
has been associated with extracellular volume expansion and high blood pressure. Proteinuria
correlates with elevation in blood pressure in multiple disparate populations such as male US
army veterans with chronic kidney disease and pre-hypertensive men and women from Korea
(11,12). The relationship between proteinuria and blood pressure is complicated as
hypertension can cause renal damage resulting in worsened proteinuria, and the development
of essential hypertension does not require pre-existing proteinuria (13-15). However, multiple
recent studies have examined the role of proteinuria as a risk factor for the development of
elevated blood pressure.

A study involving normotensive adult men and women from Okinawa found the annual
frequency for development of hypertension to be 2.4 fold higher if the patient had non-nephrotic
proteinuria at baseline (16). Examination of nine potential biomarkers for hypertension risk in
the normotensive, healthy male and female offspring of the Framingham Heart study
participants found that urinary albumin-creatinine ratio, a marker of proteinuria, determined
from a single void morning urine sample predicted the development of hypertension with an
odds ratio of 1.21 (17). A type 1 diabetic population was also found to have increased risk of
incident hypertension associated with albumin excretion rate (18). Another study found that
higher levels of urinary albumin, despite being considered within the normal range, predicted
incident hypertension in a population of healthy non-diabetic female nurses (7). Thus,
proteinuria can predict the onset of incident hypertension in multiple different populations of
normotensive individuals. How does proteinuria contribute to the pathogenesis of extracellular
volume expansion and hypertension? Recent studies suggest that in some individuals with
glomerular damage, proteases not normally found in urine enter the urinary space and
aberrantly cleave ENaC (19-21). The proteolytic activation of ENaC would generate a primary
defect in renal sodium handling, a mechanism that may be especially important in the
development of the volume overload that accompanies the nephrotic syndrome.

Nephrotic syndrome is characterized by edema as well as hyperlipidemia, hypoalbuminemia,
and massive proteinuria (22,23). Hypertension often accompanies this disorder. The
pathogenesis of volume expansion and edema formation in the setting of massive proteinuria
remains undefined, but one leading theory often described as the “overfill hypothesis” suggests
that volume overload is generated by a primary defect in renal sodium handling (3,24).
Evidence that supports this theory includes (i) the lack of plasma volume depletion in many
nephrotic patients, (ii) suppression of components of the renin-angiotensin-aldosterone system
during times of avid sodium retention in many nephrotic individuals, and (iii) the observed
sodium retention only on the affected side of a unilateral nephrotic rat model (25-27). Enhanced
ENaC activity by extracellular proteases may be a key event that creates the primary defect in
sodium handling. However, not all patients with nephrotic syndrome fit this “overfill
hypothesis” model. Up to 33% of nephrotic patients exhibit reduced plasma volume (28). Also,
serum catecholamines, renin, and arginine vasopressin are increased in some nephrotic
individuals (28). Enhanced ENaC activity by extracellular proteases may be one mechanism
among many that generates extracellular volume overload. The ability to identify individuals
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with proteinuria, volume expansion, and enhanced ENaC activation would provide a
population that might respond to targeted therapy with ENaC-specific inhibitors, like
amiloride.

The kidney plays an important role in the generation of extracellular volume expansion and
hypertension as sodium balance has a profound impact on extracellular fluid volume and blood
pressure. Several hypertensive disease states involving ENaC implicate this channel as a vital
part of renal sodium handling. Liddle's syndrome, characterized by hypertension, hypokalemia,
and metabolic alkalosis, involves a mutation in ENaC that prevents retrieval of the channel
from the apical membrane (29-32). In hyperaldosteronism, overexpression of the volume
regulatory hormone aldosterone leads to increased ENaC activity in principal cells and
subsequently hypertension (33-35). ENaC activity can also be enhanced by extracellular
proteases that cleave its large extracellular loops (5). Aberrant proteolytic activation of ENaC
is a likely mechanism responsible for the volume expansion seen in some proteinuric disease
states.

Proteolytic activation of ENaC
ENaC is composed of three structurally related subunits (α, β, and γ) that contain intracellular
N- and C- termini, two transmembrane spanning domains, and a large extracellular loop (36,
37). Enhanced ENaC activation by proteases was first observed by Chraibi et al. when they
applied the serine proteases trypsin and chymotrypsin to solutions bathing cells expressing
ENaC (38). Vuagniaux et al. subsequently identified a family of serine proteases that can
stimulate ENaC currents when co-expressed in Xenopus oocytes, and designated them channel
activating proteases (CAPs) (39). More recently, several proteases, including furin, prostasin
(CAP1), TMPRSS4 (CAP2), plasmin, neutrophil elastase, pancreatic elastase, and kallikrein,
have been implicated in cleavage and activation of ENaC (20,39-45).

Proteolytic activation of ENaC involves double cleavage events in the long extracellular loops
of the channel's α and γ subunits to liberate inhibitory domains (Figure 1). Furin, a proprotein
convertase residing primarily in the trans-Golgi network, cleaves the channel during channel
maturation in the biosynthetic pathway (51). Furin cleaves the α subunit twice flanking a 26
residue inhibitory region (44,52). Electrophysiologic experiments using the Xenopus oocyte
expression system confirmed this phenomenon. Channels with α subunits that contained
mutated furin-consensus cleavage sites were not cleaved by furin and had significantly
decreased activity compared to wild type channels (44,52). Furthermore, channels with α
subunits containing furin-consensus cleavage site mutations and a simultaneous deletion of the
intervening 26 amino acid tract were not cleaved, but exhibited activity similar to processed/
cleaved wild type channels (52). A synthetic peptide corresponding to the 26-mer inhibitory
domain of α, when applied externally to wild type channels in mouse cortical collecting ducts
and human airway epithelial cells, inhibited these channels (52).

The processing of the γ subunit involves two important differences compared to α processing:
(i) the γ subunit is only cleaved once by furin and thus requires a second protease to cleave and
release an inhibitory peptide and (ii) cleavage of the γ subunit is dominant over α cleavage in
activating the channels such that channels that have only γ doubly cleaved are nearly fully
active (51,54). Prostasin, designated by Vuagniaux et al. as CAP1, a GPI anchored serine
protease found in renal epithelia, can provide the second cleavage event distal to the furin site
in the γ subunit (39,50). Wild type channels co-expressed with prostasin in Xenopus oocytes
were fully activated. Prostasin was found to cleave at a site 43 residues distal to the furin site
in γ, and mutation of this site prevented channels from being cleaved and activated by prostasin
(50). A synthetic peptide corresponding to the 43-mer inhibitory domain, when applied
externally to wild type channels in mouse cortical collecting ducts and human airway epithelial
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cells, inhibits these channels with an IC50 of 2-3 μM (50). Channels that possess a mutation
at the γ furin consensus cleavage site and deletion of the intervening amino acid tract including
the prostasin-dependent cleavage site, were not cleaved, but were fully active (50). When these
mutant γ subunits were expressed along with the mutant α subunits that cannot be cleaved by
furin, they were still near fully active showing the dominance of γ processing (54). Other
proteases besides prostasin that have been shown to cleave the γ subunit near the prostasin-
dependent cleavage site, liberate the intervening inhibitory domain, and activate the channel,
include pancreatic elastase. neutrophil elastase and plasmin (20,40,41,43).

Proteolytic processing of ENaC enhances activity by increasing the channel's open probability
(Po) (Figure 1) (46,49,50). ENaCs expressed in Xenopus oocytes undergo furin cleavage of
the α subunit, liberating the α inhibitory domain, but retain their γ inhibitory domain and have
a Po of ∼0.3-0.4 (although ENaC Po is known to be highly variable) (50,55). Near silent
channels have a Po of less than 0.1, similar to ENaCs, expressed in oocytes, that contain furin-
dependent cleavage site mutations in the α subunit (i.e., these channels retain their inhibitory
domains) (47,49). Application of extracellular trypsin has been shown to enhance the Po of
near silent channels expressed in fibroblasts to about 0.6-0.7 (46). Co-expression of prostasin
and ENaC in Xenopus oocytes results in channels with a Po of 0.8-0.9 (50). ENaCs that have
the γ inhibitory region deleted and furin processed α subunits have a Po >0.9 (50).

Not all ENaCs undergo furin-dependent maturation. There exists a pool of ENaC that reaches
the cell surface that has escaped proteolytic processing (48). This pool of channels may also
be the target of extracellular proteases in disease states. Single channel recordings of near silent
channels exposed to trypsin showed a significant increase in activity and Po demonstrating that
near silent channels can be activated by extracellular proteases (46,53). This trypsin-dependent
activation was not observed when α and β subunits were expressed without γ, whereas trypsin-
dependent activation was observed in αγ channels, suggesting that the γ subunit plays a key
role in channel activation by extracellular proteases (53). ENaCs in the aldosterone-sensitive
distal nephron that have not been fully processed may be substrates for plasmin in proteinuric
states.

Plasmin, proteinuria and processing of ENaC
In proteinuric states, proteases not normally found in the urinary space cross the glomerular
barrier and have the potential to cleave ENaC (Figure 2) (61). Recently, enhanced cleavage of
the γ subunit of ENaC was demonstrated by Kastner et al. in kidney tissue of proteinuric mice
(injected with an anti-glomerular basement membrane (GBM) antibody) (19). Kidney
homogenates blotted with antibody prepared against the C-terminus of the γ subunit showed
an approximate two-fold increase in a 70kDa fragment consistent with cleavage near the known
prostasin-dependent cleavage site (i.e., a cleavage event that liberates the γ inhibitory domain)
(19). The enzyme responsible for ENaC activation is plasmin, a serine protease known for its
role in fibrinolysis, derived from processing of its inactive precursor plasminogen by the
activating enzymes tissue-type (tpa) and urokinase-type plasminogen activator (urokinase).
Plasminogen is not normally found in the urine of humans that are nonproteinuric, but has been
shown to be present under nephrotic conditions (56,57). Cells lining the proximal and distal
nephron release urokinase to convert plasminogen, which has crossed damaged glomeruli, to
plasmin in the urinary space (58-60). Furthermore, immunohistochemical staining for
urokinase in human and rat nephrectomy specimens demonstrated the presence of urokinase
on the apical surface of cortical collecting ducts (21).

Plasmin is identifiable in the urine of animals and humans with proteinuria. We examined urine
from male obese ZSF-1 rats (diabetic and hypertensive) and their lean littermates for the
presence of plasminogen and plasmin (20). Obese ZSF-1 rats were proteinuric compared to
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lean littermate controls and Western blotting with an anti-plasminogen antibody revealed
plasminogen and plasmin to be readily detectable in the urine of obese ZSF1 rats and largely
absent in urine from lean littermate controls (20). Svenningsen et al. found that urine from
nephrotic humans and rats can activate ENaC expressed in mouse collecting duct cells, an
observation that was abolished by aprotinin, a serine protease inhibitor, or heat inactivation of
the urine (21). Control urine had no effect. Aprotinin-affinity precipitation of the nephrotic
urine abolished the ability of the urine to activate ENaC despite not changing its total protein
content, but the precipitate retained the ability to activate ENaC in collecting duct cells (21).
By subjecting the precipitate to several purification steps followed by matrix-assisted laser
desorption/ionization time-of flight mass spectrometry (21), plasmin was identified as the
channel activating protease. Western blotting of urine from nephrotic and control humans with
an antibody against plasminogen revealed plasminogen and plasmin in only the nephrotic urine
and not in controls (21).

Plasmin has the ability to activate ENaC by cleaving its γ subunit (20,21). We showed that
plasmin (at 10μM) enhanced ENaC currents ∼2 fold when applied externally to Xenopus
laevis oocytes expressing wild type ENaC after four minutes of exposure to the enzyme (20).
Plasmin exhibited a time dependent increase in whole cell amiloride-sensitive currents, similar
to the time course for activation of ENaC by extracellular trypsin, and reached a maximal effect
by 10 minutes (20,38,62). Western blotting of surface channels expressed in oocytes exposed
to 10 μM plasmin for four minutes, identified a new C-terminal 70kDa cleavage product from
the γ subunit that was absent in controls not exposed to plasmin (20). This 70 kDa fragment is
similar in length to the fragment generated from prostasin cleavage of ENaC as well as the
fragment identified in blots of kidney lysates from proteinuric mice (exposed to anti-GBM
antibody) (19,50). A similar cleavage product was also demonstrated in western blots, probed
for the C-terminus of γ, of surface channels exposed to extracellular trypsin, chymotrypsin, or
a combination of plasminogen and urokinase (21). Plasmin's ability to cleave and activate
ENaC was abolished by a specific mutation of a residue within a predicted plasmin cleavage
site that is near the prostasin-dependent cleavage site, suggesting the enzyme activates the
channel by liberating the intervening inhibitory tract (similar to other enzymes like prostasin
and elastase that activate the channel) (20). Plasmin can cleave and activate furin processed
channels. However, the ability of plasmin to activate fully non-cleaved channels, by cleaving
near the furin cleavage site in the γ subunit, was not examined. Svenningsen et al. introduced
a hexahistadine tag between the furin and prostasin cleavage sites in γ. Mouse collecting duct
cells that expressed this tagged ENaC in the presence of NTA-Atto550 fluorophore exhibited
a fluorescent signal. The signal is abolished when the cells were preincubated with plasmin or
urine from nephrotic patients suggesting that plasmin cleavage liberates the inhibitory tract
(21). Presumably the mouse collecting duct cells produced channels that were not fully
processed. Plasmin, therefore, not only activates ENaC by cleaving the γ subunit, but appears
to be the predominant aprotinin-sensitive serine protease identified in nephrotic urine from rats
and humans.

Conclusions
Activation of ENaC by the serine protease plasmin appears to play a role in the development
of extracellular volume expansion seen in some proteinuric states. Enhanced proteolytic
cleavage of ENaC has been identified in a proteinuric mouse model. Plasminogen can cross
damaged glomeruli and is activated by urokinase in the urinary space as evidenced by the
detection of plasminogen and plasmin in proteinuric urine of animals and humans and their
absence in control urine. Plasmin possesses the ability to activate ENaC by cleaving its γ
subunit and liberates the intervening inhibitory tract when channels have also been processed
by furin. Further understanding of this mechanism may help elucidate the pathogenesis of
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extracellular volume overload and guide therapeutics in individuals with proteinuria, edema,
and hypertension.
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Figure 1. ENaC is activated by proteolytic cleavage and release of inhibitory peptides
(A) Non-cleaved trimers of αβγENaC likely represent near-silent channels found on the cell
surface with Po<0.1 (46-49). (B) αβγENaC is normally cleaved by furin as it transits the
biosynthetic pathway and exhibits an intermediate Po (50). Furin cleaves α twice to release a
26-mer inhibitory peptide (*) and γ is cleaved once (51,52). (C) Subsequent cleavage of the
γ subunit at a site distal to the furin cleavage site, releases a second inhibitory peptide (**) and
increases the Po to near 1 (46,50,53). Several proteases cleave γ at this distal site (20,40,50).
For review, see (1,5).
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Figure 2. Plasmin in the renal tubule can aberrantly cleave and activate ENaC
Plasminogen is absent in the urine of normal rats or humans, but is present in the setting of
nephrotic syndrome (20,21,56,57). It is likely that secreted tubular urokinase generates active
plasmin from plasminogen, and that plasmin cleaves the γ subunit distal to the furin cleavage
site to release the γ inhibitory peptide (**) (20,21,58-60). The α inhibitory peptide (*) is already
released by furin cleavage at two sites (44,51). This figure is adapted from Eaton, DC and
Pooler, JP (61).
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