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Abstract
In vitro and epidemiologic studies favor the efficacy of nonsteroidal anti-inflammatory drugs
(NSAID) in preventing skin squamous photocarcinogenesis, but there has been relatively little study
of their efficacy in preventing the more common skin basal cell carcinoma (BCC) carcinogenesis.
We first compared the relative anti-BCC effects of genetic deletion and NSAID pharmacologic
inhibition of cyclooxygenase (COX) enzymes in the skin of Ptch1+/− mice. We then assessed the
effects of celecoxib on the development of BCCs in a 3-year, double-blinded, randomized clinical
trial in 60 (PTCH1+/−) patients with the basal cell nevus syndrome. In Ptch1+/− mice, genetic deletion
of COX1 or COX2 robustly decreased (75%; P < 0.05) microscopic BCC tumor burden, but
pharmacologic inhibition with celecoxib reduced microscopic BCCs less efficaciously (35%; P <
0.05). In the human trial, we detected a trend for oral celecoxib reducing BCC burden in all subjects
(P = 0.069). Considering only the 60% of patients with less severe disease (<15 BCCs at study entry),
celecoxib significantly reduced BCC number and burden: subjects receiving placebo had a 50%
increase in BCC burden per year, whereas subjects in the celecoxib group had a 20% increase
(Pdifference = 0.024). Oral celecoxib treatment inhibited BCC carcinogenesis in PTCH1+/− mice and
had a significant anti-BCC effect in humans with less severe disease.

Introduction
The incidence of basal cell carcinomas (BCC) is increasing significantly even in younger
individuals (1) despite extensive educational efforts advising reduced exposure to solar UV
radiation, the major known cause of skin cancer. Because clinical trials of sunscreens (2), oral
retinoids, and β-carotene (3–5) indicate that these interventions fail to reduce BCCs, there is
a real need for new preventive approaches. To this end, we are focusing on patients with the
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basal cell nevus syndrome (BCNS; Gorlin syndrome MIM #109400), who are genetically
predisposed to develop many BCCs, often hundreds or even thousands (6). This phenotype
makes it possible to obtain statistical power for studying new drugs for BCC chemoprevention
with limited numbers of patients over a reasonably short time span. Studying BCC prevention
in BCNS patients before studying patients with sporadic BCCs mirrors the testing of colorectal
cancer chemopreventive agents in patients with familial adenomatous polyposis coli before
conducting longer, more expensive chemoprevention trials in patients with sporadic colorectal
adenomas (7,8). However, it differs from other chemoprevention studies in that it is possible
to assess directly the numbers and growth of the actual cancers that are the prevention targets,
not simply the numbers of precancerous lesions or surrogate end points (9–12).

BCNS patients are constitutionally heterozygous for one functioning copy of PTCH1, which
encodes a primary inhibitor of hedgehog signaling (13,14). Essentially all sporadic and familial
BCC tumors have aberrant hedgehog signaling caused by mutations, frequently of a UV
signature type, in genes encoding hedgehog pathway members, most commonly PTCH1.
Similarly, Ptch1+/− mice develop many BCCs when exposed to UV or ionizing radiation (IR;
refs. 15–18). The development of the same tumors (BCCs) with the same pivotal signaling
abnormality (hedgehog activation) in the same tissue (skin) caused by the same environmental
insults (UV radiation or IR) as in humans makes these mice a particularly attractive preclinical
model for study of prevention and treatment of BCCs.

Prospective studies showing the efficacy of nonsteroidal anti-inflammatory drugs (NSAID) in
reducing colorectal polyps and epidemiologic data supporting their anticancer effects have
stimulated the testing of their chemopreventive efficacy against many tumors in animal models
(19–21) and in humans (22). NSAIDs inhibit the cyclooxygenase (COX) enzymes (COX1 and
COX2) responsible for generating prostaglandin-mediated inflammation. Although NSAIDs
and COX2-specific inhibitors have shown impressive efficacy in preventing murine squamous
cell carcinomas (SCC; refs. 23–27) and some efficacy against human precancerous skin lesions
and human SCCs (28–30), there have been minimal data published on the effect of NSAIDs
on BCCs, the more common nonmelanoma skin cancer. Some studies suggest that BCCs
express high levels of COX enzymes (31), and one case-control study found that
polymorphisms in COX2 may modify BCC risk (32).

To test the relative importance of the COX enzymes in BCC carcinogenesis, we first quantitated
BCCs in Ptch1+/− mice lacking or overexpressing COX1 or COX2. We next assessed the results
of pharmacologic inhibition of COX2 using NSAIDs for the prevention of BCCs in Ptch1+/−

mice. Finally, we tested the effects of the COX2-specific inhibitor celecoxib in a randomized,
double-blinded, clinical trial in 60 PTCH1+/− humans.

Materials and Methods
Mice

Ptch1+/− mice (15) were used for studies of the prevention of murine BCC carcinogenesis,
except as otherwise indicated. The mutant allele was carried on a mixed C57BL/6 DBA/2
background by continuous crossing to B6 D2 F1 breeders (The Jackson Laboratory).
Ptch1+/− mice also were bred with mice carrying a K14-COX2 transgene or with C57BL/6
mice carrying mutant COX1 or COX2 genes to produce mice overexpressing or
underexpressing COX enzyme. Ptch1+/− K14-COX2 mice were backcrossed to an FVB
background given the strain-dependent effects on breeding and tumorigenicity (33). Mice
lacking COX1 or COX2 (Ptch1+/− COX1−/− and Ptch1+/− COX2−/− mice; ref. 34) were
backcrossed to a mixed C57BL/6 FVBN/J background, as they bred poorly on a C57BL/6
background.
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Induction and assessment of BCCs were as described (35). In brief, Ptch1+/− mice at age 6 wk
were begun on test diets and at age 8 wk received a single 5 Gy dose of IR (Cs-137) or began
thrice weekly treatments with UV radiation, 240 mJ/cm2, which continued until age 12 mo.
Standard biopsies of the skin were taken from the lower back (35). BCCs were identified by
their histologic appearance and their β-galactosidase staining and were scored manually for
number, size, and burden (average cross-sectional area × number of BCCs per mouse). In
addition, mice were observed for development of macroscopic tumors in most studies until age
16 mo. As reported previously (36), in Ptch1+/− mice treated with IR, all macroscopic tumors
were BCCs and trichoepitheliomas; in Ptch1+/− mice treated with UV, macroscopic tumors
included BCCs, SCCs, and spindle cell tumors (“fibrosarcomas”).

Diets
The nonspecific COX inhibitor sulindac and the COX2-specific inhibitor MF-tricyclic (37)
were generous gifts from Merck; the COX2-specific inhibitor celecoxib was donated to
National Cancer Institute by Searle/Pharmacia/Pfizer. Sulindac was administered to mice in
LabAuto Control Chow at 150 ppm. MF-tricyclic was administered in the same chow at 67
ppm. Both were made fresh monthly. Celecoxib was administered in LabAuto Control Chow
at 240, 480, or 1,500 ppm and was prepared fresh at 4-mo intervals. Mice were allowed ad
libitum access to the solutions and chow.

In vitro studies
Cells from our murine BCC cell lines were incubated with celecoxib at various concentrations
for 48 h, and the effects on cell proliferation were assessed using the WST assay as reported
previously (38).

Total RNA was extracted from the C5N immortalized keratinocyte and the ASZ001 BCC cell
lines using Trizol (Invitrogen), DNase I treated (Promega), and repurified using the RNeasy
mini-prep kit (Qiagen). Reverse transcription was carried out using the Taqman Reverse
Transcription Reagents kit (Applied Biosystems), and quantitative PCR was carried out by
Taqman Real-time PCR (Applied Biosystems). Validated gene-specific primerprobe assays
(Applied Biosystems) for 18S rRNA (Hs99999901_s1), COX1 (Mm00477214_m1), and
COX2 (Mm01307329_m1; Mm01307334_g1) were used for quantitative PCR.

Human subjects
All aspects of our human studies were reviewed and approved by the Institutional Review
Boards of the University of California at San Francisco and Columbia University Medical
Center as well as by the Protocol Review Committees of the University of California at San
Francisco Comprehensive Cancer Center and the Herbert Irving Comprehensive Cancer Center
of Columbia University. We recruited BCNS patients for the clinical trial from all regions of
the United States (ClinicalTrials.gov identifier: NCT00023621). Subjects all fulfilled
published criteria for the diagnosis of BCNS—any two major criteria or any single major plus
two minor criteria (39). In practice, all enrolled subjects had BCCs plus at least one other major
criterion—in no instance did the diagnosis rely on minor criteria. In particular, because the
study analyzed BCCs, patients enrolling in the study were required to have had at least four
histologically verified BCCs during the year before enrollment. Patients were not allowed to
use oral NSAIDs (acetaminophen for pain and aspirin for cardioprotective use at 81 mg/d were
permitted), corticosteroids, or retinoids or to use topical agents (e.g., 5-fluorouracil,
imiquimod, retinoids, and NSAIDs) with possible anti-BCC efficacy except as therapy for
individual BCCs.
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Study design
The study was designed as a double-blind, placebo-controlled, randomized phase II study of
the chemopreventive efficacy of oral celecoxib, 200 mg twice daily for 24 mo, against BCCs
in BCNS patients. Based on our preliminary data about the expected numbers of new BCCs
per subject and an estimated 20% dropout rate during the study, the trial was constructed to
have 80% power to identify a 40% difference in the number of new BCCs in celecoxib-treated
subjects as compared with the numbers of new BCCs in placebo-treated subjects. Enrollees,
planned 30 per group, were randomized independently at the four study centers with
stratification according to their reported numbers of BCCs during the year preceding
enrollment (<15 or ≥15 tumors, a natural dichotomization point based on our BCNS registry)
to receive capsules containing either placebo or 200 mg celecoxib. Patients returned to a clinical
study center in Newport Beach, CA, New York City, NY, San Francisco, CA, or South Euclid,
OH, at 3-mo intervals for physical examination, during which their BCCs were measured and
counted and their clinical, laboratory, and compliance status were assessed. Enrollment began
on May 11, 2001 and was completed on June 12, 2004. In December 2004, when the potential
cardiovascular adverse events in persons treated with celecoxib became known (40), all
subjects immediately discontinued taking study medicines and continued their quarterly visits
to the clinical study centers for the next year or, if sooner, until they had completed the planned
36 mo of study participation. Initially, we planned that all BCCs would be removed at study
entry but the large number of tumors in most patients made this impractical. Primary skin care
physicians (PSCP) examined the subjects and periodically removed individual tumors, and
records of these procedures as well as of the histology of each tumor were collated at the
Coordinating Study Center in San Francisco. The number of BCCs removed by PSCPs was
only a small fraction of those identified clinically and did not differ between the two treatment
groups (P = 0.32).Of the lesions removed, 85% were confirmed histologically as BCCs.
Excised BCCs were included in our analysis, and their number and size were carried forward
to subsequent study months. At the time of clinical study center visits, ≥4-mm-diameter BCCs
(excluding the lower legs) were identified clinically by one of three study dermatologist-
investigators (M.A. in Newport Beach, D.R.B. in New York and South Euclid, or E.H.E. in
San Francisco), mapped, and photographed. At each study visit, the body maps and/or
photographs were compared with those of the previous examination to improve consistency.
Adverse events were graded according to the National Cancer Institute Common Toxicity
Criteria v 2.0. Fasting blood was taken at each visit while subjects were taking study
medications and assayed for complete blood count and comprehensive metabolic panel, and
urine was collected for urinalysis. In addition, a negative serum pregnancy test was required
for all women of child-bearing potential before their entry into the study.

Statistical methods
In the mouse studies, t tests were used to compare the average number, size, and burden of
tumors in biopsies. Nonparametric Wilcoxon rank tests and linear regression methods were
used to compare the BCC number, size, and burden among the groups of mice fed celecoxib
at 0, 240, 480, and 1,600 ppm. All statistical tests were two-sided.

For the clinical trial, all primary outcomes were analyzed according to the intention-to-treat
principle. We counted and measured all ≥4-mm-diameter BCCs at each study visit for a
cumulative BCC tumor number or burden (sum of the diameters of all BCCs). A mixed effect
model (XTMIXED) was used to accommodate the repeated BCC tumor counts across clinic
visits within each subject. The XTMIXED model can account for unbalanced data and missing
data points (from dropouts or from missing study visits; some of the subjects did not attend all
scheduled study visits). Cumulative BCC number and burden were log transformed to
approximate a normal distribution. We calculated a slope (a time-based interaction) or rate of
BCC development for the placebo and celecoxib groups and examined whether the slopes
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differed in the two treatment groups. We fitted a model for drug treatment, age, gender, and
baseline BCC (≥15 or <15). Specific interactions were examined between BCC burden and
drug treatment. Backward stepwise selection was used to develop a parsimonious model by
sequentially removing variables with the highest P values (with the exception of drug treatment
group). Each predictor retained in the final model was required to have a P value of ≤0.05. Our
XTMIXED model fit the data, as cluster resampled bootstrap analysis (41) and linear regression
were used as a check on distributional and model assumptions and showed similar results. Data
were entered in Access and analyzed with STATA (StataCorp).

Results
Mouse studies: effects of genetic alterations of COX1 and COX2 on BCCs in Ptch1+/− mice

We first assessed whether genetic manipulation of expression of COXs, the major target of
NSAID chemopreventive activity, alters BCC carcinogenesis. We induced BCCs by treating
mice with 5 Gy IR at age 8 weeks and assessed BCC number and size in biopsies taken from
normal-appearing dorsal skin at age 6 to 7 months. Tumor burden was calculated by multiplying
the number of microscopic BCC tumors and their average size. As compared with their COX
wild-type sibs, IR-treated Ptch1+/− mice deficient in COX1 or COX2 (Ptch1+/− COX1−/− or
Ptch1+/− COX2−/− mice) had marked reductions in their microscopic BCC size and therefore
burden (P <0.05; Fig. 1A). Deletion of COX2 decreased BCC burden by 75%, and deletion of
COX1 or COX2 also reduced microscopic BCC numbers and size. By contrast, we found that
IR-treated transgenic mice overexpressing COX2 in basal keratinocytes of the interfollicular
epidermis, follicular outer root sheath, and in BCCs themselves (Ptch1+/− K14-COX2 mice;
refs. 34,36,42) had a 2-fold increase in microscopic BCC size as compared with that in their
COX wild-type sibs (P < 0.05; Fig. 1B). The shortened life span of the COX knockout mice,
similar to previous reports (33), precluded analysis of their susceptibility to the growth of
macroscopic BCCs. Thus, BCC carcinogenesis in Ptch1+/− mice correlated with COX enzyme
expression, with changes in size being especially prominent.

Mouse studies: effect of pharmacologic inhibition of COX enzymes on murine BCC cell lines
and BCC tumors in Ptch1+/− mice

We next assessed whether pharmacologic inhibition of the COX2 enzyme with celecoxib (a
COX2-specific inhibitor) could inhibit BCCs in vitro and in vivo. We found that celecoxib at
10 and 20 μmol/L inhibited the proliferation of three murine BCC cell lines (38) by 70% but
did not inhibit the proliferation of the nontransformed, non-BCC C5N murine keratinocyte line
(P < 0.01; Fig.2; ref.43). By quantitative PCR, COX2 expression was 4-fold higher in ASZ
compared with C5N. The correlation in these two cell lines between COX2 expression and
celecoxib inhibition of proliferation is consistent with the hypothesis that COX2 participates
in driving cell proliferation in the ASZ cells.

Because proliferation of murine BCC cell lines could be inhibited by celecoxib in vitro, we
fed Ptch1+/− mice either a standard chow diet (n =19) or a diet with celecoxib at doses of 240
ppm (n = 21),480 ppm (n = 28),or 1,600 ppm (n = 23) starting at age 6 weeks and gave them
IR at age 8 weeks. We assessed dorsal skin microscopic BCC number, size, and total burden
at age 9 months. Dietary celecoxib at all three doses reduced microscopic BCC burden by
~30%, again with a trend toward greater effect on size than on number (Fig. 3A). Because the
effect of celecoxib was not dose dependent over the range tested, we combined data from all
three groups of celecoxib-treated mice (n = 72) and found that treatment with celecoxib reduced
microscopic BCC burden by 35% (P < 0.05). Thus, pharmacologic inhibition of COX2 with
celecoxib was only half as effective in reducing tumor burden as was genetic inhibition of this
enzyme. A 480-ppm dose of celecoxib led to a plasma concentration of 1.5 μg/mL, a plasma
concentration similar to that achieved in humans taking 200 mg twice daily orally (44,45). We
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found that two other oral NSAIDs—the COX1/COX2 inhibitor sulindac (46) and the COX2
inhibitor MF-tricyclic (47)—reduced microscopic BCC burden by 50% to 60% (Fig. 3B).

Given these findings of some antimurine BCC efficacy of celecoxib, we proceeded to test the
effects of celecoxib in preventing BCC tumors in patients with BCNS (PTCH1+/−).

Human studies: effect of oral celecoxib on BCCs in BCNS patients
We enrolled 60 BCNS patients in a multicenter, doubleblinded, randomized phase II clinical
trial of celecoxib for BCC prevention (Table 1A). Subjects were stratified for number of BCCs
at study entry (≥15 or <15) because this was a natural dichotomization point (Fig. 4). Subjects
in the celecoxib group were, on average, 5 years older and had eight more BCCs at study entry,
but these differences were not statistically significant. The groups did not differ significantly
in gender, study site of enrollment, or percentage of subjects with ≥15 BCCs.

Subjects were randomized into two study arms, 27 to placebo and 33 to celecoxib, as shown
in Fig. 5. Subjects returned every 3 months for total skin examinations and photographic
documentation of BCC tumor number and size. At the end of the first year of the trial, 72% of
all subjects were still enrolled and 55% completed the first 24 months of the study, during
which subjects received either placebo or celecoxib. There was no differential dropout or
differences in the stated reasons for dropping out between the placebo and celecoxib arms
(Table 1B). In the third year of the study (months 24-36), medication administration was
discontinued but we continued to observe patients for BCC numbers. The study was
discontinued in December 2004 because of emerging evidence of enhanced cardiovascular
risks associated with COX2 inhibitors (48). At that time, 26 patients were still participating in
the trial. The majority of these subjects were in the observation arm of study months 24 to 36.
We discontinued the study medication before completion of the planned 24 months in nine
subjects and continued to observe them for BCC numbers. Statistical analysis was carried out
on an intent-to-treat basis because the overall compliance rate was high (85% in placebo group
and 91% in the celecoxib group). There was no difference between the placebo and celecoxib
groups in the rate or severity of adverse events (Table 1B), and no subject had a serious adverse
event or a laboratory-detected abnormality related to study drug. In particular, no patient was
known to have had a myocardial infarction or a cerebrovascular accident, and no patient died
during the course of the study.

Initially, we had planned to use changes in the numbers of new BCCs as the primary end point
for the study. Once the trial was under way, it became clear that this was impractical because
analyses of body maps and of photographs indicated that, despite our best efforts, it was difficult
to distinguish new versus preexisting BCCs at each visit. Therefore, we compared changes in
the total number of BCCs as the primary outcome. We also assessed the cumulative surface
area of these BCCs (BCC burden) for each subject. During the trial, subjects continued to
receive care from their PSCPs, who removed visible BCCs using whatever modality they
deemed clinically appropriate (surgical excision, electrodesiccation-curettage, or by chemical
methods). A total of 13,362 lesions were counted on the entire body excluding the lower legs.
A fraction (8.1%) of those lesions identified clinically as BCCs were excised by PSCPs, and
the number of BCCs removed did not differ significantly between the two treatment groups
(n = 529 treated in placebo versus n = 561 treated in celecoxib group; P = 0.32). Excised BCCs
were included in our analysis.

Our primary statistical end point assessed changes in cumulative BCC number or burden during
the entire 36 month trial. We determined the percent change in BCC numbers or BCC burden
per year for the placebo and celecoxib groups using a linear mixed model for longitudinal data.
BCC tumors increased in both groups during the 36 months of the trial (Table 2). Subjects
receiving placebo had a 37% increase in BCCs per year (P < 0.001for increase) when lesions
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were assessed by number or burden (cumulative surface area of BCCs). Subjects in the
celecoxib group had a 26% increase in BCCs per year (P < 0.001 for increase) when lesions
were assessed by number or burden. Comparing the two groups, the difference in the percent
change of BCCs per year (37% versus 26%) was nonsignificant (Pdifference = 0.18) when BCCs
were assessed by number. There was a trend toward celecoxib reducing BCC development
when BCC tumors were assessed by burden (Pdifference = 0.069).

Per our preplanned subgroup analyses, we stratified subjects based on the number of BCC
tumors at baseline (≥15 or <15 BCCs) because we anticipated that celecoxib might have
differential effects depending on disease severity. Celecoxib reduced the change in BCC
numbers in subjects with <15 BCCs at baseline (48% versus 22%; P = 0.043) and did not have
an effect in subjects with ≥15 BCCs at baseline (Table 2). Celecoxib also reduced the change
in BCC burden in subjects with <15 BCCs at baseline (50% versus 20%; P =
0.024).Adjustments for age and gender did not change the results.

Discussion
We have found a concordance between the effects of NSAIDs on BCC tumor development in
Ptch1+/− mice and PTCH1+/− humans. In mice, celecoxib reduced microscopic BCC burden
by 35%. In BCNS patients, celecoxib decreased the development of new BCCs by 50% in
subjects with less severe disease (<15 BCCs at baseline). Celecoxib decreased the development
of new BCCs by 30% in all subjects, but this did not reach statistical significance (P = 0.069for
BCC burden).These prospective controlled results are consistent with prior observational data
showing a modest effect of NSAIDs on SCCs and BCCs (30,49). We have found that NSAID
inhibition may indeed have some anti-BCC chemopreventive efficacy, but the potential
cardiovascular risks associated with celecoxib would seem to preclude its widespread use.
Instead, topical NSAIDs potentially might be effective chemopreventive agents against SCCs
and BCCs but with fewer cardiovascular risks. Morphoeic BCCs have been reported to have
elevated COX2 levels compared with other BCC subtypes and clinically are more aggressive
with an increased recurrence risk (31). Hence, these subtypes might be particularly good
candidates for topical NSAIDs.

With high levels in actinic keratoses and skin SCC and weak staining in murine and human
BCCs, COX2 would seem to be less important in the pathogenesis of BCC than of SCC.
However, COX2 expression in stromal tissue/microenvironment suggests that COX2 could be
involved in the early stages of BCC development (50,51). Therefore, the COX2 inhibitor
activity in this study may be related to its effects on stromal COX2 in Ptch1+/− mice and BCNS
patients; the apparent involvement of stromal COX2 in early stages of BCC development is
consistent with our finding that celecoxib was most preventive in patients with less severe BCC
burden at baseline. The relative importance of COX1 versus COX2 in nonmelanoma skin
cancer prevention is another important issue. The preclinical data are mixed; Pentland et al.
(52) have shown that COX1 deletion enhanced apoptosis but did not protect against UV-
induced skin tumors.

The good correlation between the effects of NSAIDs in preventing BCCs in Ptch1+/− mice and
the significant anti-BCC effects in BCNS patients supports our hypothesis that results obtained
from chemoprevention studies in the Ptch1+/− mouse can predict accurately which
chemopreventive agents are likely to have anti-BCC effects in humans, at least in PTCH1+/−

(BCNS) patients. In fact, celecoxib was more effective in reducing BCC size/burden rather
than BCC number in both mice and humans, similar to a previous report of celecoxib in
reducing colorectal adenoma size rather than number (8).
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Results of past attempts to preventing sporadic BCCs in patients at high risk (as assessed by
having had nonmelanoma skin cancer) have included the following. (a) A reduction in new
BCC formation followed reduction of dietary fat intake from the usual 40% to 20% of daily
calories (53). This trial has yet to be repeated perhaps because of the difficulty in adhering to
so rigorous a diet. (b) No reductions in BCCs were seen in large-scale trials of oral retinoids
(3–5), whereas retinoids have been reported to have some anti-SCC efficacy (54). (c) In contrast
to the retinoid trials, a recent large randomized trial found that difluoromethylornithine
prevented BCC but not SCC (55). (d)Trials seeking to encourage use of sunscreens have not
reduced BCCs even while diminishing SCCs (2). These and other results highlight the different
etiology and molecular pathogenesis between BCCs and SCCs. In addition, we have shown
previously that orally administered tea extracts are ineffective in preventing UV-induced BCC
carcinogenesis in Ptch1+/− mice, whereas they inhibit the induction of SCCs in SKH-1 mice
(56). These studies provide further evidence that SCCs and BCCs differ not only in their
molecular pathogenesis but also in their response to chemopreventive agents.
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Fig. 1.
A, average BCC number, size, and BCC burden at age 7 mo in standardized skin biopsies of
IR-treated Ptch1+/− mice wild-type (n = 24), deleted for COX1 (n = 12) or for COX2 (n = 6).
Columns, mean; bars, SE. COX knockout (KO) mice are compared with COX wild-type
(WT) mice. *, P < 0.05. B, average BCC number, size, and BCC burden at age 6 mo in
standardized skin biopsies of IR-treated Ptch1+/− mice (11) versus Ptch1+/− K14 COX2
transgenic mice (10). Columns, mean; bars, SE. *, P < 0.05.
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Fig. 2.
Cellular proliferation assay. Celecoxib at 10 and 20 μmol/L selectively inhibits BCC cell line
proliferation (ASZ, BSZ, and CSZ) compared with non-BCC keratinocytes (C5N). Columns,
mean; bars, SE. *, P < 0.05; †, P < 0.01, for difference between BCC versus C5N non-BCC
keratinocyte cell line.
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Fig. 3.
A, IR-induced tumor number, average size, and burden at age 9 mo in standardized biopsies in
Ptch1+/− mice fed chow (control, n = 19), 240 ppm celecoxib (n = 21), 480 ppm celecoxib (n
= 28), or 1,600 ppm celecoxib (n = 23). Columns, mean; bars, SE. Celecoxib-treated mice are
compared with control-treated mice. *, P < 0.05. B, IR-induced tumor number, average size,
and burden at age 9 mo in standardized biopsies in Ptch1+/− mice fed chow (control, n = 10),
MF-tricyclic (MFTC; n = 10), or sulindac (n = 10). Columns, mean; bars, SE. MF-tricyclic–
treated and sulindac-treated mice are compared with control-treated mice. *, P < 0.05; **, P
< 0.01.
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Fig. 4.
Back of a BCNS subject with ≥15 BCC tumors present at baseline. Active BCC tumors are
circled in green.
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Fig. 5.
CONSORT flowchart for clinical trial.
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