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Abstract
Rapid developments in geographical information systems (GIS) continue to generate interest in
analyzing complex spatial datasets. One area of activity is in creating smoothed disease maps to
describe the geographic variation of disease and generate hypotheses for apparent differences in risk.
With multiple diseases, a multivariate conditionally autoregressive (MCAR) model is often used to
smooth across space while accounting for associations between the diseases. The MCAR, however,
imposes complex covariance structures that are difficult to interpret and estimate. This article
develops a much simpler alternative approach building upon the techniques of smoothed ANOVA
(SANOVA). Instead of simply shrinking effects without any structure, here we use SANOVA to
smooth spatial random effects by taking advantage of the spatial structure. We extend SANOVA to
cases in which one factor is a spatial lattice, which is smoothed using a CAR model, and a second
factor is, for example, type of cancer. Datasets routinely lack enough information to identify the
additional structure of MCAR. SANOVA offers a simpler and more intelligible structure than the
MCAR while performing as well. We demonstrate our approach with simulation studies designed to
compare SANOVA with different design matrices versus MCAR with different priors. Subsequently
a cancer-surveillance dataset, describing incidence of 3-cancers in Minnesota’s 87 counties, is
analyzed using both approaches, showing the competitiveness of the SANOVA approach.

Key words and and phrases
Analysis of variance; Bayesian inference; conditionally autoregressive model; hierarchical model;
smoothing

1. Introduction
Statistical modeling and analysis of spatially referenced data receive considerable interest due
to the increasing availability of geographical information systems (GIS) and spatial databases.
For data aggregated over geographic regions such as counties, census tracts or ZIP codes (often
called areal data), with individual identifiers and precise locations removed, inferential
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objectives focus on models for spatial clustering and variation. Such models are often used in
epidemiology and public health to understand geographical patterns in disease incidence and
morbidity. Recent reviews of methods for such data include Lawson et al. (1999), Elliott et al.
(2000), Waller and Gotway (2004) and Rue and Held (2005). Traditionally such data have been
modeled using conditionally specified probability models that shrink or smooth spatial effects
by borrowing strength from neighboring regions. Perhaps the most pervasive model is the
conditionally autoregressive (CAR) family pioneered by Besag (1974), which has been widely
investigated and applied to spatial epidemiological data [Wakefield (2007) gives an excellent
review]. Recently the CAR has been extended to multivariate responses, building on
multivariate conditional autoregressive (MCAR) models described by Mardia (1988). Gelfand
and Vonatsou (2003) and Carlin and Banerjee (2003) discussed their use in hierarchical models,
while Kim, Sun and Tsutakawa (2001) presented a different “twofold CAR” model for counts
of two diseases in each areal unit. Other extensions allowing flexible modeling of cross-
correlations include Sain and Cressie (2002), Jin, Carlin and Banerjee (2005) and Jin, Banerjee
and Carlin (2007). The MCAR can be viewed as a conditionally specified probability model
for interactions between space and an attribute of interest. For instance, in disease mapping
interest often lies in modeling geographical patterns in disease rates or counts of several
diseases. The MCAR acknowledges dependence between the diseases as well as dependence
across space. However, practical difficulties arise from MCAR’s elaborate dependence
structure: most interaction effects will be weakly identified by the data, so the dependence
structure is poorly identified. In hierarchical models [e.g., Gelfand and Vonatsou (2003), Jin,
Carlin and Banerjee (2005 Jin, Carlin and Banerjee (2007)], strong prior distributions may
improve identifiability, but this is not uncontroversial, as inferences are sensitive to the prior
and perhaps unreliable without genuine prior information. This article proposes a much simpler
and more interpretable alternative to the MCAR, modeling multivariate spatial effects using
smoothed analysis of variance (SANOVA) as developed by Hodges, Carlin and Fan (2007),
henceforth HCSC. Unlike an ANOVA that is used to identify some interaction effects to retain
and others to remove, SANOVA mostly retains effects that are large, mostly removes those
that are small, and partially retains middling effects. (Loosely speaking, “large,” “middling”
and “small” describe the size of the unsmoothed effects compared to their standard errors.) To
accommodate rich dependence structures, MCAR introduces weakly identifiable parameters
that complicate estimation. SANOVA, on the other hand, focuses instead on smoothing
interactions to yield more stable and reliable results. Our intended contribution is to show how
SANOVA can solve the multiple disease mapping problem while avoiding the dauntingly
complex covariance structures imposed by MCAR and its generalizations. We demonstrate
that SANOVA produces inference that is largely indistinguishable from MCAR, yet SANOVA
is simpler, more explicit, easier to put priors on and easier to estimate. The rest of the article
is as follows. Section 2 reviews SANOVA and MCAR, identifying SANOVA as a special case
of MCAR. Section 3 is a “tournament” of simulation experiments comparing SANOVA with
MCAR for normal and Poisson data, while Section 4 analyzes data describing the number of
deaths from lung, larynx and esophagus cancer in Minnesota between 1990 and 2000. A
summary and discussion of future research in Section 5 concludes the paper. Zhang, Hodges
and Banerjee (2009) (Appendices) gives computational and technical details.

2. The competitors
2.1. Smoothing spatial effects using SANOVA

2.1.1. SANOVA for balanced, single-error-term models [HCSC (2007)]—Consider
a balanced, single-error-term analysis of variance, with M1 degrees of freedom for main effects
and M2 degrees of freedom for interactions. Specify this ANOVA as a linear model: let A1
denote columns in the design matrix for main effects, and A2 denote columns in the design
matrix for interactions. Assume the design has c cells and n observations per cell, giving cn
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observations in total. To simplify later calculations, normalize the columns of A1 and A2 so

 and . (Note: HCSC normalized columns differently, fixing  and

.) Then write the ANOVA as

(1)

where  with η0 being a precision, y is cn × A1 is cn × M1, A2 is cn × M2, Θ1 is
M1 × 1, Θ2 is M2 × 1, and ε is cn × 1. This ANOVA is smoothed by further modeling Θ. HCSC
emphasized smoothing interactions, although main effects can be smoothed by exactly the
same means. Following HCSC, we add constraints (or a prior) on Θ2 as θM1+j ~ N(0, 1/ηj) for
j = 1, …, M2, written as

(2)

where , in the manner of Lee and Nelder (1996) and Hodges (1998).
Combining (1) and (2), express this hierarchical model as a linear model:

(3)

More compactly, write

(4)

where Y has dimension (cn + M2) × 1 and e’s covariance Γ is block diagonal with blocks
 for the data cases (rows of X corresponding to the observation y) and Γ2 = diag(1/

η1, …, 1/ηM2) for the constraint cases (rows of X with error term δ). For convenience, define
the matrix XD = [A1|A2], the data-case part of X. This development can be done using the mixed
linear model (MLM) formulation traditionally written as y = Xβ + Zu + ε;, where our (1)
supplies this equation and u = Θ2 ~ N(0, Γ2). The development to follow can also be done
using the MLM formulation at the price of slightly greater complexity, so we omit it. HCSC
developed SANOVA for exchangeable priors on groups formed from components of Θ2. The
next section develops the extension to spatial smoothing.

2.1.2. What is CAR?—Suppose a map has N regions, each with an unknown quantity of
interest φi, i = 1, …, N. A conditionally autoregressive (CAR) model specifies the full
conditional distribution of each φi as

(5)
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where i ~ j denotes that region j is a neighbor of region i (typically defined as spatially adjacent),
and mi is the number of region i’s neighbors. Equation (5) reduces to the well-known intrinsic
conditionally autoregressive (ICAR) model [Besag, York and Mollié (1991)] if α = 1 or an
independence model if α = 0. The ICAR model induces “local” smoothing by borrowing
strength from neighbors, while the independence model assumes spatial independence and
induces “global” smoothing. The CAR prior’s smoothing parameter α also controls the strength
of spatial dependence among regions, though it has long been appreciated that a fairly large
α may be required to induce large spatial correlation; see Wall (2004) for recent discussion and
examples. It is well known [e.g., Besag (1974)] that the conditional specifications in (5) lead
to a valid joint distribution for φ = (φ1, …, φN)′ expressed in terms of the map’s neighborhood
structure. If Q is an N × N matrix such that Qii = mi, Qij = − α whenever i ~ j and Qij = 0
otherwise, then the intrinsic CAR model [Besag, York and Mollié (1991)] has density

(6)

In (6) τ is the spatial precision parameter, τQ is the precision matrix in this multivariate normal
distribution and G is the number of “islands” (disconnected parts) in the spatial map [Hodges,
Carlin and Fan (2003)]. When α ∈ (0, 1), (6) is a proper multivariate normal distribution. When
α = 1, Q is singular with Q1 = 0; Q has rank N − G in a map with G islands, therefore, the
exponent on τ becomes (N − G)/2. In hierarchical models, the CAR model is usually used as
a prior on spatial random effects. For instance, let Yi be the observed number of cases of a
disease in region i, i = 1, …, N, and Ei be the expected number of cases in region i. Here the
Yi are treated as random variables, while the Ei are treated as fixed and known, often simply
proportional to the number of persons at risk in region i. For rare diseases, a Poisson
approximation to a binomial sampling distribution for disease counts is often used, so a
commonly used likelihood for mapping a single disease is

(7)

where . The xi are explanatory, region-specific regressors with coefficients β and
the parameter μi is the log-relative risk describing departures of observed from expected counts,
that is, from Ei. The hierarchy’s next level is specified by assigning the CAR distribution to
φ and a hyper-prior to the spatial precision parameter τ. In the hierarchical setup, the improper
ICAR with α = 1 gives proper posterior distributions for spatial effects. In practice, Markov
chain Monte Carlo (MCMC) algorithms are designed for estimating posteriors from such
models and the appropriate number of linear constraints on the φ suffices to ensure sampling
from proper posterior distributions [Banerjee, Carlin and Gelfand (2004), pages 163–164, give
details].

2.1.3. How does CAR fit into SANOVA?—To use CAR in SANOVA, the key is re-
expressing the improper CAR, that is, (6) with α = 1. Let Q have spectral decomposition Q =
VDV′, where V is an orthogonal matrix with columns containing Q’s eigenvectors and D is
diagonal with nonnegative diagonal entries. D has G zero diagonal entries, one of which
corresponds to the eigenvector , by convention the N th (right-most) column in V. Define
a new parameter Θ = V′φ, so Θ has dimension N and precision matrix τD. Giving an N -vector
Θ a normal prior with mean zero and precision τD is equivalent to giving φ = VΘ a CAR prior
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with precision τQ. Θ consists of , the scaled average of the φi, along with
N − 1 contrasts in φ, which are orthogonal to  by construction. Thus, the CAR prior is
informative (has positive precision) only for contrasts in φ, while putting zero precision on

, the overall level, and on G − 1 orthogonal contrasts in the levels of the G
islands. In other words, the CAR model can be thought of as a prior distribution on the contrasts
rather than individual effects (hence the need for the sum-to-zero constraint). A related result,
discussed in Besag, York and Mollié (1995), shows the CAR to be a member of a family of
“pairwise difference” priors. This reparameterization allows the CAR model to fit into the
ANOVA framework, with ΘGM corresponding to the ANOVA’s grand mean and the rest of
Θ, ΘReg, corresponding to V(−)′φ, where V(−) is V excluding the column , consisting of
N − 1 orthogonal contrasts among the N regions and giving the N − 1 degrees of freedom in
the usual ANOVA:

Giving φ a CAR prior is equivalent to giving Θ a N(0, τD) prior; the latter are the “constraint
cases” in HCSC’s SANOVA structure. The precision DNN = 0 for the overall level is equivalent
to a flat prior on ΘGM, though ΘGM could alternatively have a normal prior with mean zero
and finite variance. If G > 1, the CAR prior also puts zero precision on G − 1 contrasts in φ,
which are contrasts in the levels of the G islands [Hodges, Carlin and Fan (2003)].

2.2. SANOVA as a competitor to MCAR
2.2.1. Multivariate conditionally autoregressive (MCAR) models—With multiple
diseases, we have unknown φij corresponding to region i and disease j, where i = 1, …, N and
j = 1, …, n. Letting Ω be a common precision matrix (i.e., inverse of the covariance matrix)
representing correlations between the diseases in a given region, MCAR distributions arise
through conditional specifications for φ = (φi1, …, φin)′:

(8)

These conditional distributions yield a joint distribution for :

(9)

where Q is defined as in Section 2.1.2 and again (9) is an improper density when α = 1. However,
as for the univariate CAR, this yields proper posteriors in conjunction with a proper likelihood.
The specification above is a “separable” dispersion structure, that is, the covariances between
the diseases are invariant across regions. This may seem restrictive, but relaxing this restriction
gives even more complex dispersion structures [see Jin, Banerjee and Carlin (2007) and
references therein]. As mentioned earlier, our focus is to retain the model’s simplicity without
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compromising the primary inferential goals. We propose to do this using SANOVA and will
compare it with the separable MCAR only.

2.2.2. SANOVA with Minnesota counties as one factor—We now describe the
SANOVA model using the Minnesota 3-cancer dataset. Consider the Minnesota map with N
= 87 counties, and suppose each county has counts for n = 3 cancers. County i has an n-vector
of parameters describing the n cancers, φi = (φi1, φi2, …, φin)′; define the Nn vector φ as

. For now, we are vague about the specific interpretation of φij; the following
description applies to any kind of data. Assume the N × N matrix Q describes neighbor pairs
among counties as before. The SANOVA model for this problem is a 2-way ANOVA with
factors cancer (“CA,” n levels) and county (“CO,” N levels) and no replication. As in Section
2.1.1, we model φ with a saturated linear model and put the grand mean and the main effects
in their traditional positions as in ANOVA (matrix dimensions and definitions appear below
the equation):

(10)

where HCA is an n × (n − 1) matrix whose columns are contrasts among cancers, so

, and  is the j th column of HCA; and V (−) is V without its N th

column , so it has N − 1 columns, each a contrast among counties, that is, , and
V(−)′V(−) = IN−1. The column labeled “Grand mean” corresponds to the ANOVA’s grand mean
and has parameter ΘGM; the other blocks of columns labeled as main effects and interactions
correspond to the analogous ANOVA effects and to their respective parameters ΘCA, ΘCO,
ΘCO×CA. Defining prior distributions on Θ completes the SANOVA specification. We put
independent flat priors (normal with large variance) on ΘGM and ΘCA, which are, therefore,
not smoothed. This is equivalent to putting a flat prior on each of the n cancer-specific means.

To specify the smoothing priors, define . Let the county main effect parameter
ΘCO have prior ΘCO ~ NN−1(0, τ0D(−)), where D(−) corresponds to V(−), that is, D without its
N th row and column, τ0 > 0 is unknown and τ0D(−) is a precision matrix. Similarly, let the j th
group of columns in the cancer-by-county interaction, , have prior

, for τj > 0 unknown. Each of the priors on ΘCO and the  is a
CAR prior; the overall level of each CAR, with prior precision zero, has been included in the
grand mean and cancer main effects.

To compare this to the MCAR model, use SANOVA’s priors on Θ to produce a marginal prior
for φ comparable to the MCAR’s prior on φ (Section 2.2.1); in other words, integrate ΘCO and
ΘCO×CA out of the foregoing setup. A priori,
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(11)

has precision , where K is the columns of the design matrix for the county
main effects and cancer-by-county interactions—the right-most n(N − 1) columns in equation

(10)’s design matrix—and  is an orthogonal matrix. Appendix A in Zhang,
Hodges and Banerjee (2009) gives a proof.

2.2.3. Comparing SANOVA vs MCAR—Defining φ as in Sections 2.2.1 and 2.2.2,
consider the MCAR prior for φ, with within-county precision matrix Ω. Let Ω have spectral

decomposition , where DΩ is n × n diagonal and VΩ is n × n orthogonal. Then the

prior precision of φ is , where Q is the known neighbor relations matrix and
VΩ and DΩ are unknown. Comparing MCAR to SANOVA, the prior precision matrices for the
vector φ are as in Figure 1. SANOVA is clearly a special case of MCAR in which  is
known. Also, as described so far,  has one column proportional to 1n with the other columns
being contrasts, while MCAR avoids this restriction. MCAR is thus more flexible, while
SANOVA is simpler, presumably making it better identified and easier to set priors for. MCAR
should have its biggest advantage over SANOVA when the “true” VΩ is not like  for any
specification of the smoothing precisions τj. However, because data sets often have modest
information about higher-level variances, it may be that using the wrong  usually has little
effect on the analysis. In other words, SANOVA’s performance may be relatively stable despite
having to specify , while MCAR may be more sensitive to Ω’s prior.

2.3. Setting priors in MCAR and SANOVA
2.3.1. Priors in SANOVA—For the case of normal errors, based on equations (1) and (10),
setting priors for Θ, τj, η0 completes a Bayesian specification. Since τ and η0 are precision
parameters, one possible prior is Gamma; this paper uses a Gamma with mean 1 and variance
10. As mentioned, the grand mean and cancer main effects θ1, θ2, θ3 have flat priors with π
(θ) ∝ 1, though they could have proper informative priors. The priors for θ4, … are set according
to the SANOVA structure as in Section 2.2.2. We ran chains drawing in the order θ, τ and η0
[Appendix B in Zhang, Hodges and Banerjee (2009) gives details]. Hodges, Carlin and Fan
(2007) also considered priors on the degrees of freedom in the fitted model, some conditioned
so the degrees of freedom in the model’s fit were fixed at a certain degree of smoothness. The
present paper emphasizes comparing MCAR and SANOVA, so we do not consider such priors.
For the case of Poisson errors, we use a normal prior with mean 0 and variance 106 for the
grand mean and cancer main effects θ1, θ2, θ3. The other θi s are given normal CAR priors as
discussed in Section 2.2.2. For the prior on the smoothing precisions τj, we use Gamma with
mean 1 and variance 10. To reduce high posterior correlations among the θs, we used a
transformation during MCMC; Appendix C in Zhang, Hodges and Banerjee (2009) gives
details.

2.3.2. Priors in MCAR—MCAR models were fitted in WinBUGS. For the normal-error
case, we used this model and parameterization:
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(12)

i = 1, …, N; j = 1, …, n, where η0 has a gamma prior with mean 1 and variance 10 as for
SANOVA. To satisfy WinBUGS’s constraint that Σi Sij = 0, we add cancer-specific intercepts
βj. We give βj a flat prior and for S, the spatial random effects, we use an intrinsic multivariate
CAR prior. Similarly, in the Poisson case

(13)

where Eij is an offset. Prior settings for βj and Sij are as in the normal case. For MCAR priors,
the within-county precision matrix Ω needs a prior; a Wishart distribution is an obvious choice.
If Ω ~ Wishart(R, ν), then E(Ω) = νR−1. We want a “vague” Wishart prior; usually ν = n is used
but little is known about how to specify R. Thus, we considered three different Rs, each
proportional to the identity matrix. One of these priors sets R’s diagonal entries to Rii = 0.002,
close to the setting used in an example in the GeoBUGS manual (oral cavity cancer and lung
cancer in West Yorkshire). The other two Rs are the identity matrix and 200 times the identity.
For the special case n = 1, where the Wishart reduces to a Gamma, these Wisharts are Γ(0.5,
0.001), Γ(0.5, 0.5) and Γ(0.5, 100), respectively.

3. Simulation experiment
For this simulation experiment, artificial data were simulated from the model used in SANOVA
with a spatial factor, as described in Section 2.2.2. Three different types of Bayesian analysis
were applied to the simulated data: SANOVA with the same  used to generate the simulated
data (called “SANOVA correct”); SANOVA with incorrect ; and MCAR. SANOVA
correct is a theoretical best possible analysis in that it takes as known things that MCAR
estimates, that is, it uses additional correct information. SANOVA correct cannot be used in
practice, of course, because the true  is not known. MCAR vs SANOVA with incorrect

 is the comparison relevant to practice, and comparing them to SANOVA correct shows
how much each method pays for its “deficiency” relative to SANOVA correct. Obviously it is
not enough to test the SANOVA model using only data generated from a similar SANOVA
model. To avoid needless computing and facilitate comparisons, instead of generating data
from an MCAR model and fitting a SANOVA model as specified above, we use a trick that is
equivalent to this. Section 3.1.2 gives the details.

3.1. Design of the simulation experiment
We simulated both normally-distributed and Poisson-distributed data. For both types of data,
we considered two different true sets of smoothing parameters r = τ/η0 or τ (Table 1). For the
normal data, we considered τ/η0, since this ratio determines smoothing in normal models, and
we also considered two error precisions η0 (Table 1).

3.1.1. Generating the simulated data sets—To generate data from the SANOVA model,
we need to define the true . Let
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We used HA1 as the correct ; its columns are scaled to have length 1. Given V(−) and with
 known, one draw of Θ and ε produces a draw of XDΘ +ε, therefore a draw of y. In the

simulation, we let the grand mean and main effects, which are not smoothed, have true value
5. Each observation is simulated from a 3 × 20 factorial design, where 3 is the number of
cancers and 20 is the number of counties. We used the 20 counties in the right lower corner of
Minnesota’s map, with their actual neighbor relations. Thus, the dimension of each artificial
data set is 60. The simulation experiment is a repeated-measures design, in which a “subject”

s in the design is a draw of (δ(s), γ (s)), referring to equation (3), where  and

 specify Θ and γ(s) ~ N60(0, I60) gives ε. For the normal-errors case,
100 such “subjects” were generated. Given a design cell in the simulation experiment with τ
= (a, b, c) and η0 = d, the artificial data set for subject s is

. All factors of the simulation experiment were
applied to each of the 100 “subjects.” For the normally-distributed data, the simulation
experiment had these factors: (a) the true (τ0/η0, τ1/η0, τ2/η0): (100, 100, 0.1) or (0.1, 100, 0.1);
(b) the true error precision η0: 1 or 10; and (c) six statistical methods, described below in Section
3.1.2. Each design cell described in Table 1 thus had 100 simulated data sets. Similarly, for
the Poisson-data experiment, another 100 “subjects” were generated, but now there is no γ(s).
Thus, each “subject” s is a vector δ(s), where δ(s) is as described above. For the design cell with
τ = (100, 100, 0.1), the artificial data for subject s is y(s) ~ Poisson(μ(s)), where

. In the simulation experiment, we use
“internal standardization” of the Minnesota 3-cancer data to supply the expected numbers of
cancers Eij. Among the 20 extracted counties, Hennepin county has the largest average
population over 11 years, about 1.1 million; its cancer counts are 5294, 119 and 439 for lung,
larynx and esophagus respectively. Faribault county has the smallest average population,
16,501, with cancer counts 110, 7 and 13 respectively. The Eij have ranges 80 to 5275, 2 to
113 and 7 to 449 for lung, larynx and esophagus cancer respectively. For the Poisson data, the
simulation experiment had these factors: (a) the true τ0, τ1, τ2: (100, 100, 0.1) or (0.1, 100, 0.1);
and (b) six statistical methods described below in Section 3.1.2. Again, each of the two design
cells in Table 1 had 100 simulated data sets.

3.1.2. The six methods (procedures)—For each simulated data set, we did a Bayesian
analysis for each of six different models described in Table 2. The six models are: SANOVA
with the correct , HA1; SANOVA with a somewhat incorrect , HA2 given below; a
variant SANOVA with a very incorrect , HAM given below; MCAR with Rii = 0.002;
MCAR with Rii = 1; and MCAR with Rii = 200 (see Section 2.3.2). HA2 and HAM are
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The incorrect HA2 has the same first column (grand mean) as the correct HA1, so it differs from
the correct HA1, though less than it might. As noted above, we need to see how the SANOVA
model performs for data generated from an MCAR model in which VΩ from Figure 1 does not
have a column proportional to 1n. To do this without needless computing, we used a trick: we
used the data generated from a SANOVA model with HA1 and fit the variant SANOVA
mentioned above, in which  is replaced by the orthogonal matrix HAM with no column
proportional to 1n, chosen to be very different from HA1. For normal errors (Data1 through
Data4), this is precisely equivalent to fitting a SANOVA with  to data generated
from an MCAR model with VΩ = BHA1, for , that is,

(14)

(to 2 decimal places). For Poisson errors (Data5, Data6), the equivalence is no longer precise
but the divergence of fitted SANOVA [using ] and

generated data [using ] is quite similar. Finally, we considered three priors for MCAR
because little is known about how to set this prior and we did not want to hobble MCAR with
an ill-chosen prior. For the SANOVA and variant SANOVA analyses, we gave τj a Γ (0.1, 0.1)
prior with mean 1 and variance 10 for both the normal data and the Poisson data.

3.2. Outcome measures
To compare the six different methods for normal and Poisson data, we consider three criteria.
The first is average mean squared error (AMSE). For each of the 60 (XDΘ)ij, the mean squared
error is defined as the average squared error over the 100 simulated data sets. AMSE for each
design cell in the simulation experiment is defined as the average of mean squared error over
the 60 (XDΘ)ij. Thus, for the design cell labeled DataK in Table 1, define

(15)

where L = 100, N = 20, n = 3, K = 1, …, 4 for Normal, K = 5, 6 for Poisson, Θ is the true value
and Θ̂is the posterior median of Θ. For each design cell (K), the Monte Carlo standard error
for AMSE is (100)−0.5 times the standard deviation, across DataK’s 100 simulated data sets,

of . The second criterion is the bias of XDΘ. For each of
DataK’s 100 simulated data sets, first compute posterior medians of (XDΘ)1,1, …, (XDΘ)20,3,
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then average each of those posterior medians across the 100 simulated data sets. From this
average, subtract the true (XDΘ)ij s to give the estimated bias for each of the 60 (XDΘ)ij s.
MBIAS is defined as the 2.5th, 50th and 97.5th percentiles of the 60 estimated biases. More
explicitly, for design cell DataK, MBIAS is

(16)

Finally, the coverage rate of Bayesian 95% equal-tailed posterior intervals, “PI rate,” is the
average coverage rate for the 60 individual (XDΘ)ij s.

3.3. Markov chain Monte Carlo specifics
While the MCAR models were implemented in WinBUGS, our SANOVA implementations
were coded in R and run on Unix. The different architectures do not permit a fair comparison
between the run times of SANOVA and MCAR. However, the SANOVA models have lower
computational complexity than the MCAR models: MCAR demands a spectral decomposition
in every iteration, while SANOVA does not. For each of our models, we ran three parallel
MCMC chains for 10,000 iterations. The CODA package in R (www.r-project.org) was used
to diagnose convergence by monitoring mixing using Gelman–Rubin diagnostics and
autocorrelations [e.g., Gelman et al. (2004), Section 11.6]. Sufficient mixing was seen within
500 iterations for the SANOVA models, while 200 iterations typically revealed the same for
the MCAR models; we retained 8000 × 3 samples for the posterior analysis.

3.4. Results
Table 3 and Figures 2 and 3 show the simulation experiment’s results. Table 3 shows AMSE;
for all methods and design cells, the standard Monte Carlo errors of AMSE are small, less than
0.07, 0.005 and 0.025 for Data1/Data2, Data3/Data4 and Data5/Data6 respectively. Figure 2
shows MBIAS, where the middle symbols represent the median bias and the line segments
represent the 2.5th and 97.5th percentiles. Figure 3 shows coverage of the 95% posterior
intervals. Denote SANOVA with the correct  (HA1) as “SANOVA correct,” SANOVA
with HA2 as “SANOVA incorrect,” the variant SANOVA with HAM as “SANOVA variant,”
MCAR with Rii = 0.002 as “MCAR0.002” and so on.

3.4.1. As expected, SANOVA with correct  performs best—For normal data,
SANOVA correct has the smallest AMSE for all true η0 and τ (Table 3). The advantage is
larger in Data1 and Data2 where the error precision η0 is 1 than in Data3 and Data4 where
η0 is 10 (i.e., error variation is smaller). For Poisson data, SANOVA correct also has the
smallest AMSE. Considering MBIAS (Figure 2), SANOVA correct has the narrowest MBIAS
intervals for all cases. In Figure 3, the posterior coverage for SANOVA correct is nearly
nominal. As expected, then, SANOVA correct performs best among the six methods.

3.4.2. SANOVA with incorrect HA2 and HAM perform very well—Table 3 shows that,
for normal data, both SANOVA incorrect and SANOVA variant have smaller AMSEs than
MCAR200 and MCAR0.002, and AMSEs at worst close to MCAR1’s. For Poisson data, Table
3 shows that MCAR0.002 and MCAR1 do somewhat better than SANOVA incorrect and
variant SANOVA. Considering MBIAS in normal data [Figure 2(a)], the width of the 95%
MBIAS intervals for SANOVA incorrect are the same as or smaller than for all three MCAR
procedures. Similarly, SANOVA variant has MBIAS intervals better than MCAR0.002 and
MCAR200 and almost as good as MCAR1. Figure 2(b) for Poisson data shows SANOVA
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correct, MCAR0.002 and MCAR1 have similar MBIAS intervals. SANOVA variant in Data5
and SANOVA incorrect in Data6 show the worst performance for MBIAS apart from
MCAR200, whose MBIAS interval is much the widest. Figure 3(a) shows that, for normal
data, interval coverage for SANOVA incorrect and SANOVA variant is very close to nominal.
It appears that the specific value of  has little effect on PI coverage rate for the cases
considered here. Apart from MCAR200 for Data1/Data2 and MCAR0.002 for Data1 through
Data4, which show low coverage, all the other methods have coverage rates greater than 90%
for normal data, most close to 95%. For Data3 and Data4, PI rates for MCAR200 reach above
99%. For Poisson data, the PI rates for SANOVA incorrect and SANOVA variant are close to
nominal and better than MCAR0.002 and MCAR200. In particular, all SANOVAs have the
closest to nominal coverage rates for both normal and Poisson data, which again shows the
stability of SANOVA under different  settings.

3.4.3. MCAR is sensitive to the prior on Ω—To fairly compare SANOVA and MCAR,
we considered MCAR under three different prior settings. For normal data, MCAR1 has the
smallest AMSEs and narrowest MBIAS intervals among the MCARs considered, while
MCAR0.002 has the largest and widest, respectively. For Poisson data, however, MCAR0.002
has the best AMSE and MBIAS among the MCARs. MCAR200 performs poorly for both
Normal and Poisson. The coverage rates in Figure 3 show similar comparisons. These results
imply that the prior matters for MCAR: no single prior was always best. By comparison,
SANOVA seems more robust, at least for the cases considered.

3.5. Summary
As expected, SANOVA correct had the best performance because it uses more correct
information. For normal data, SANOVA incorrect and SANOVA variant had similar AMSEs,
better than two of the three MCARs for the data sets considered. For Poisson data, SANOVA
incorrect and SANOVA variant had AMSEs as good as those of MCAR0.002 and MCAR1
for Data5 and somewhat worse for Data6, while showing nearly nominal coverage rates in all
cases and less tendency to bias than MCAR in most cases. Replacing the Γ (0.1, 0.1) prior for
τ with Γ (0.001, 0.001) left AMSE and MBIAS almost unchanged and coverage rates a bit
worse (data not shown). MCAR, on the other hand, seems more sensitive to the prior on Ω.
MCAR0.002 tends to smooth more than MCAR1, more so in normal models where the prior
is more influential than in Poisson models. (The latter is true because data give more
information about means than variances, and the Poisson model’s error variance is the same
as its mean, while the normal model’s is not.) For the normal data, MCAR0.002’s tendency to
extra shrinkage appears to make it oversmooth and perform poorly for Data2 and Data4, where
the truth is least smooth. For the Poisson data, MCAR0.002 and MCAR1 give results similar
to each other and somewhat better than the SANOVAs except for interval coverage. Therefore,
SANOVA, with stable results under different  and with parameters that are easier to
understand and interpret, may be a good competitor to MCAR in multivariate spatial
smoothing.

4. Example: Minnesota 3-cancer data
Researchers in different fields have illustrated that accounting for spatial correlation could
provide insights that would have been overlooked otherwise, while failure to account for spatial
association could potentially lead to spurious and sometimes misleading results [see, e.g.,
Turechek and Madden (2002), Ramsay, Burnett and Krewski (2003), Lichstein et al. (2002)].
Among the widely investigated diseases are the different types of cancers. We applied
SANOVA and MCAR to a cancer-surveillance data set describing total incidence counts of 3
cancers (lung, larynx, esophagus) in Minnesota’s 87 counties for the years 1990 to 2000
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inclusive. Minnesota’s geography and history make it plausible that disease incidence would
show spatial association. Three major North American land forms meet in Minnesota: the
Canadian Shield to the north, the Great Plains to the west, and the eastern mixed forest to the
southeast. Each of these regions is distinctive in both its terrain and its predominant economic
activity: mining and outdoors tourism in the mountainous north, highly mechanized crop
cultivation in the west, and dairy farming in the southeast. The different regions were also
settled by somewhat different groups of in-migrants, for example, disproportionately many
Scandinavians in the north. These factors imply spatial association in occupational hazards as
well as culture, weather, and access to health care especially in the thinly-populated north,
which might be expected to produce spatial association in diseases. With multiple cancers one
obvious option is to fit a separate univariate model for each cancer. But diseases may share the
same spatially distributed risk factors, or the presence of one disease might encourage or inhibit
the presence of another in a region, for example, larynx and esophagus cancer have been shown
to be closely related spatially [Baron et al. (1993)]. Thus, we may need to account for
dependence among the different cancers while maintaining spatial dependence between sites.
Although the data set has counts broken out by age groups, for the present purpose we ignore
age standardization and just consider total counts for each cancer. Age standardization would
affect only the expected cancer counts Eij, while other covariates could be added to either
SANOVA or MCAR as unsmoothed fixed effects (i.e., in the A1 design matrix). Given the
population and disease count of each county, we estimated the expected disease count for each
cancer in each county using the Poisson model. Denote the 87 × 3 counts as y1,1, …, y87,3; then
the model is

(17)

where XDΘ is the SANOVA structure and Θ has priors as in Section 2.2.2. For disease j in

county i, , where Oij is the disease count for county i and disease j and Pi is county
i’s population. For the SANOVA design matrix, we consider HA1 and HA2 from the simulation
experiment, though now neither is known to be correct. We also consider a variant SANOVA
analysis using  estimated from the MCAR1 model, to test the stability of the SANOVA
results. Appendix D in Zhang, Hodges and Banerjee (2009) describes the latter analysis.
Figures 4 to 6 show the data and results for MCAR1 and SANOVA with HA1. In each figure,
the upper left plot shows the observed yij/Eij; the two lower plots show the posterior median
of μij/Eij for MCAR1 and SANOVA with HA1. Lung cancer counts tended to be high and thus
were not smoothed much by any method, while counts of the other cancers were much lower
and thus smoothed considerably more (see also Figure 7). Since SANOVA with HA1, HA2 and
estimated  gave very similar results, only those for HA1 are shown. Results for MCAR0.002
are similar to those for MCAR1, so they are omitted. As expected, MCAR200 shows the least
shrinkage among the three MCARs and gives some odd μij/Eij. To compare models, we
calculated the Deviance Information Criterion [DIC; Spiegelhalter et al. (2002)]. To define
DIC, define the deviance D(θ) = −2 log f (y|θ) + 2 log h(y), where θ is the parameter vector in
the likelihood and h(y) is a function of the data. Since h does not affect model comparison, we
set log h(y) to 0. Let θ ̄ be the posterior mean of θ and D ̄ the posterior expectation of D(θ). Then
define  to be a measure of model complexity and define DIC = D ̄+ pD. Table
4 shows D ̄, pD and DIC for nine analyses, SANOVA with 3 different , MCAR with 3
different priors for Ω, and 3 fits of univariate CAR models to the individual diseases, discussed
below. Considering D ̄, the three SANOVAs and MCAR1 are similar; Figures 4 to 6 show the
fits are indeed similar. Figure 7 reinforces this point, showing that MCAR1 and SANOVA
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with HA1 induce similar smoothing for the three cancers. SANOVA with  estimated from
MCAR has the smallest D ̄ (1458), though its model complexity penalty (pD = 103) is higher
than MCAR0.002’s (pD = 79). Despite having the second worst fit (D ̄), MCAR0.002 has the
best DIC, and the three SANOVAs have DICs much closer to MCAR0.002’s than to the other
MCARs. Generally, all SANOVA models have similar D ̄(≈1460) and DIC (≈1562), while
MCAR results are sensitive to Ω’s prior, consistent with the simulation experiment. For
comparison, we fit separate univariate CAR models to the three diseases considering three
different priors for the smoothing precision, τ ~ Gamma(a, a) for a = 0.001, 1 and 1000. For
each prior, we added up D ̄, pD and DIC for three diseases (see Table 4). With a = 0.001 and
1, we obtained D ̄’s (1461 and 1453 respectively) competitive with SANOVA, MCAR0.002
and MCAR1 but with considerably greater complexity penalties (141 and 149 respectively)
and thus DICs slightly larger than 1600. For a = 1000, we obtained an even lower D ̄ (1432),
but an increased penalty (180) resulted in a poorer DIC score. Figure 7 shows fitted values for
CAR1, which were smoothed like MCAR1 and SANOVA for lung and esophagus cancers but
smoothed rather more for larynx cancer. Overall, these results reflect some gain in performance
from accounting for the space-cancer interactions/associations.

To further examine the smoothing under SANOVA, Figure 8 shows separate maps for the
county main effect and interactions from the SANOVA fit with HA1. The upper left plot is the
cancer main effect, the mean of the three cancers; the lower left plot is the comparison of lung
versus average of larynx and esophagus; the lower right plot is the comparison of larynx versus
esophagus. All values are on the same scale as yij/Eij in Figures 4 to 6 and use the same legend.
The two interaction contrasts are smoothed much more than the county main effect, agreeing
with previous research that larynx and esophagus cancer are closely related spatially [Baron
et al. (1993)]. To see whether the interactions are necessary, we fit a SANOVA model (using
HA1) without the interactions. As expected, model complexity decreased (pD = 77), while D ̄
increased slightly, so DIC became 1558, a bit better than SANOVA with interactions. Now
consider the posterior of the MCAR’s precision matrix Ω. The posterior mean of Ω is much
larger for MCAR0.002 than MCAR200; the diagonal elements are larger by 4 to 5 orders of
magnitude. This may explain the poor coverage for MCAR0.002 in the simulation. Further,
consider the correlation matrix arising from the inverse of Ω’s posterior mean. As the diagonals
of R change from 0.002 to 200, the correlation between any two cancers decreases and the
complexity penalty pD increases. By comparison, the three SANOVAs have similar model fits
and complexity penalties, leading to similar DICs. So again, in this sense SANOVA shows
greater stability.

5. Discussion and future work
We used SANOVA to do spatial smoothing and compared it with the much more complex
MCAR model. For the cases considered here, we found SANOVA with spatial smoothing to
be an excellent competitor to MCAR. It yielded essentially indistinguishable inference, while
being easier to fit and interpret. In the SANOVA model,  is assumed known. For most of
the SANOVA models considered, ‘s first column was fixed to represent the average over
diseases, while other columns were orthogonal to the first column. Alternatively,  could
be treated as unknown and estimated as part of the analysis. With this extension, SANOVA
with spatial effects is a reparameterization of the MCAR model and gains the MCAR model’s
flexibility at the price of increased complexity. This extension would be nontrivial, involving
sampling from the space of orthogonal matrices while avoiding identification problems arising
from, for example, permuting columns of . Other covariates can be added to a spatial
SANOVA. Although (10) is a saturated model, spatial smoothing “leaves room” for other
covariates. Such models would suffer from collinearity of the CAR random effects and the
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fixed effects, as discussed by Reich, Hodges and Zadnik (2006), who gave a variant analysis
that avoids the collinearity. For data sets with spatial and temporal aspects, for example, the
11 years in the Minnesota 3-cancer data, interest may lie in the counts’ spatial pattern and in
their changes over time. By adding a time effect, SANOVA can be extended to a spatiotemporal
model. Besides spatial and temporal main effects, their interactions can also be included and
smoothed. There are many modeling choices; the simplest model is an additive model without
space-time interactions, where the spatial effect has a CAR model and the time effect a random
walk, which is a simple CAR. But many other choices are possible. We have examined intrinsic
CAR models, where Qij = −1 if region i and region j are connected. SANOVA with spatial
smoothing could be extended to more general CAR models. Banerjee, Carlin and Gelfand
(2004) replaced Q with the matrix Dw − ρW, where Dw is diagonal with the same diagonal as
Q and Wij = 1 if region i is connected with region j, otherwise Wij = 0. Setting ρ = 1 gives the
intrinsic CAR model considered in this paper. For known ρ, the SANOVA model described
here is easily extended by replacing Q in Section 2 with Dw − ρW. However, for unknown ρ,
our method cannot be adjusted so easily, because updating ρ in the MCMC would force V and
the design matrix to be updated as well, but this would change the definition of the parameter
Θ. Therefore, a different approach is needed for unknown ρ. A different extension of SANOVA
would be to survival models for areal spatial data [e.g., Li and Ryan (2002),Banerjee, Wall and
Carlin (2003), Diva, Dey and Banerjee (2008)]. If the regions are considered strata, then random
effects corresponding to nearby regions might be similar. In other words, we can embed the
SANOVA structure in a spatial frailty model. For example, the Cox model with SANOVA
structure for subject j in stratum i is

(18)

where X is the design matrix, which may include a spatial effect, a temporal effect, their
interactions and other covariates. Banerjee, Carlin and Gelfand (2004) noted that in the CAR
model, considering both spatial and nonspatial frailties, the frailties are identified only because
of the prior, so the choice of priors for precisions is very important. Besides the above
extensions, HCSC introduced tools for normal SANOVA models that can be extended to
nonnormal SANOVA models. For example, HCSC defined the degrees of freedom in a fitted
model as a function of the smoothing precisions. This can be used as a measure of the fit’s
complexity, or a prior can be placed on the degrees of freedom as a way of inducing a prior on
the unknowns in the variance structure. The latter is under development and will be presented
soon.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Comparing prior precision matrices for φ in MCAR and SANOVA.
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Fig. 2.
MBIAS for simulated normal and Poisson data.
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Fig. 3.
PI rate for simulated normal and Poisson data.
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Fig. 4.
Lung cancer data and fitted values.
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Fig. 5.
Larynx cancer data and fitted values.
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Fig. 6.
Esophagus cancer data and fitted values.
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Fig. 7.
Comparing data and fitted values for each cancer. The “Data” panel shows the density for yij/
Eij, while the other three panels show the posterior median of μij/Eij for univariate CAR,
SANOVA and MCAR.
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Fig. 8.
SANOVA with HA1: (a) county main effect; (b) cancer × county interaction 1 for larynx; (c)
cancer × county interaction 2 for esophagus.
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Table 1

Experimental conditions in the simulation experiments

Error distribution η0 (τ0/η0, τ1/η0, τ2/η0)|(τ0,τ1, τ2) Data name

Normal 1 (100, 100, 0.1) Data1

1 (0.1, 100, 0.1) Data2

10 (100, 100, 0.1) Data3

10 (0.1, 100, 0.1) Data4

Poisson NA (100, 100, 0.1) Data5

NA (0.1, 100, 0.1) Data6
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Table 2

The six statistical methods used in the simulation experiment

Procedure Prior

SANOVA with correct 
η0, τj ~ Γ(0.1, 0.1) for j = 0, 1, 2

SANOVA with incorrect 
η0, τj ~ Γ(0.1, 0.1) for j = 0, 1, 2

Variant SANOVA with HAM η0, τj ~ Γ(0.1, 0.1) for j = 0, 1, 2

MCAR Ω~ Wishart(R, 3), R = 0.002I3

MCAR Ω~ Wishart(R, 3), R = I3

MCAR Ω~ Wishart(R, 3), R = 200I3
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Table 4

Model comparison using DIC

Model D ̄ pD DIC

SANOVA with HA1 1461 103 1564

SANOVA with HA2 1463 102 1565

SANOVA with HA estimated from MCAR1 1458 103 1561

MCAR0.002 1476 79 1555

MCAR1 1459 132 1591

MCAR200 1559 356 1915

CAR0.001 1461 141 1602

CAR1 1453 149 1602

CAR1000 1432 180 1612
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