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Abstract

Cancer is a complex collection of distinct genetic diseases united by common hallmarks. Here, we
expand upon the classic hallmarks to include the stress phenotypes of tumorigenesis. We describe a
conceptual framework of how oncogene and non-oncogene addictions contribute to these hallmarks
and how they can be exploited through stress sensitization and stress overload to selectively Kill
cancer cells. In particular, we present evidence for a large class of non-oncogenes that are essential
for cancer cell survival and present attractive drug targets. Finally, we discuss the path ahead to
therapeutic discovery and provide theoretical considerations for combining orthogonal cancer
therapies.

The Current State of Cancer Research

The past two decades have witnessed tremendous advances in our understanding of the
pathogenesis of cancer. It is now clear that cancer arises through a multistep, mutagenic process
whereby cancer cells acquire a common set of properties including unlimited proliferation
potential, self-sufficiency in growth signals, and resistance to antiproliferative and apoptotic
cues. Furthermore, tumors evolve to garner support from surrounding stromal cells, attract new
blood vessels to bring nutrients and oxygen, evade immune detection, and ultimately
metastasize to distal organs (Hanahan and Weinberg, 2000). Many of these phenotypic traits
can be brought about by genetic alterations that involve the gain-of-function mutation,
amplification, and/or overexpression of key oncogenes together with the loss-of-function
mutation, deletion, and/or epigenetic silencing of key tumor suppressors (Hahn and Weinberg,
2002).

Cancer cells achieve these phenotypes in large part by reactivating and modifying many
existing cellular programs normally used during development. These programs control
coordinated processes such as cell proliferation, migration, polarity, apoptosis, and
differentiation during embryogenesis and tissue homeostasis. Consistent with Darwinian
principles, cancer evolves through random mutations and epigenetic changes that alter these
pathways followed by the clonal selection of cells that can survive and proliferate under
circumstances that would normally be deleterious.

Although a number of oncogenes and tumor suppressors, such as PI3K, Ras, p53, PTEN, Rb,
and p16'NK4a are frequently mutated in cancer cells, there also appears to be a large number
of low-frequency changes that can contribute to oncogenesis. Indeed, data from tumor
sequencing projects reveal an astounding diversity of mutations in tumors. In one study,
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Stratton and colleagues estimate that individual mutations in as many as 20% of all kinases
can play an active role in tumorigenesis (Greenman et al., 2007), although it remains to be seen
whether mutations in 20% of other gene classes will also drive tumorigenesis. Large-scale
sequencing of multiple cancers has so far failed to identify new, high-frequency mutation
targets in addition to those previously identified (Cancer Genome Atlas Research Network,
2008; Ding et al., 2008; Jones et al., 2008; Parsons et al., 2008; Sjoblom et al., 2006; Wood et
al., 2007). Rather, these studies found that every tumor harbors a complex combination of low-
frequency mutations thought to drive the cancer phenotype. Furthermore, the repertoires of
somatic mutations in different cancer types such as breast and colon cancers appear to be
different. Although there is much debate with regard to the statistical requirements needed to
distinguish likely driver from noncontributing passenger mutations among the large collection
of mutations in tumors, it is clear that there is tremendous complexity and heterogeneity in the
patterns of mutations in tumors of different origins.

The complexity of alterations in cancer presents a daunting problem with respect to treatment:
how can we effectively treat cancers arising from such varied perturbations? Cancer cells have
extensively rewired pathways for growth and survival that underlie the malignant phenotype.
Thus, a key to successful therapy is the identification of critical, functional nodes in the
oncogenic network whose inhibition will result in system failure, that is, the cessation of the
tumorigenic state by apoptosis, necrosis, senescence, or differentiation. Furthermore,
therapeutic agents attacking these nodes must display a sufficiently large therapeutic window
with which to kill tumor cells while sparing normal cells. To borrow a term from yeast and fly
genetic analyses, the therapeutic agents must constitute “synthetic lethality” with the cancer
genotype/phenotype (Kaelin, 2005). In some cases, particular agents can display genotype-
dependent lethality similar to synthetic lethality without directly inhibiting a particular protein.
The two mainstay treatment options for cancer today—chemotherapy and radiation—are
examples of agents that exploit the enhanced sensitivity of cancer cells to DNA damage.
Despite all of our knowledge, however, we still do not have a clear molecular understanding
of why these agents work to selectively kill tumor cells and, conversely, why they eventually
fail. The advent of “targeted” therapies, which aim to attack the underlying oncogenic context
of tumors, provides more sophisticated examples of synthetic lethality. When properly
deployed, these therapies tend to be more effective relative to chemotherapy and radiation.

Additional Hallmarks: The Stress Phenotypes of Cancer

Although there is no simple way to predict a priori which proteins will act as nodal points to
generate cancer drug targets, solutions are likely to emerge from multiple sources, including
recent initiatives to understand cancer at the systems level. From a genetic point of view, it is
important to appreciate that the plethora of mutations observed in the cancer genome must
ultimately result in a common set of hallmarks in order to bring about the malignant phenotype.
The goal of cancer therapy is, therefore, to either reverse these properties or target them as
tumor-specific liabilities, preferably through the combinatorial application of a relatively small
number of drugs. Thus we need a thorough understanding of the nature of these hallmarks.

In addition to the six hallmarks outlined in the seminal review by Hanahan and Weinberg
(Hanahan and Weinberg, 2000) that collectively promote survival and proliferation in foreign
environments (Figure 1, top), as well as the hallmark of “evading immune surveillance”
proposed by Kroemer and colleagues (Kroemer and Pouyssegur, 2008) (Figure 1, left), we
propose a number of additional, equally prevalent hallmarks of cancer cells based on recent
analyses of cellular phenotypes. Although these cancer phenotypes are not responsible for
initiating tumorigenesis, they are common characteristics of many tumor types (Figure 1,
bottom). Among these additional hallmarks are DNA damage/replication stress, proteotoxic
stress, mitotic stress, metabolic stress, and oxidative stress. We collectively refer to this subset
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as the stress phenotypes of cancers. There are often intricate functional interplays among these
shared hallmarks of tumor cells, which are illustrated in Figure 1 and discussed below.
Although some of these stress phenotypes are not unique to cancer cells and can be observed
in other conditions such as chronic inflammation, we propose that they represent a common
set of oncogenesis-associated cellular stresses that cancer cells must tolerate through stress
support pathways. How these phenotypes arise is not well understood, but targeting these
hallmarks and their associated vulnerabilities in a wide variety of cancers has shown promise
for therapeutic intervention.

DNA Damage and DNA Replication Stress

Based on karyotypic and mutational analyses, it is clear that tumors, especially solid tumors,
pass through stages of extreme genomic instability that result in the accumulation of point
mutations, deletions, complex chromosomal rearrangements, and extensive aneuploidy
(Hartwell and Kastan, 1994). This level of instability is due in part to a constitutive level of
endogenous DNA damage, which results in activation of the DNA damage stress response
(DDR) pathway (Bartkova et al., 2005; Gorgoulis etal., 2005). Elevated levels of DNA damage
observed in early stage tumors are thought to be due to several factors. First, the shortening of
telomeres due to replication in the absence of sufficient telomerase activity leads to the
appearance of double-strand breaks (DSBs) at telomeric ends. The subsequent fusions of these
deprotected ends initiate breakage-fusion-bridge cycles that result in translocations and gene
amplification events (Maser and DePinho, 2002). DSBs resulting from replication stress can
also lead to breakage-fusion-bridge cycles (Windle et al., 1991). Additionally, oncogene
activation in precancerous lesions has been shown to increase DSBs and genomic instability
(Halazonetis et al., 2008), possibly through DNA hyper-replication (Bartkova et al., 2006; Di
Micco et al., 2006). Finally, mutation of genes involved in either DNA repair programs (such
as excision, crosslink, or mismatch repair) or the DDR pathways (such as ATM and p53
signaling) can lead to increased DNA damage, inappropriate cell-cycle progression, and
genomic instability (Harper and Elledge, 2007). In normal cells, DNA damage signals to halt
proliferation, induce cellular senescence, or elicit apoptosis. Cancer cells have evolved to
overcome the antiproliferative effects of DNA damage, continuing to replicate in the presence
of damage (Figure 1).

Proteotoxic Stress

Tumors exhibit proteotoxic stress evidenced by their frequent constitutive activation of the
heat shock response. We think this is due, in part, to the striking degree of aneuploidy (altered
chromosome number) often found in solid tumors (Figure 1) (Ganem et al., 2007;Torres et al.,
2008;Williams et al., 2008). Aneuploidy and gene copy-number changes can alter the relative
balance of growth and survival signals, thereby promoting tumorigenesis. However, they also
result in corresponding increases and decreases in transcript levels (Pollack et al., 2002; Torres
etal., 2007;Tsafrir etal., 2006) that produce imbalances in the stoichiometry of protein complex
subunits (Papp et al., 2003). These imbalances increase the amount of toxic, unfolded protein
aggregates in the cell and place additional burdens on the protein folding and degradation
machineries (Denoyelle et al., 2006). This proteotoxic stress is counteracted, in part, by the
heat shock response pathway, which promotes the proper folding and/or proteolytic
degradation of proteins (Whitesell and Lindquist, 2005).

Mitotic Stress

A subset of tumors display increased rates of chromosome mis-segregation, which is referred
to as the CIN (chromosome instability) phenotype (Komarova et al., 2002). This instability

results in a shifting chromosome distribution, thus allowing tumor cells to rapidly evolve. In
principle, CIN phenotypes can result from defects in a variety of pathways involved in mitosis,

Cell. Author manuscript; available in PMC 2010 June 30.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Luo et al.

Page 4

including defects in mitotic proteins that execute chromosome segregation and defects in the
spindle assembly checkpoint, which coordinates anaphase entry with proper alignment of
chromosomes on the mitotic spindle (Cahill et al., 1998). In addition, the CIN phenotype could
result from the presence of extra centrosomes in tumor cells or from stresses placed on the
mitotic apparatus due to the need to segregate supernumerary chromosomes (Ganem et al.,
2007). Furthermore, CIN and mitotic stress might arise indirectly as a result of DSBs and
genomic instability following oncogene activation, even in lesions where the mitotic machinery
is intact (Halazonetis et al., 2008). Mutations in certain oncogenes, such as Ras, and tumor
suppressors, such as p53, have been suggested to contribute to the CIN phenotype (Denko et
al., 1994). However, the precise cause of mitotic stress is not known for the vast majority of
tumors.

Metabolic Stress

Normal cells derive the bulk of their ATP through mitochondrial oxidative phosphorylation.
In what has been referred to as the Warburg effect, most cancer cells are found to predominantly
produce energy by the less efficient method of glycolysis and secrete a large amount of lactic
acid, even under high oxygen conditions (Warburg, 1956). Tumor cells exhibit dramatically
increased glucose uptake and highly elevated rates of glycolysis (DeBerardinis et al., 2007).
This provides the basis for tumor imaging by positron emission tomography (PET) using the
glucose analog 18F-2-deoxyglucose. This transition to glycolysis for energy production
provides several advantages to the tumor including adaptation to a low oxygen environment
and the acidification of the surrounding microenvironment, which promotes tumor invasion
and suppresses immune surveillance (Figure 1).

Oxidative Stress

The defining characteristic of oxidative stress is the presence of reactive oxygen species (ROS),
and cancer cells typically generate more ROS than normal cells (Szatrowski and Nathan,
1991). Both oncogenic signaling (Lee et al., 1999) and the downregulation of mitochondrial
function (Gogvadze et al., 2008) in tumors can contribute to ROS generation. ROS are highly
reactive and likely to contribute to the increased levels of endogenous DNA damage observed
in cancer cells (Figure 1). In addition, ROS are important signaling mediators, and their
presence may contribute to transformation. For example, ROS promote the activation of the
transcription factor HIF-1 by hypoxia (Dewhirst et al., 2008), and HIF-1 can promote the
glycolytic switch and angiogenesis observed in tumors.

Attacking the Hallmarks of Cancer

Any therapy with the stated goal to treat and possibly cure cancer must show differential
toxicity toward tumor cells relative to normal cells. Implicit in this statement is that some
unique properties of cancer cells not shared by normal cells, such as those depicted in Figure
1, must be exploited to the specific detriment of cancer cells, i.e., the concept of synthetic
lethality. In principle, cancer can be treated by inducing cancer cells to undergo apoptosis,
necrosis, senescence, or differentiation. These changes can be brought about by disrupting
cancer cell-autonomous processes, by interfering with autocrine/paracrine signaling within
tumors, or by blocking heterotypic signaling between tumor cells and the surrounding stromal
tissue or blood vessels. Enhancing immune surveillance against cancer cells expressing novel
antigens is also an attractive approach that has shown efficacy in specifically killing cancer
cells (Muller and Scherle, 2006).

Experiments aimed at either suppressing oncogene activity or restoring tumor suppressor

function have revealed that such intervention is highly deleterious to the cancer cell. The
heightened state of dependency of cancer cells on oncogenes and the loss of tumor suppressors

Cell. Author manuscript; available in PMC 2010 June 30.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Luo et al.

Page 5

led to the terms “oncogene addiction” (OA) and “tumor suppressor gene

hypersensitivity” (Weinstein, 2002; Weinstein and Joe, 2008). These alterations are necessary
for both the establishment and maintenance of the oncogenic state and therefore are logical
drug targets. Indeed, much effort has been extended to pharmacologically inhibit oncoproteins.
What is thought to underlie the phenomenon of oncogene addiction is the observation that
oncogenes elicit strong, opposing prosurvival and proapoptotic signals in cancer cells that favor
growth and survival, and the acute inhibition of oncogene function tilts this balance toward
cell death (Downward, 2003; Sharma and Settleman, 2007).

To bring about their phenotypic manifestations, oncogenes rely on extensive adaptations in
cellular processes that are themselves not oncogenic. In addition, cancer cells may also display
an increased dependence on the normal cellular functions of certain genes that act in oncogenic
pathways but are not themselves classical oncogenes. For example, mutations in many genes
in a given oncogenic pathway are unable to directly promote tumor formation because, despite
being required for their pathway, they cannot increase the overall activity of the pathway
because they are not rate-limiting. However, a reduction in the activity of many such genes
can become rate-limiting to the pathway in question, and thus, they represent potential drug
targets. By this rationale, cancer cells are addicted to both oncogenes and non-oncogenes. To
describe this addiction of cancer cells to the functions of non-oncogenes, we have termed this
phenomenon “non-oncogene addiction,” NOA (Solimini et al., 2007). Although NOA genes,
like oncogenes, are required for maintenance of the tumorigenic state, NOA genes do not
undergo oncogenic mutations or functionally significant genomic alterations in tumors. The
concept of non-oncogene addiction underscores the important contribution of these supporting
networks to oncogenesis and highlights the potential of non-oncogenes as points of intervention
for cancer therapeutics.

Whereas some gene classes and pathways fall neatly into the OA or NOA designations, others
are more difficult to categorize because they exhibit characteristics of both phenomena. For
example, interferon regulatory factor 4 (IRF4) (lida et al., 1997) is oncogenic and
overexpressed due to translocations in some multiple myelomas. However, it is also required
for the survival of myelomas lacking IRF4 translocations or overexpression (Shaffer et al.,
2008). Should it be considered as an example of OA in the latter cases? Also, should a protein
that is directly activated by an oncogene and required for tumorigenesis—but is otherwise not
mutated in cancer—Dbe considered an example of NOA when it is so clearly linked to an
oncogene? Both examples are clear if one adheres to a strict definition of NOA stating that
NOA genes do not undergo oncogenic mutations in tumors. However, these examples often
run counter to our overall intuitive sense of the different categories. Regardless, although the
OA and NOA designations are not perfect, they provide a useful intellectual framework for
thinking about cancer cell vulnerabilities and the principles of cancer therapies. Below, we will
discuss examples of oncogene and non-oncogene addiction and describe how modern tools are
being applied to identify these classes of genes for possible therapeutic exploitation.

Oncogene Addiction and Tumor Suppressor Gene Hypersensitivity

Despite the multitude of genetic and epigenetic alterations found across cancers, a given tumor
is likely to be driven by only a select few changes—those that result in the gain of an oncogene
or the loss of a tumor suppressor. The phrase “oncogene addiction” was coined to describe the
observation that tumor maintenance often depends upon the continued activity of certain
oncogenes (Weinstein, 2002). This phenomenon has been demonstrated in vivo for several
oncogenes. For example, mouse models using an inducible MYC oncogene have shown that
MY C-driven skin papillomas, lymphomas, and osteosarcomas can all be reversed upon MYC
withdrawal (Felsher and Bishop, 1999; Jain et al., 2002; Pelengaris et al., 1999). Similarly,
addictions to the HRAS or BCR-ABL oncogenes have been demonstrated in mouse models of
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melanoma and leukemia, respectively (Chin et al., 1999; Huettner et al., 2000). In human
colorectal cancer cells bearing a KRAS mutation, somatic knockout of the KRAS oncogene
results in reversion of the transformed phenotype and abrogates the ability of these cells to
form tumors in nude mice (Shirasawa et al., 1993).

The subset of oncogenes whose inhibition can lead to tumor cell death, differentiation, arrest,
or senescence is of great clinical interest as targets for cancer therapeutics (Table 1). This
strategy has proven successful for the protein kinase oncogenes BCR-ABL (imatinib/Gleevec),
EGFR (gefitinib/Iressa, erlotinib/Tarceva), and HER2 (trastuzumab/Herceptin) (Druker,
2002;Roberts and Der, 2007;Sharma et al., 2007), and efforts toward inhibition of BRAF,
MDM2, and the lipid kinase PI3K are underway. Targeting non-kinase oncogenes such as
RAS and MYC, however, has proven more difficult.

In contrast to oncogenes, tumor suppressor genes act to provide the cellular restraints necessary
to prevent aberrant growth and survival or genomic instability. Loss of tumor suppressor genes
through deletion, inactivating mutation, or epigenetic silencing results in the removal of these
restraints leading to tumorigenesis. Reintroduction of a tumor suppressor gene into a tumor
lacking that gene can result in tumor regression. This concept has been recently demonstrated
by reactivation of p53 in mouse tumor models (Martins et al., 2006; Ventura et al., 2007; Xue
etal., 2007). Pharmacological exploitation of tumor suppressor mutations, however, has lagged
behind efforts aimed at oncogenes because it is often difficult to use a small molecule to either
restore or mimic the function of a protein that is either mutated or absent. In cases where a
tumor suppressor negatively regulates the activity of a proto-oncogene, drugs targeting the
corresponding proto-oncogene should prove efficacious in treating tumors lacking that tumor
suppressor. For example, tumors that have lost the tumor suppressor and lipid phosphatase
PTEN, which normally acts to constrain PI3K signaling, are likely to be sensitive to PI3K
inhibitors. Similarly, loss of Rb, p16, p21, or p27 all result in upregulation of cyclin-dependent
kinase (CDK) activity, which drives cell-cycle entry. In principle, tumors resulting from these
lesions might be more sensitive to CDK inhibitors. Whether such predictions prove true will
only become apparent from clinical trials employing PI3K and CDK inhibitors. In many other
cases, however, such as those involving loss of the tumor suppressors p53 or ARF, there is no
obvious positive signaling pathway to target, and alternative therapeutic strategies must
therefore be considered.

Targeting Non-oncogene Addiction for Cancer Therapy

We proposed the concept of non-oncogene addiction (NOA) based on the understanding that
the tumorigenic state depends on the activities of a wide variety of genes and pathways, many
of which are not inherently oncogenic themselves (Solimini et al., 2007). Importantly, these
genes and pathways are essential to support the oncogenic phenotype of cancer cells but are
not required to the same degree for the viability of normal cells. From a purely genetic point
of view, these dependencies should provide an ample number of drug targets that when
inhibited will constitute synthetic lethality with the underlying tumor genotype. Gene
interaction studies in yeast have provided precedence for this notion. For example, most
mutations exhibit enhanced growth defects when paired with certain other mutations, and one
study in yeast identified an average of six genetic interactions per gene (Collins et al., 2007).
As a tumor contains many genetic alterations, each of these changes provides an opportunity
to pair with the loss of function of a second gene to result in a severe and possibly lethal growth
and survival phenotype. Furthermore, if this second gene is targeted with a drug that inhibits
its protein, then a potential cancer therapy can result.

NOA genes and pathways provide important targets for antitumor therapies. In the sections
below, we will discuss general classes of NOA genes with specific examples when available.
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NOA genes fall into two general categories, tumor intrinsic and tumor extrinsic. Whereas
tumor-intrinsic NOA genes support the oncogenic state of the tumor cell in a cell-autonomous
manner, tumor-extrinsic NOA genes function in stromal and vascular cells that provide
heterotypic support for the tumor. An advantage of targeting these accessory cells is that, unlike
tumor cells, they tend to be genetically more stable and therefore are less likely to evolve drug
resistance. However, in certain circumstances tumors may be able to evolve reduced
dependency on these accessory cells.

The trade-off for the tumorigenic state is that tumor cells experience numerous cellular stresses
not experienced by normal cells and therefore tumor cells are more dependent on stress support
pathways for their survival. In principle, there are two approaches to exploit this dependency
to selectively kill tumor cells. The first approach, stress sensitization, aims to diminish the
activity of the stress support pathways such that the tumor cell can no longer cope with the
stress of its oncogenic state and either ceases to proliferate or initiates apoptosis or necrosis.
The second approach, stress overload, aims to exacerbate existing oncogenic stress in order to
overwhelm the stress support pathways in the tumor cell, leading to growth arrest or cell death.
Both approaches, therefore, disrupt the balance of pro- and antisurvival signaling to the
detriment of tumor cells. Examples of specific types of NOA are illustrated in Figure 2 and
discussed below.

Intrinsic Non-oncogene Addiction

DNA Damage and Replication Stress

In nearly all tumor cell types, the rate of spontaneous DNA damage and the degree of replication
stress are enhanced. The presence of oncogenes can also elicit substantial DNA damage
(Halazonetis et al., 2008). DNA damage stress can be exploited therapeutically through both
stress sensitization and stress overload. An elaborate DNA damage response (DDR) pathway
exists in the cell to ameliorate the effects of DNA damage by promoting DNA repair. Mutations
in genes of this pathway result in increased sensitivity to DNA damage (Harper and Elledge,
2007). In principle, cells experiencing spontaneous DNA damage should show enhanced
sensitivity to agents that interfere with this stress response pathway (Figure 2). In support of
this notion, recent studies have shown that inhibitors of the DDR kinases ATM and Chk1
exhibit selective toxicity toward cancer cells (Chen et al., 2006; Kennedy et al., 2007).
Although it seems counterintuitive that a pathway that normally serves to restrain proliferation
and promote apoptosis would protect a cancer cell, the DNA repair and genomic stability
afforded by this pathway could save a cancer cell from death caused by persistent DNA damage
and replication stress.

Stress overload of the DDR pathway should also show efficacy in cancer treatment. Although
it is not clear why DNA-damaging agents, such as IR and chemotherapy, are effective cancer
therapies, it is possible that these are examples of stress overload, where cancer cells with
already elevated levels of DNA damage and replication stress cannot repair the additional
damage inflicted by these agents. An alternative explanation is that during tumorigenesis, the
persistence of DNA damage selects for cells with mutations that abrogate part of the DDR
pathway and therefore cannot properly sense and respond to DNA damage. These cells with a
partially defective DDR might therefore be more vulnerable to the extensive DNA damage
resulting from radiation or chemotherapy that is lethal without a normal DDR pathway. In this
context, DNA damage exploits a stress phenotype of tumors that is analogous to non-oncogene
addition.

Given the sensitivity of many cancers to DNA-damaging agents, there should exist genes whose
inhibition will generate endogenous DNA damage to exacerbate this sensitivity. Exemplifying
this phenomenon are cancers bearing BRCA2 mutations. These tumors are defective in
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homologous recombination-mediated DNA repair and are particularly sensitive to DNA
crosslinkers such as cisplatin (Sakai et al., 2008). Furthermore, these tumors rely heavily on
other forms of DNA repair such as base-excision repair, resulting in sensitivity to inhibitors of
poly-ADP-ribose polymerase (PARP1), an enzyme that facilitates repair of single-stranded
breaks (Bryant et al., 2005; Farmer et al., 2005). In normal cells, the endogenous DNA damage
generated by PARP inhibition is well-tolerated because of functional compensation from
homologous recombination-mediated repair. Indeed, mice deficient in PARP1 are fertile and
do not exhibit increased tumor susceptibility (Conde et al., 2001). The addiction of BRCA2
mutant cells to PARP1 function is therefore an example of NOA that is exploited
therapeutically. There are likely to be additional non-oncogene targets like PARP1 that can be
exploited to treat these tumors. Likewise, the DNA damage sensitivity of other cancer types
might also be exploited in this manner, although whether generating endogenous damage is
superior to adding exogenous damage remains to be determined.

Mitotic Stress

As noted above, a variety of tumors display increased rates of chromosome mis-segregation,
the CIN phenotype, because they contain mutations that alter the fidelity of mitosis. Cancer
cells bearing mitotic alterations such as aneuploidy or weakened mitotic spindle regulatory
machinery are likely to exhibit greater reliance on stress support pathways for proper
chromosome segregation. They are therefore more sensitive to catastrophic genomic instability
caused by stress overload or stress sensitization of the mitotic machinery (Weaver and
Cleveland, 2005).

The spindle checkpoint can provide stress support in cells that have defects in the mitotic
machinery, and in such cases inhibiting the spindle checkpoint could lead to lethality as a result
of stress sensitization. Conversely, some tumors with the CIN phenotype possess mutations
that weaken the spindle checkpoint (Cahill et al., 1998) and might be especially sensitive to
stress overload caused by the inhibition of proteins that carryout mitosis. A notable example
of stress overload is the microtubule stabilizer taxol, which interferes with proper spindle-
kinetochore attachment and has shown efficacy in the treatment of breast and ovarian cancers
(Weaver and Cleveland, 2005). Inhibitors of mitotic kinases such as PLK1 and Aurora-B that
also promote stress overload are currently undergoing clinical trials (Carpinelli and Moll,
2008; Strebhardt and Ullrich, 2006). Aneuploidy itself might be a target of NOA as genetic
screens in yeast have identified mutations that show synthetic lethality with tetraploid verses
diploid cells (Storchova et al., 2006).

Proteotoxic Stress

Proteotoxic stress is a frequent occurrence in cancer cells as a result of the extreme aneuploidy,
copy-number variation, and transcriptional alterations present in tumors. These changes alter
the dosage balance of protein subunits in different protein complexes and consequently place
increased stress on chaperone pathways to maintain normal homeostasis of the proteome. The
heat shock pathway plays a major role in promoting protein folding and is activated in many
tumors (Whitesell and Lindquist, 2005) and is therefore a potential NOA target (Figure 2).
Studies in yeast have shown that an extra copy of a single chromosome is sufficient to activate
the heat shock response (Torres et al., 2007). Pharmacological and genetic evidence supports
the notion that sensitizing tumor cells toward proteotoxic stress can strongly suppress
tumorigenesis. For example, the chaperone HSP90 acts to fold newly synthesized proteins and
refold mis-folded proteins (Whitesell and Lindquist, 2005). The chaperone activity of HSP90
requires its ATPase activity, which can be inhibited by the anticancer drug geldanamycin.
Although the antitumor activity of geldanamycin has been attributed to the destabilization of
key HSP90 client proteins involved in cell proliferation such as CDK4 and HERZ, it is also
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possible that the sensitization of tumor cells to elevated general proteotoxic stress leads to its
efficacy.

Additional genetic support for NOA comes from studies of HSF1 knockout mice (Dai et al.,
2007). HSF1 is the major transcription factor responsible for activating the expression of heat
shock proteins, including HSP90, in response to excess unfolded proteins. Loss of HSF1
markedly reduces tumorigenesis driven by either p53 or Ras mutations (Dai et al., 2007). Given
that neither HSP90 nor HSF1 have been shown to be oncogenes, they represent examples of
NOA.

Unfolded proteins are generally turned over by the ubiquitin-proteasome pathway. Thus, a
second key component of the proteotoxic stress response pathway is the proteasome. Genetic
experiments have shown that the presence of an extra chromosome is sufficient to increase the
sensitivity of yeast cells to proteasome inhibitors (Torres et al., 2007). One promising new
anticancer drug bortezomib (Velcade), which has shown efficacy in treating multiple myeloma,
acts to inhibit the protease function of the proteasome (Richardson et al., 2006). As proteasome
inhibition is likely to stabilize many different proteins, it has been traditionally thought that
the stabilization of a particular subset of proteins might be responsible for the antitumorigenic
activity of Velcade. However, it is equally likely that its efficacy results from enhanced
proteotoxic stress leading to stress overload and represents a prime example of NOA.

Stress sensitization and stress overload are two sides of the same coin. In principle, instead of
sensitizing cancer cells toward endogenous proteotoxic stress, therapies that enhance protein
unfolding should overload the stress support network in cancer cells, achieving the same result.
Normal cells, on the other hand, should be less sensitive to such therapies due to their low
baseline proteotoxic stress. A convenient method of inducing protein unfolding is temperature
elevation. Indeed, hyperthermia is being extensively investigated as a tumor treatment for
colon, breast, testicular, prostate, and liver cancers and has been the subject of ongoing clinical
trials, often in combination with chemotherapy (Fiorentini and Szasz, 2006). The induction of
protein unfolding by hyperthermia could provide a rationale for the efficacy of this approach.
Strong support for this explanation again comes from yeast where it was shown that the
presence of just one extra chromosome results in enhanced temperature sensitivity, consistent
with a general sensitivity to temperature for aneuploid cells (Torres et al., 2007).

Metabolic Stress

Tumor cells exhibit altered metabolic behavior due to both cell-intrinsic properties and the
tumor microenvironment. As noted above, tumor cells have increased glucose uptake and
preferentially metabolize glucose through glycolysis even in the presence of oxygen. Although
the reason for the Warburg effect is unclear, it has been suggested that such adaptation allows
the tumor cell to divert resources toward biosynthesis, reduce the generation of ROS through
mitochondrial oxidative phosphorylation, and cope with fluctuating oxygen availability in the
tumor vicinity (DeBerardinis et al., 2008; Kroemer and Pouyssegur, 2008). Inhibition of the
glycolytic/biosynthetic pathways in a tumor cell will lead to stress overload due to
incompatibility with the persistent proliferative drive from oncogenes (Vander Heiden et al.,
2001). Indeed, inhibition of ATP citrate lyase (which synthesizes acetyl-CoA from citrate),
RNAI knockdown of lactate dehydrogenase A (the enzyme that converts pyruvate to lactate in
the last step of glycolysis), and inhibitors against acetyl-CoA carboxylase and fatty acid
synthase (which control the conversion of acetyl-CoA to manonyl-CoA to palmitate) all lead
to substantial attenuation of tumor cell growth (DeBerardinis et al., 2008; Kroemer and
Pouyssegur, 2008). Recently, it has been shown that the mere switching of pyruvate kinase
from one splice variant (M2) commonly expressed in tumor cells to another splice variant (M1)
can negatively impact the tumorigenic state, presumably by shunting pyruvate to the TCA cycle
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(Christofk et al., 2008). Thus targeting key metabolic enzymes that constitute NOA could
effectively attenuate tumor cell proliferation.

Oxidative Stress

Tumor cells often show increased levels of intracellular ROS (Szatrowski and Nathan, 1991).
Multiple causes contribute to ROS generation. Hypoxia-reperfusion in the tumor
microenvironment can lead to ROS production, which in turn can initiate a viscous cycle of
mitochondrial damage and further ROS generation (Gogvadze et al., 2008). In addition,
oncogenes such as Ras can stimulate ROS production, a mechanism that has been implicated
asan underlying cause of oncogene-induced senescence (Lee etal., 1999). ROS cause oxidative
damage to DNA, proteins, lipids, and other cellular components and therefore pose a significant
cellular stress (Figure 1). Cancer cells partially alleviate this stress by engaging glycolysis and
downregulating mitochondrial function (Gogvadze et al., 2008). Agents that enhance ROS
production, therefore, are expected to cause stress overload in cancer cells. In support of this
notion, it has been shown that dichloroacetate, which inhibits pyruvate dehydrogenase kinase
(PDK) and therefore stimulates mitochondrial oxidative phosphorylation and ROS production,
can selectively elicit apoptosis in cancer cells but not in normal cells (Bonnet et al., 2007).
Similarly, reducing the cellular ROS buffering capacity through the inhibition of glutamate-
cysteine ligase (a rate-limiting enzyme in cellular glutathione synthesis) can markedly increase
the radiosensitivity of cancer cells (Diehn et al., 2009).

Hypoxia and Nutrient Stress

Solid tumors, due to poor and abnormal tumor vasculature (see below), often suffer from
suboptimal oxygen and nutrient supplies. This stress underlies the requirement for augmented
angiogenesis (Figure 1). Consequently many tumors upregulate the transcription factor
hypoxia-inducible factor HIF-1 (Pouyssegur et al., 2006). HIF-1 initiates a coordinated
transcriptional program to both stimulate vessel sprouting (through the induction of VEGF-A
and angiopoietin-2) and promote glycolysis (through the induction of glucose transporter 1,
hexokinase, lactate dehydrogenase, and pyruvate dehydrogenase kinase 1). Furthermore,
HIF-1 protects tumor cells from acidosis and promotes the extrusion of lactate by inducing
carbonate anhydrases, monocarboxylate transporter MCT4, and the Na*/H* exchanger NHE1.
Drugs targeting either HIF-1 or its effector pathways will therefore sensitize tumor cells toward
hypoxic stress. Indeed, anti-angiogenic therapies have been effective in various clinical settings
(see below). Inhibiting the monocarboxylate transporter, which would result in intracellular
lactate accumulation and acidosis, might also be a viable approach to selectively kill hypoxic
tumor cells addicted to glycolysis (Pouyssegur et al., 2006).

As tumor cells grow away from the vasculature system, they experience nutrient stress and can
resort to autophagy for survival. Although impaired autophagy could contribute to oncogenesis
by promoting genomic instability and cytokine release (Mathew et al., 2007), autophagy is
critical for the survival of apoptosis-resistant tumor cells during nutrient or growth factor
restriction. Inhibiting autophagy in such cells would sensitize them toward metabolic stress
and promote necrotic death. In support of this notion, the autophagy inhibitor chloroquine has
been shown to synergize with DNA damage to induce tumor cell death in mice (Jin and White,
2007).

Immune Response Modulation

Most tumors express antigens that could potentially elicit an immune response due to the
expression of a mutant protein that gives rise to a novel epitope. However, in the vast majority
of cases tumors are able to prevent rejection by effectively suppressing an immune response
in the tumor microenvironment (Muller and Scherle, 2006; Zou, 2005). Although not a stress
phenotype, there are examples of NOA that can be used to reverse this hallmark. Several
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mechanisms protect tumor cells from immune surveillance. Tumor cells can downregulate the
expression of major histocompatibility complex (MHC) molecules to reduce antigen
presentation (Garrido and Algarra, 2001). Tumor cells also synthesize and release a number
of immunomodulatory factors such as chemokines (e.g., CCL2), cytokines (e.g., IL6 and IL10),
and prostaglandins (e.g., PGE2) to suppress the activation of cytotoxic T cells (Sharma et al.,
2005). Furthermore, the depletion of key metabolites in the tumor microenvironment, such as
glucose, also inhibits cytotoxic T cell expansion (Muller and Scherle, 2006).

The tumor's addiction to “immunosuppressive” NOA genes could be exploited for therapeutic
gains. For example, the cycloxygenase-2 (COX2) inhibitor celecoxib, which blocks PGE2
synthesis, has been shown to enhance immune response to tumors in mice (Stolina et al.,
2000). Reactivating MHC gene expression in tumor cells that have downregulated MHC,
perhaps by inhibiting a histone deacetylase (HDAC) or a transcriptional repressor, is yet
another potential means to enhance tumor immune surveillance. Active immunization against
tumor antigens has been shown to be greatly enhanced by interfering with inhibitory T cells
through the use of anti-CTLA-4 antibodies, providing another example of NOA-like therapy
(Peggs et al., 2008). A major attraction of re-establishing the antitumor immune response is
that one could potentially apply it in a systematic manner toward many tumor types and allow
the immune system to detect and eradicate tumors at a relatively early stage.

Extrinsic Non-oncogene Addiction

Angiogenesis

One of the best examples of extrinsic NOA is the ability of solid tumors to recruit new blood
vessels through the secretion of angiogenic factors. Tumor angiogenesis ensures that cells in
the interior of the tumor receive sufficient nutrients and oxygen to survive. Blocking tumor
angiogenesis would therefore severely restrict tumor growth (Folkman, 2007). Early
experiments using mouse xenografts indicated that antibody-mediated inhibition of vascular
endothelial growth factor (VEGF), which promotes the proliferation and migration of vascular
endothelial cells and vessel sprouting, could severely constrain angiogenesis and tumor growth
(Kim et al., 1993). These and other studies led to the development of the anti-VEGF antibody
bevacizumab for therapeutic use (Ferrara et al., 2004). Additionally, the small-molecule
inhibitors sorafenib and sunitinib, which target multiple receptor tyrosine kinases including
VEGF receptors, have shown efficacy in treating metastatic renal cell carcinoma (Escudier et
al., 2007; Motzer etal., 2006). In principle, any protein required for angiogenesis in endothelial
cells is a candidate for extrinsic NOA.

Stromal Support

The tumor stroma plays a key role in supporting tumor growth (Hu and Polyak, 2008). It is
increasingly clear that heterotypic interactions between the tumor and its surrounding stromal
cells lead to phenotypic changes in the stroma that better support tumor growth. For example,
the myofibroblasts surrounding breast tumors are distinct from normal mammary stromal
fibroblasts in their ability to secrete stromal-derived factor 1 to both stimulate tumor growth
and recruit endothelial progenitor cells for angiogenesis (Orimo et al., 2005). This phenotypic
distinction is further supported by substantial gene expression and epigenetic changes observed
in these cancer-associated stromal cells (Allinen etal., 2004). In addition, bone marrow-derived
mesenchymal stem cells and hematopoietic progenitors have been found to play important
roles in tumor metastasis either through cytokine-mediated paracrine signaling or through their
mobilization to distal sites to help establish the metastatic niche, respectively (Kaplan et al.,
2005; Karnoub et al., 2007). Although somatic mutations in tumor stromal cells are rare
(Allinen et al., 2004; Qiu et al., 2008), in the case of familial neurofibromatosis 1 caused by
mutations in the NF1 gene, careful modeling of the disease in mice has revealed a striking
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contribution of mast cells to tumor development. The contribution of NF1 heterozygous mast
cells and bone marrow cells to the disease phenotype is dependent on signaling by c-kit in these
cells, a receptor readily inhibited by imatinib. Indeed, imatinib was successfully applied to
reduce the tumor burden of an NF1 patient (Yang et al., 2008), thus demonstrating the utility
of targeting tumor-extrinsic NOA pathways for cancer therapy. We have used the stress
phenotypes to illustrate NOA; however, it is important to realize that other examples of NOA
pathways exist unrelated to stress that when inhibited will also be incompatible with the
oncogenic state.

The Path Ahead to New Cancer Therapeutics

We are approaching a new era in cancer research as we now have the tools to mount a systematic
assault on the problem of tumorigenesis in terms of both understanding the underlying
pathogenic process and devising new therapies to treat cancer. Below we explore new
approaches for identifying cancer drug targets and provide theoretical considerations of how
therapies attacking cancer might be optimally applied.

Approaches to Target Identification

Having outlined the different classes of potential cancer targets based on their underlying
cellular functions, what is the best approach that we as cancer researchers can take to quickly
generate therapies that are so desperately needed? Clearly target identification and patient
stratification, that is, the ability to group patients with common biomarkers to link them to the
appropriate therapy, will play a major part in the evolution of new therapies. Thus, new
biomarkers and means to identify therapeutic targets are needed. In a general sense, the
approaches that served us so well in the first era of cancer research—the painstaking
identification of individual genes and attempts to exploit them to cure cancer—will likely not
suffice for the next era of cancer research. Systems-level approaches are needed to identify the
vulnerabilities of cancer cells in a genome-wide and unbiased manner. Two such
complementary and mutually reinforcing efforts are underway and should systematically
identify candidate drug targets, providing a blueprint for cancer drug target discovery.

The first is the traditional approach to identify genetic lesions in cancer cells and exploit this
knowledge for therapeutics, a tried and true method that has led to the identification of several
drug targets. Such an approach is currently employed by The Cancer Genome Atlas and other
similar efforts that aim to characterize, in a large number of cancer types, genomic alterations
including copy-number variation, transcriptional profiles, epigenetic modifications, and DNA
sequence alterations. While expensive, this approach has the potential to identify common
alterations in oncogenes and tumor suppressors for further functional analysis and uncover
oncogene addiction pathways that can be targeted (Cancer Genome Atlas Research Network,
2008; Jones et al., 2008; Parsons et al., 2008). It is clear that these efforts will yield important
new information on human cancer and aid biomarker discovery and patient stratification.
However, this approach has two limitations with respect to target discovery. First, current
sequencing capacity is primarily limited to coding regions, though whole-genome sequencing
will become feasible with cheaper and more highly parallel sequencing methods. The second
limitation is that this approach will not discover NOA pathways that support tumorigenesis,
such as those discussed above, because they are not mutated in cancers.

The second approach takes a more functional, systems-biology approach to identify cancer cell
vulnerabilities (Ngo et al., 2006; Schlabach et al., 2008; Silva et al., 2008). This has been made
possible by the RNA interference (RNAI) revolution. Advances in RNAI technology in
mammalian cells have made it possible, for the first time, to systematically interrogate every
cellular protein for potential addiction by cancer cells. A functional approach using RNA.i offers
several advantages in target discovery. First, RNAi-mediated protein knockdown results in
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either partial or complete loss of function, which in many cases closely mimics the effect of
an inhibitor. Second, RNAI can be applied to any annotated gene in the human genome based
on sequence information alone without the a priori knowledge of the gene's cellular function
or mutational status in cancer. Therefore, this approach will uncover both known and new
genes that were not previously implicated in cancer. Third, RNAI can be readily applied to
animal models (Dickins et al., 2007). This provides rapid, in vivo target validation that takes
advantage of the many mouse models of cancer, without the need to first develop an inhibitor.
Lastly and importantly, genome-wide RNAi screening will identify genes that are not mutated
in cancers and exhibit features of NOA. Systematic RNAI screens aimed to generate either
“synthetic lethal signatures” against specific oncogenes or tumor suppressors or “cancer lethal
signatures” using a large panel of cancer and normal cells should reveal a genetic landscape
of cancer vulnerabilities that guide the rational design of therapeutic approaches.

A current limitation of the RNAI approach is the fact that many screens are being performed
in cell lines in vitro and are limited to analysis of genes important for proliferation and survival.
Thus, these screens will miss certain classes of genes that might function only in the proper in
vivo tumor environment. This limitation can be overcome, however, if large-scale genetic
screens can be approached systematically in mice with defined cancer models. Continuous
RNA. library development that aims to improve gene knockdown efficiency and incorporate
features (such as barcodes) that enable very high throughput screening will further enhance
the power of this approach. These efforts would require a sustained commitment of resources,
such as an organized consortium effort, but would result in the identification and validation of
critical cancer drug targets in a relatively unbiased, comprehensive fashion. Given the long-
standing success of genetics in providing unbiased insights into biology and disease
mechanisms, our goal should be nothing less than identifying all the pathways upon which
cancer cells depend to maintain the oncogenic state.

The identification of drug targets is only the first step in the process to develop new cancer
therapeutics. The ability to identify or design small-molecule inhibitors with the appropriate
pharmacological properties against any given target is the next challenge. Currently, many
efforts focus only on the so-called “druggable genome,” which represents proteins with
enzymatic functions that can be easily assayed or targeted. However, recent studies have shown
that many proteins previously thought to be difficult to target can, in fact, be inhibited by small
molecules (Wells and McClendon, 2007). New methods of identifying small molecules based
on their ability to bind specific proteins and disrupt protein-protein interaction should widen
the playing field and allow more validated targets that emerge from physical mapping and
genetic screens to enter the drug development pipeline. Of course, it is widely hoped that RNA.
itself will become a cancer therapy in the near future once a solution to its effective delivery
to tumors is found. If so, this will circumvent many limitations inherent to small-molecule
inhibitors and revolutionize drug development.

Mathematical Elimination of Cancer using Orthogonal Therapies

Itis very likely that the oncogenes and non-oncogenes to which tumors are addicted will serve
as the targets of successful cancer therapies in the future. However, it is already clear that each
of even the best therapies applied alone eventually fail in the majority of cases. Each therapy
can be considered to be a filter that removes a set of cancer cells with certain properties (Figure
3). However, a subset of tumor cells slip through the filter to eventually establish clones,
rendering the therapy ineffective. These rare, pre-existing mutant cells contain suppressor
mutations that circumvent the therapy. Examples of suppressor mutations might include an
altered drug-binding site on the intended target, amplification of the drug target, activation of
drug efflux pumps, or activation of an alternative pathway, such as a growth factor signaling
pathway, that performs the same function as the inhibited pathway. The rate of appearance of
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suppressor mutations is an important parameter in cancer therapies. Unfortunately, one of the
inherent properties of cancer cells is their enhanced genomic instability, which accelerates the
appearance of suppressor mutations.

From a theoretical perspective, in order to overcome this problem, a combinatorial series of
filters applied concurrently is needed to eliminate all of the cancer cells in a patient. How this
will be accomplished remains to be determined, but we envision it to be the simultaneous
application of orthogonal cancer therapies. Two therapies are considered orthogonal, and
therefore act synergistically, when they attack a cancer in two different ways such that a
suppressor mutation for the first therapy cannot suppress the second therapy and vice versa. It
should be noted that some non-orthogonal therapies might also have efficacy in combination
if only a portion of the suppressors can overcome both therapies. This leads to the simple
mathematical proposition that the probability of cancer escaping the therapies, the recurrence
index, RI, will be proportional to the number of cancer-initiating cells, N, times the frequency
of suppressor mutations for therapy 1, vq, times the frequency of suppressor mutations for
therapy 2, vy, and so on to produce RI = Nvqvo_ vj. Once RI becomes much less than 1, the
probability of surviving the cancer is high. Importantly, this general treatment takes full
consideration of tumor cell heterogeneity such as the existence of “cancer stem cells” that might
have a different property than the bulk of the tumor. Although the values of the parameters in
this equation are not currently known and are likely to vary based on tumor type, it is clear that
such an approach can work as it is analogous to the treatment of HIV. For HIV, which resembles
tumors in that it is highly mutable, a triple cocktail of inhibitors of HIV replication can control
the progression of the disease. We envision that cancer therapies will adopt this calculus and
convert cancer, like AIDS, from a terminal illness to a chronic disease or even provide a cure.
Given that cancer is actually a collection of distinct diseases, the orthogonal combinations will
vary depending upon the tumor genotype and possibly the genotype of the patient. It is likely
that the treatment regimen employed will be determined by the analysis of a series of
biomarkers in each tumor that have been previously shown to predict efficacy of a particular
therapy. Combinatorial therapies are currently being considered for a number of cancers.
However, it will be important to understand the nature and frequency of suppressors that allow
escape from each therapy when designing combinations in order to maximize the orthogonality
of the combinatorial therapies. In addition, it is critical that such therapies, when tolerated by
patients, be applied concurrently, not sequentially, because the latter will allow the number of
cancer-initiating cells, N, to expand prior to the subsequent treatment, thereby increasing the
RI. Finally, it should be noted that if one of the therapies employed is a DNA-damaging agent,
it might increase the frequency of suppressor mutations for the other therapies with which it
is combined.

In summary, there are many avenues through which to approach future cancer therapies. We
hope these additional hallmarks depicting the stress phenotypes of cancer cells will both
improve our understanding of the efficacy of existing therapies and provide rationales for new
therapeutics. Cancer therapeutic targets can emerge through both the analysis of classical
oncogenes and the analysis of a new class of genes that constitute NOA. New genome-wide
efforts to approach cancer from a systems-biology perspective hold great promise for
identifying new targets for anticancer therapies. Finally, we propose that through the proper
combination of orthogonal cancer therapies, it is possible to convert cancer from a death
sentence into a manageable or even curable disease.
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Figure 1. The Hallmarks of Cancer

In addition to the six hallmarks originally proposed by Hanahan and Weinberg (top half, white
symbols) and evasion of immune surveillance proposed by Kroemer and Pouyssegur, we
propose a set of additional hallmarks that depict the stress phenotypes of cancer cells (lower
half, colored symbols). These include metabolic stress, proteotoxic stress, mitotic stress,
oxidative stress, and DNA damage stress. Functional interplays among these hallmarks
promote the tumorigenic state and suppress oncogenic stress. For example, the utilization of
glycolysis allows tumor cells to adapt to hypoxia and acidify its microenvironment to evade
immune surveillance. Increased mitotic stress promotes aneuploidy, which leads to proteotoxic
stress that requires compensation from the heat shock response pathway. Elevated levels of
reactive oxygen species result in increased levels of DNA damage that normally elicits
senescence or apoptosis but is overcome by tumor cells.
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Figure 2. Examples of Non-oncogene Addictions in Cancer Cells

The tumorigenic state results in a variety of alterations (shown on top), which are related to
the hallmarks described in Figure 1. These alterations give rise to a number of potentially
deleterious circumstances or vulnerabilities (detailed in the bottom half) that could be lethal
to the tumor cells if left unchecked. The existence of stress support pathways (shown in red)
help suppress this lethality. Many of these pathways are examples of non-oncogene addiction
(NOA), and therapeutics that interfere with their functions could display synthetic lethality
with the tumor genotype/phenotype.
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Figure 3. The Combinatorial Filter of Orthogonal Cancer Therapies

A tumor consists of genetically distinct subpopulations of cancer cells (represented by the
different cell shapes), each with its own characteristic sensitivity profile to a given therapeutic
agent. Each cancer therapy can be viewed as a filter that removes a subpopulation of cancer
cells that are sensitive to this treatment while allowing other insensitive subpopulations to
escape. This escape occurs as a result of suppressor mutations that occur at a given frequency
(v) unique to each therapy and tumor type. By combining therapies with orthogonal modes of
action, a combinatorial filter can be set up to minimize the recurrence index (RI) of the cancer.
N represents the total number of cancer cells in the tumor. A combination of orthogonal
therapies that result in RI < 1 would greatly enhance the likelihood of preventing tumor
recurrence.
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