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Abstract
This paper provides an overview of computational de novo protein design methods, highlighting
recent advances and successes. Four protein systems are described that are important targets for drug
design: human immunodeficiency virus 1, purine nucleoside phosphorylase, ubiquitin specific
protease 7, and histone demethylases. Target areas for drug design for each protein are described,
along with known inhibitors, focusing on peptidic inhibitors, but also describing some small-
molecule inhibitors. Computational design methods that have been employed in elucidating these
inhibitors for each protein are outlined, along with steps that can be taken in order to apply
computational protein design to a system that has mainly used experimental methods to date.
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1 INTRODUCTION
De novo protein design, also referred to as the inverse protein folding problem, is the
determination of an amino acid sequence, or set of sequences, that will fold into a given 3-
dimensional (3D) protein template, which may be fixed or flexible. While the protein folding
problem seeks to identify the one lowest energy conformation for a given amino acid sequence,
the protein design problem exhibits degeneracy, in that many amino acid sequences fold into
a given template, with the different sequences giving different properties (activity, specificity)
to the protein. It therefore has a wide range of applications, from improved design of inhibitors
and new sequences with increased stability to the design of catalytic sites of enzymes and drug
discovery [1–3].

Until recently, protein design consisted primarily of experimental techniques such as rational
design, mutagenesis, and directed evolution. Although these methods produce good results,
they are restrictive because of the limited sequence search space (estimated to be only 103 –
106). Computational methods, on the other hand, can increase this search space to 10128,
making computational protein design more popular.
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Several successes in protein design include increasing the stability and specificity of a target
protein [4–6] to locking proteins into useful conformations [7]. Computational methods aid
the protein design process by determining folding kinetics [4,8] and protein-ligand interactions
[9]. They help with protein docking [10–12] and assist peptide and protein drug discovery
[13–15].

Despite these successes, there are limitations. Currently, it is very difficult to design a protein
consisting of 100 or more amino acids. If one assumes an average of 100 rotamers for all 20
amino acids at each position, this problem reaches a complexity of 100100 = 10200. Coupled
with the NP-hard nature [16,17] of the problem, designing larger proteins (> 100 amino acids)
proves a great challenge. In addition to improving the computational efficiency of de novo
design algorithms, another challenge is to incorporate true backbone flexibility. These two
challenges are interrelated, as incorporating backbone flexibility increases the computational
complexity of an algorithm.

The next few sections outline the methodologies and recent advances in computational protein
design, using both fixed and flexible backbone templates and describing both deterministic
methods and stochastic methods.

2 COMPUTATIONAL METHODS
The various computational methods employed for de novo protein design belong to two classes:
those that use fixed backbone templates and those that use flexible backbone templates. A fixed
backbone template consists of fixed backbone atom coordinates and fixed rotamer
conformations. This was first proposed by Ponder and Richards [18]. This is usually the case
when only an X-ray crystal structure of the design template is known. Flexible backbone
templates, on the other hand, are more true to nature, as protein structures are inherently
flexible. Flexible templates can be a set of fixed backbone atom coordinates, such as the set of
structure models obtained from NMR structure determination. Instead of a set of fixed atoms
coordinates, the backbone atoms can take on a range of values between specified bounds. The
rotamers can also consist of a set of discrete rotamers for each residue or the rotamer angles
can be allowed to vary between a specified range.

2.1 Fixed Backbone Templates
2.1.1 Deterministic Methods—Deterministic algorithms include those that use (a) dead
end elimination (DEE) methods, (b) self-consistent mean field (SCMF) methods, (c) power
law (PL) methods or (d) those that utilize quadratic assignment-like models coupled with
deterministic global optimization. The deterministic methods (a), (b), and (c) use a discrete set
of rotamers, which are used for tractability of the search problem, while methods (d) can use
either a discrete or a continuous set of rotamers.

DEE methods historically use fixed-backbone templates and a discrete set of rotamers [19–
23]. DEE works by systematically eliminating rotamers that cannot be part of the sequence
with the lowest free energy. The energy function used in DEE is a combination of individual
terms (rotamer to template) and pairwise terms (rotamer to rotamer) and is given by Eq. 1,
where E(ia) is the rotamer-template energy for rotamer ia of amino acid i. Likewise, E(ia,jb) is
the pairwise rotamer-rotamer energy between rotamer ia of amino acid i and rotamer jb of
amino acid j. Finally, N is the total number of amino acid positions.

(1)
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The general idea behind DEE is that if the pairwise energy, E(ia,jb), between rotamer ia and
jb is greater than that between ic and jb, for all jb in some set {B}, then the rotamer ia can be
removed, or pruned, from the set because it cannot be part of the global energy minimum
conformation. This relationship is expressed by Eq. 2. This equation can be made more tractable
by the bounds implied by Eq. 2, given in Eq. 3.

(2)

(3)

Recent advances to the DEE algorithm allow faster computation of larger protein design
problems. BroMAP (branch-and-bound rotamer optimization using MAP estimation) expands
smaller search trees while performing moderate computation in each node, reducing the total
run time [24]. The BroMAP method generates lower bounds using approximate maximum-a-
posteriori (MAP) estimation. Another advance, called MinDEE (for minimized-DEE) not only
prunes rigid rotamers as described by the original DEE algorithm, but guarantees that rotamers
belonging to the energy minimized global minimum energy conformation will not be pruned
[25]. This is important because conformations that survive the original DEE algorithm are often
subjected to further rotamer energy minimizations. When this occurs, the combined process is
heuristic and the provable guarantee is lost. Other modifications to DEE include X-DEE
(extended DEE), which gives gap-free lists of low-energy states for a given energy range and
was applied to the determination of protonation states of a protein [26], and type-variant DEE,
which can be used in multistate protein design [27]. Further descriptions of DEE modifications
and successes can be found in Fung et al. [3].

SCMF methods involve predicting the values of elements of a conformational matrix P(i,a) to
determine the probability that amino acid i will adopt a rotamer conformation a. Koehl and
Delarue [28] were among the first to describe such a method in protein design. This iterative
process begins with an initial guess for the conformational matrix, giving equal probability to
all rotamers (Eq. 4).

(4)

The energy, based upon the mean field potential E(i,a), is then calculated, which is dependent
upon the conformational matrix.

(5)

In equation 5, x0 is the coordinates of atoms in the fixed template, while xia and xjb are the
coordinates of atoms of position i with rotamer conformation a and position j with rotamer
conformation b, respectively. The potential energy, U, can described by classical Lennard-
Jones potential. Once the energy has been calculated, the conformational matrix is then updated
(Eq. 6) and this is repeated until convergence is obtained. It should be noted, however, that
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although this method is deterministic, it does not guarantee convergence to the global minimum
solution, as DEE does.

(6)

The SCMF method was extended by the Saven group [29–32], introducing information theory
concepts and formulating it as an optimization problem. They maximized the sequence entropy
subject to composition and mean-field energy constraints. Bhattacherjee and Biswas [33]
recently developed a SCMF based theory in order to consider the effect of correlated mutations
by evaluating site-specific amino acid pair probabilities in a library of sequences.

The power law (PL) method is based on the similarity of a topology optimization problem and
a protein design problem [34]. Instead of solving the topology optimization problem in discrete
space, however, it is solved in continuous space in order to reduce the intensive computation
required. The problem introduced by this method is the artifact of obtaining non-discrete
optimal solutions. This is solved by introducing solid isotropic material with penalization
(SIMP). The rigidity of a material is expressed as an artificial power law in continuous space.
Using this formulation, the interaction energy between the known amino acid at position j and
the unknown amino acid at position i is given by Eq. 7.

(7)

The energy value between the amino acids at sites i and j is given by E0
ij. This is also referred

to as the stiffness of the material, in terms of the SIMP formulation. The state of the
undetermined amino acid at position i is represented by the variable xp

i. Equation 7 is used as
the energy function in the quadratic programming problem given by Eq. 8, where Bij is
constructed in order to obtain equality constraints that limit the selection of one amino acid per
position, N is the number of residue positions, m is the number of amino acid types available,
and Qij contains the interaction energy between residues.

(8)

Klepeis et al. [5,6] proposed a novel approach to de novo protein design using a quadratic
assignment-like global optimization model to select sequences. The original integer linear
programming (ILP) model uses a single fixed backbone template structure. Further advances
by Fung et al. [16,35,36], incorporating backbone flexibility into the model, are presented in
subsequent sections.

2.1.2 Stochastic Methods—Because the protein design problem is NP-hard [16,17],
deterministic methods may reach a limit and stochastic methods are employed to find locally
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optimal solutions. These methods include genetic algorithms, Monte Carlo sampling, and
combinatorial library methods.

Monte Carlo (MC) methods work by performing a mutation of a residue at a certain position
and calculating the energies of the sequence before and after the mutation. The mutation will
be accepted if it lowers the energy, or, if the energy is higher, it will accept the mutation based
upon the Metropolis criterion [37] (Eq. 9).

(9)

In Eq. 9, Paccept is the probability that a move will be accepted, ΔE is the change in energy
before and after adding a mutation, T is the temperature, and k is the Boltzmann constant.
Rosetta Design [38] is a MC based algorithm. This algorithm has options for both fixed-
backbone template design and flexible-backbone template design (considering an ensemble of
fixed backbones), however, only local minima are obtained, not necessarily the global
minimum. Two complementary Markov chain Monte Carlo (MCMC) protein design methods
were developed by Thomas et al. [39]. One uses constrained shuffling which generates a small
set of high-likelihood new sequences. The other uses component sampling, which generates
all the sequences that meet given constraints. Zou and Saven [40] combine MC methods with
SCMF methods to bias the sequence selection using predetermined sequence identity
probabilities. The probabilities are determined using SCMF methods, while the sequence
selection is performed using MC methods. Successes of MC methods consist of new sequences
for the fixed backbones of the β1 domain of protein G, λ repressor, and sperm whale myoglobin
[41,42], and the redesign of the src SH3 domain, the λ repressor, U1A, protein L, tenascin,
procarboxypeptidase, acylphosphatase, S6, and FKBP12 [4].

Genetic algorithms, in comparison, generate a number of random amino acid sequences and
exchange them for a fixed template [43–47]. This method originated in genetics and evolution
[48]. High-energy sequences are eliminated, while low energy ones form hybrids. The
algorithm terminates when the solution converges. Genetic algorithms have been used to design
ligands for prolyl oligopeptidase, p53, and DNA gyrase [49] and to design short peptides with
high stability that resemble the antibody epitopes of thrombin and blood coagulation factor
VIII [50].

Finally, combinatorial library methods attempt to maximize the entropy subject to a set of
constraints [30,32,51–57].

2.2 Flexible Backbone Templates
2.2.1 Deterministic Methods—Georgiev and Donald [58] incorporated backbone
flexibility into the DEE method. As previously mentioned, the original DEE algorithm does
not take backbone flexibility into account. Modifications to DEE have attempted to do so, but
the modified DEE algorithms don't have the provable guarantee of eliminating rotamers that
are not part of the global minimum energy conformation. Georgiev and Donald [58] provided
modifications in which this provable guarantee is kept intact and allows for backbone
flexibility. Equation 3 is expressed equivalently as
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(10)

where Et represents the difference between lower and upper bounds on the template energy.
Et is the interval of possible template energies. EΘ(ia) represents a lower bound on the sum of
the energy interactions between the atoms of rotamer ia and the energy interactions between
the atoms of rotamer ia and the template atoms. Similarly, EΘ(ia,jb) is defined as the lower
bound pairwise energy between rotamers ia and jb. EΘ(ia) and EΘ(ic,jb) are defined as the
maximum bounds, similar to the descriptions for EΘ. Finally, the interval terms, EΔ, are defined
as

(11)

What Eq. 10 essentially does is, given a compact space of backbone conformations, compare
a lower bound on the energy achievable when amino acid i has a rotamer identity of ia to an
upper bound on the energy achievable with a competing rotamer identity say ie, of the same
amino acid. Georgiev et al. [59] also introduced backbone flexibility into the DEE algorithm
by incorporating back rub motions. Back rub motions are side-chain coupled local backbone
motion and is commonly observed in proteins.

A novel modeling and computational framework introduces a quadratic assignment-like global
optimization model [5,6,16,35,36,60] to select sequences. It incorporates backbone flexibility
by describing the template in terms of distance bins, with each bin given the same energy. A
single backbone template or a set of multiple templates obtained from NMR experiments,
molecular dynamics simulations, or docking calculations can be used. From this, a rank ordered
list of sequences is obtained. Equation 12 shows the basic mixed-integer linear programming
(MILP) model developed by Fung et al. [16].

(12)

The model minimizes the sum of all pairwise energy interactions. The energy term, Ejl
ik, is

dependent upon the distance between residue i and residue k. The distances can either be the
Cα–Cα distances or the centroid-centroid distances. Backbone flexibility is introduced in two
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ways, the first is by discretizing the energy function into bins based upon the distance between
a pair of residues. Therefore, a pair of residues may take on a range of distances that fall within
a particular distance bin and still retain the same energy value. The second way flexibility is
introduced is by expanding the model depicted in Eq. 12 to allow for the distances spanned by
two resides to fall across multiple bins. This is achieved in two ways: by introducing a weighted
average energy term or by introducing a binary variable that selects a particular distance bin
for a pair of residues depending upon all the bins the pair spans. Details of these model
formulations can be found in Fung et al. [36].

The sequences selected using the MILP models are subsequently re-ranked in a validation stage
that consists of fold specificity calculations, approximate binding affinity calculations, or both.
Both validation methods incorporate true backbone flexibility. A fold specificity for each
sequence is calculated by generating an ensemble of structures of the mutant sequence and of
the native sequence. The ensemble incorporates backbone flexibility by allowing a continuous
range between upper and lower bounds on the Cα-Cα distances and ϕ and ψ angles. The fold
specificity is determined according to Eq. 13, where β = 1/kBT.

(13)

The set novel contains the ensemble of structures of the mutant sequence, while the set
native contains the ensemble of structures of the native sequence. The fold specificity is a
measure of how likely a mutant sequence will fold into the native structure. A higher fold
specificity indicates a greater likelihood. Fold specificities are calculated based on (a) the full
atomistic forcefield either through the ASTRO-FOLD approach [61–70] and deterministic
global optimization [71–77] or (b) the AMBER forcefield via a novel NMR structure
refinement method [3,35].

The second validation method is most applicable when designing proteins or peptides to bind
to another target protein. This method re-ranks the sequences from the selection stage by
calculating an approximate binding affinity (Eq. 14).

(14)

The approximate binding affinity (K*) is a ratio of the partition functions of the complex
(PL), target protein (P), and peptide or ligand (L). The partition functions are calculated using
rotamerically-based conformation ensembles for each species. Backbone flexibility is
introduced in this validation method by the way in which the ensembles are constructed,
allowing the peptide ensemble to take on a number of discrete backbone and rotamer
configurations and allowing the complex ensemble to take on a number of discrete peptide
backbone and rotamer configurations and docked configurations. Details of the approximate
binding affinity calculation can be found in Bellows et al. [78].

In addition to the two methods mentioned above, groups have applied the methodologies
pertaining to fixed backbone templates to multiple discrete templates in order to add some
flexibility to their design. Su and Mayo [79] and Ross et al. [80] used the DEE algorithm with
fixed backbone template for each of their backbone templates in order to generate several sets
of perturbed backbones from the native structure of their design. Kono and Saven [30] used

Bellows and Floudas Page 7

Curr Drug Targets. Author manuscript; available in PMC 2010 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



their SCMF method on a set of fixed backbone templates in order to design sequences that
would be robust to distance changes in the template.

2.2.2 Stochastic Methods—Monte Carlo simulations have been used to generate multiple
discrete templates based upon an initial fixed-backbone template [7,81,82]. Using this, the
Pande group [81,82] used genetic algorithms with the discrete templates to design sequences
that exhibited higher diversity than the corresponding natural sequence alignments. Kraemer-
Pecore et al. [7] also used genetic algorithms with multiple discrete templates to identity a
sequence that folded into the WW domain.

Another example of using genetic algorithms with Monte Carlo simulations involves iterating
between sequence space and structure space. Desjarlais and Handel [83] generated multiple
discrete backbone templates and used a genetic algorithm to exchange not only rotamers but
also backbone torsional information in recombination. The backbone structures were then
refined using Mote Carlo. Using this method, they were able to design three new core variants
of the protein 434 cro.

Monte Carlo methods have also been used by Kuhlman et al. [84] and Saunders and Baker
[85] where the method again uses a set of discrete backbone templates. A Monte Carlo search
gives the lowest energy sequence for each template, then performs structure prediction of the
sequences to allow for shifts in structure space, and continues to iterate between sequence space
and structure space for a desired number of iterations. They have successfully used this method
to design a new sequence for Top 7, a 93 residue α/β protein with a novel fold.

Finally, Harbury et al. [86–88] have used a continuum backbone template with discrete
rotamers to design a family of α-helical bundle proteins with a right-handed superhelical twist.
Their method works by creating a continuum template using backbone parameterization and
then performing a sequence search from rotamer libraries. Backbone movements are
introduced by treating the parameters as variables during the sequence search for energy
minimization.

3 APPLICATION DOMAINS
The computational protein design methods described can be applied to a number of systems.
Four systems are outlined below. All involve using de novo protein design methods to design
inhibitors that target the human immunodeficiency virus 1, purine nucleoside phosphorylase,
ubiquitin specific protease 7, and histone demethylases. Some systems have a long history of
using computational de novo design to discover inhibitors, while others have been treated with
only experimental techniques. The following sections review the work that has been done in
each of the four areas with regard to target identification, inhibitor design and discovery, and
what computational methods, if any, have been applied to the system.

3.1 Human Immunodeficiency Virus 1
The human immunodeficiency virus 1 (HIV-1) is the virus that causes AIDS, the acquired
immunodeficiency syndrome. While there is no vaccine for HIV-1, there are treatments for
those who have been infected. Called antiretroviral treatment, it reduces the risks associated
with HIV if begun right after infection. The treatment was first developed in 1995 and consists
of a cocktail of at least three drugs. The cocktail usually includes two nucleoside analogue
reverse transcriptase inhibitors and either a protease inhibitor or a non-nucleoside reverse
transcriptase inhibitor [89]. These drugs work by targeting different aspects of the HIV
replication process, leading to a rise in CD4 T cells (the target of HIV). However this is then
followed by an increase in drug-resistant variants of HIV.
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Recently, new studies have focused on inhibiting HIV-1 entry into cells using fusion inhibitors.
This is promising because the inhibitors can potentially target the numerous intermediates that
are formed during viral entry into the cell [90]. HIV-1 infects cells using a multistep process.
The process begins when gp160, an envelope glycoprotein, proteolytically cleaves into a
surface subunit (gp120) and a transmembrane subunit (gp41) [91]. This is done by a cellular
convertase [92]. In the next step, gp120 binds to the host cell receptor CD4, leading to a
conformational change in gp120 and causing the extension of the V3 loop of gp120. This
extension binds to chemokine receptor CCR5 or CXCR4 or both. The binding of the chemokine
receptor to the V3 loop leads to the exposure of gp41. gp41 is divided into three domains:
extracellular domain, transmembrane domain, and cytoplasm domain [93]. The extracellular
domain can be further divided into four functional domains: fusion peptide, N-terminal heptad
repeat (NHR or HR1), C-terminal heptad repeat (CHR or HR2), and a tryptophan rich region
[93]. Both NHR and CHR contain a number of 4-3 heptad repeats, and these repeats generally
form coiled-coil structures [94]. After gp41 has been exposed, the NHR and CHR come
together to form a 6-helix bundle. Once the 6-helix bundle is formed, the viral and cell
membranes fuse together and HIV has successfully infected the host cell.

3.1.1 Targets—There are two main targets of HIV-1 for fusion inhibition: gp41 and gp120.
gp41 is targeted in order to prevent the formation of the 6-helix bundle, thereby preventing
membrane fusion. gp120 is targeted in order to prevent the binding of the chemokine receptor.
This prevents the exposure of gp41, thereby stopping membrane fusion. Targeting gp120 is
more upstream in the infection process than targeting gp41.

A number of research groups have elucidated the 3D structure of gp41, which is necessary for
any computational protein design. Weissenhorn et al. [95], Chan et al. [96], and Tan et al.
[97] used X-ray crystallography to determine the structure of gp41, confirming that it forms a
coiled coil structure and consists of a 6-helix bundle. Zhou et al. [98] have also reported the
structure of gp41 in complex with a small molecule inhibitor, providing further information as
to the precise location of the binding site of gp41. The small molecule inhibitor binds to the
hydrophobic pocket of the NHR of gp41. This prevents the formation of the interface between
the NHR and CHR. The identification of a hydrophobic pocket of the NHR of gp41 as a
potential drug target is further supported by Chan et al. [99]. They show that the inhibitory
activity of the peptides they examined depend upon their ability to bind to the hydrophobic,
coiled-coil cavity. Sia et al. [100] elucidated the crystal structure of a complex of gp41 with a
short constrained C-peptide, which also binds to the hydrophobic core of gp41 NHR. In
addition, Balogh et al. [101] presented a novel method that gives explicit structural constraints
on a small molecule inhibitor bound to the hydrophobic pocket of gp41 for NMR. The
functional role of the coiled-coil domain of gp41 was explored by Wild et al. [102]. They
compared the effects of amino acid substitutions in the coiled-coil domain on both structure
and function and found a correlation between the destabilizing effects of the substitutions on
the structure and virus entry.

The 3D structure of gp120, especially the V3 loop, has been more difficult to obtain compared
to gp41. This is because of the high flexibility of the V3 loop, and the fact that gp120 needs to
bind to CD4 in order to induce the conformational change that extends the V3 loop. Vranken
et al. [103] determined the structure of the V3 loop using NMR. This provided 20 backbone
structures, giving a flexible backbone template that can be used for computational protein
design. Recently, the crystal structure of gp120 bound to CD4 and CCR5 was determined by
Huang et al. [104]. This structure shows gp120 with the V3 loop extension and the chemokine
receptor bound to the V3 loop. This provides the location of the binding site for CD4 and for
the CCR5 chemokine receptor on the V3 loop. Tan and Rader [105] further analyzed the
binding regions of gp120 using a flexibility analysis of all known gp120 structures. They
identified two rigid regions, which may serve as stable targets for drug design.
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Other studies have also attempted to determine conserved regions of gp120 and gp41, which
can be targets for broadly neutralizing antibodies [106–111].

3.1.2 Inhibitors—There are two FDA (U. S. Food and Drug Administration) fusion inhibitors
on the market. The first, Fuzeon (enfuvirtide), was developed by Roche and Trimeris and has
been in use since 2003 [90,112]. The second, Selzentry (maraviroc), was developed by Pfizer
and approved in 2007 [113].

Fuzeon is used in patients that have developed a drug resistance to standard antiretroviral
treatments. Its sequence is based on the sequence of gp41 CHR and targets gp41 NHR.
Selzentry differs from Fuzeon in that it is a small molecule and targets gp120. Selzentry binds
to the chemokine receptor CCR5. One issue with Selzentry is that it is only effective in patients
with HIV using the CCR5 receptor. The drug has limited activity in patients with HIV using
the CXCR4 receptor or both receptors.

In addition to the two FDA approved fusion inhibitors, there are many more that have been
published in the open literature. Table 1 provides the names, sequences, IC50 values, and
references for a number of HIV fusion inhibitors.

A few of the peptides contain D-amino acids, which are resistant to proteolytic digestion,
thereby increasing their half-life in vivo [114,115,120]. Recent work has also focused on
finding peptidic inhibitors of enfuvirtide-resistant HIV strains [117,121–124], which have
developed due to the increased use of Fuzeon. The mechanisms of action of second-generation
fusion inhibitors are being investigated [94] as well as the minimal sequence and minimal
interface for fusion inhibitors [125,126]. Liang [127] provides a review of inhibitors targeting
CXCR4, one of the chemokine receptors that bind to gp120. In addition, various small
molecules are being investigated to find new HIV-1 inhibitors that may have increased
bioavailability and reduced cost of production over peptidic inhibitors [93,101,127–131].

3.1.3 Computational Methods—A number of computational methods have been used to
design novel HIV-1 fusion inhibitors. Singh et al. [132] used homology modeling and docking
studies to investigate the interactions between the chemokine receptor CXCR4 and flavonoids.
They report that the compounds they examined may become important new antiviral drugs.
Berchanski and Lapidot [133] designed new conjugates of neomycin with two arginine peptide
chains to target CXCR4 using a multistep docking procedure [134]. Imai et al. [135] used their
computer program ANTIS to design inhibitors that target CCR5. The Jiang group [136–139]
used a virtual screening method based on computer modeling to identify gp41 small-molecule
inhibitors. They screened 20,000 compounds and found that one of the compounds, ADS-J1,
had an IC50 in the low micromolar range. Recently, Bellows et al. [140] used their de novo
design framework to discover novel peptide inhibitors of gp41. The peptides are 12 amino
acids in length and the most promising one showed an IC50 of 31μM in inhibition studies of
HIV-1 entry into host cells.

In addition to targeting gp41 and gp120, computational methods have elucidated inhibitors
that target the protein disulfide isomerase (PDI) of HIV-1 [141].

3.2 Purine Nucleoside Phosphorylase
Purine nucleoside phosphorylase (PNP) catalyzes purine metabolism, converting adenosine
into adenine, inosine into hypoxanthine, and guanosine into guanine. It was discovered that
people who are deficient in PNP have an immunodeficiency problem. Altered pathways of
purine metabolism lead to T-cell deficiency. This is because deoxyguanosine is not properly
metabolized and builds up in the blood. It is then transported and phosphorylated by T-cell
deoxynucleoside kinases, forming harmful elevated levels of dGTP in the T-cells [142].
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This lead to the realization that inhibition of PNP could regulate undesirable T-cell proliferation
[143]. Diseases such as rheumatoid arthritis, psoriasis, inflammatory bowl disorders, and
multiple sclerosis are caused by inappropriate activation of T-cells by self-antigens and could
be targets for PNP inhibitors [142].

3.2.1 Targets—A number of groups have determined the crystal structure of PNP in complex
with various ligands. Canduri et al. [144] presented a number of crystal structures of PNP in
complex with ligands. They determined the structure of human PNP in complex with guanosine
at 2.80 Å resolution, with 3'-deoxyguanosine at 2.86 Å resolution, and 8-azaguanine at 2.85 Å
resolution. Canduri et al. [145] have also determined the crystal structure of human PNP in
complex with inosine and 2',3'-dideoxyinosine at 2.8 Å resolution. Finally, Canduri et al.
[146] reported the crystal structure of human PNP in complex with hypoxanthine and sulfate
ion at 2.6 Å resolution. These crystal structures provide information about the location of the
binding site of PNP. The ligands described in the aforementioned complexes are the natural
ligands that bind during purine metabolism.

In contrast to the structures cited above, dos Santos et al. [147] have reported the
crystallographic structure of human PNP in complex with acyclovir. Acyclovir is a potent
inhibitor of replicant herpes simplex virus and also inhibits PNP, but with lower activity. This
provides a structural template of an inhibitor bound to PNP. Silva et al. [148] described the
kinetics and determined the crystal structure of human PNP in complex with a synthetic
substrate, 7-methyl-6-thioguanosine.

Recent work has also been done to determine the active sites of PNP and the binding
mechanisms of the ligands. Deng et al. [149] used NMR data to determine active site contacts
in human PNP. Wielgus-Kutrowska et al. [150] studied the binding of 2-amino-9-[2-
(phosphonome-thoxy) ethyl]-6-sulfanylpurine (PME-6-thio-Gua) to PNP from Cellulomanoas
sp. They determined that the binding of the ligand to PNP is a one-step process.

Other groups have determined the structures of PNP from a number of other species. Caceres
et al. [151] determined a first time model of PNP from Streptococcus agalactiae using
molecular modeling and dynamics simulations. Schnick et al. [152] and Shi et al. [153] both
report a crystal structure of PNP from Plasmodium falciparum in complex with various ligands
and inhibitors. Others include models of PNP from calf spleen [154] and Listeria
monocytogenes [155]. These models and structures may provide further insight to the binding
site and mechanisms of human PNP.

3.2.2 Inhibitors—There are a number of inhibitors of PNP reported in the open literature,
however all consist of small-molecule inhibitors. There are no peptidic inhibitors, making this
an interesting challenge for de novo protein design. Because there are no peptidic inhibitors,
there is no complex of PNP with a peptide, therefore no design template. One can, however,
attempt to construct a template using the information of where and how the small-molecule
inhibitors bind to PNP.

One of the earliest inhibitors of PNP was 9-(3,4-dioxopentyl)hypoxanthine [156]. It was found
to be 25 times more effective in inhibiting PNP than butanedione. Inhibitors with equilibrium
dissociation constants in the picomolar range were designed based on the transition-state
structure of PNP [157]. More recent studies have found novel multi-substrate inhibitors
[158], transition state analogue inhibitors [142,159], and analogues of forodesine HCl as
inhibitors [160]. Clinch et al. [161] developed two potent inhibitors of human PNP that are
currently in clinical trials and which were used as templates for further inhibitor design. In
addition, Todorova and Schwarz [162] have investigated the effect of the phosphate substrate
on inhibitor binding to human PNP. They determined the thermodynamics of three inhibitors
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of PNP (acyclovir, ganciclovir, and 9-benzylguanine) as a function of phosphate ion
concentration.

3.2.3 Computational Methods—A number of computational methods have been used to
aid in the design and development of small-molecule inhibitors of PNP, but none have been
used to develop peptidic inhibitors. DeWitte and Shakhnovich [163] developed a de novo
design method called SMoG (Small Molecule Growth), which is used for lead design and is
based on a simple model for protein-ligand interactions. They applied their method to PNP,
comparing the IC50 of known PNP ligands to the SMoG energy score. Shimada et al. [164]
used SMoG to generate ligands complexed to actual protein structures and then used these
models to construct databases from which knowledge-based protein-ligand potentials were
derived. Macedo Timmers et al. [165] developed a set of empirical scoring functions that have
the potential to evaluate binding affinities and docking results. These scoring functions were
applied PNP in an effort to guide virtual screening. Another method applied to PNP relies on
the use of drug-binding databases for virtual screening initiatives [166].

3.3 Ubiquitin Specific Protease 7
Ubiquitin specific protease 7 (USP7), also known as Herpesvirus-Associated USP (HAUSP)
is a deubiquitinating enzyme that cleaves ubiquitin from its substrates. Ubiquitination is a
prominent step in the regulation of many cellular processes. The major function of
ubiquitination is to target proteins for degradation [167]. The catalytic core of USP7 consists
of three domains: Fingers, Thumb, and Palm domains. In addition, the N-terminal domain of
UPS7 consists of a TRAF-like MATH domain. The catalytic cleft is located between the Palm
and the Thumb domains.

USP7 binds to p53, which contributes to its deubiquitination and stabilization. In addition, over
expression of USP7 leads to p53-dependent cell growth repression and apoptosis. This
indicates that USP7 may act as a tumor suppressor [168]. Furthermore, USP7 contains an
additional binding site that can be targeted with inhibitors such as ubiquitin aldehyde (Ubal),
a potent and irreversible inhibitor of many deubiquitinating enzymes, to regulate
deubiquitinating activity [168]. This is important as deviations in the ubiquitin pathway can
lead to a number of clinical disorders such as neurodegenerative disorders [169], genetic
diseases [170], and immune surveillance/viral pathogenesis [170]. USP7 is also known to
interact with a number of viruses, such as the Herpes simplex virus and the Epstein-Barr virus,
making it a potential target for anti-viral treatment [168].

3.3.1 Targets—USP7 regulates p53 and is bound by at least two viral proteins (ICP0 from
the Herpes simplex virus and EBNA1 from the Epstein-Barr virus). ICP0 binds to a domain
between amino acids 599–801, while EBNA1 and p53 bind to a domain between amino acids
62–205 [171,172]. Holowaty and Frappier [171] showed that binding of EBNA1 to USP7
disrupts the USP7-p53 interaction.

The first crystal structure of USP7 consists of the catalytic core (amino acids 205–560: Fingers,
Thumb, and Palm domains) in isolation and in complex with ubiquitin aldehyde (Ubal)
[167]. Interestingly, upon Ubal binding, USP7 undergoes a dramatic conformational change
in the active site, with some loops moving 5 – 8 Å. The second binding site, located in the
TRAF-like domain, binds p53 and MDM2 in a mutually exclusive manner, with MDM2 having
the higher binding affinity [173]. Monoubiquitylation of the tumor suppressor p53 mediated
by MDM2 promotes its mitochondrial apoptosis, however, the apoptotically active non-
ubiquitylated p53 can also be generated via the p53-USP7 complex [174]. Hu et al. [173]
determined the crystal structure of the TRAF-like domain of UPS7 in complex with p53 and
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the TRAF-like domain of USP7 in complex with MDM2. Furthermore, the crystal structure
of the p53 binding domain has also been elucidated in isolation and bound to EBNA1 [175].

Conflicting studies show that binding of p53 to USP7 either promotes the deubiquitination and
subsequent stabilization of p53 [176,177] or that disruption of USP7 stabilizes p53 [178,
179]. It is thought that MDM2, rather than p53, is the preferred substrate of USP7, given by
the higher binding affinity of MDM2 over p53 [173]. Hence, it may be that USP7
deubiquitinates multiple targets, MDM2 and p53 being two of them, and that the net
deubiquitination of the targets determines the stability of p53. USP7 antagonists have the
potential to stabilize p53 (which may be sufficient to cause tumor regression) in tumors that
over express MDM2 by promoting the degradation of MDM2 [168].

The crystal structures of USP7 in isolation and bound to its substrates provide a number of
possible templates for de novo protein design. We have recently verified these multiple binding
sites by applying the binding site detection algorithm ConCavity [180]. ConCavity combines
evolutionary sequence conservation estimates with structure-based surface pocket prediction
in identifying binding sites. Three main binding sites were identified, the Ubal binding site,
the p53/MDM2 binding site, and the catalytic cleft. This is consistent with the complexes that
have been reported.

3.3.2 Inhibitors—Colland et al. [181] recently identified the first lead-like inhibitor of USP7.
Using high-throughput screening, they discovered HBX 41,108, a small-molecule that inhibits
USP7 deubiquitination. HBX 41,108 was shown to inhibit USP7 in an uncompetitive way,
interacting with the enzyme-substrate complex rather than competing with substrate binding.
HBX 41,108 has an IC50 of 0.42 μM and treatment with the small molecule stabilized p53,
activated the transcription of a p53 target gene, and inhibited cancer cell growth. It also induced
p53-dependent apoptosis in cancer cells containing the wild-type p53.

It is interesting that the small-molecule inhibitor interacts with the enzyme-substrate complex,
rather than with just the enzyme itself. Molecular docking studies were carried out by Colland
et al. [181] in order to understand the structural basis of HBX 41,108 binding to USP7. HBX
41,108 was docked to the ubiquitin-bound form of USP7. The inhibitor interacts with Asp295,
Val256, Phe283, Trp285, His294, Leu299, and Val302, which form a hydrophobic groove. A
crystal or NMR structure of this enzyme-substrate-inhibitor complex confirming these
interactions would provide a very good design template for protein design, allowing the design
of peptidic inhibitors of USP7. However, peptidic inhibitors could also be designed to inhibit
the interaction of the substrate with USP7, using one of the known crystal structures mentioned
previously, and targeting the ubiquitin binding site or the TRAF-like MATH domain of USP7.

3.3.3 Computational Methods—While computational methods have not been utilized to
design novel inhibitors of USP7, various in silico methods have been used to examine the
MDM2-mediated p53 ubiquitination network [182], develop a pharmacophore model for
inhibitors of ubiquitin isopeptidases, and identify USP7 as a tumor necrosis factor receptor-
associated factor domain-containing protein [183].

3.4 Histone Demethylases
Demethylases are a recently identified class of proteins that reverse Lys and Arg methylation.
The first histone demethylase was identified by Shi et al. [184]. Histones are part of chromatin
and aid in the packaging of DNA into the chromosomes [185]. DNA winds around histones
like spools, forming nucleosomes [186]. Histones affect gene regulation by chemical
modifications along the N-terminal histone tail that protrudes from the histone core around
which the DNA is wound. These chemical modifications consist of phosphorylation,
acetylation, methylation, adenoribosylation, ubiquitylation, and suoylation. While
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phosphorylation and acetylation have long been known to be reversible processes (mediated
by kinases and phosphatases for phosphorylation and acetyltransferases and deacetylases for
actylation), methylation was long thought to be an irreversible process. This changed with the
discovery of two histone demethylases: lysine-specific demethylase-1 (LSD1) [184] and JmjC
domain-containing demethylase-1 (JHDM1) [187]. These two enzymes are capable of
demethylating histone tails, making histone methylation a dynamic process, such as
phosphorylation and acetylation. Since then, other demethylases have been identified,
expanding the class of JmjC domain-containing demethylases to include JHDM3A/JMJD2A,
GASC1/JMJDC, and JHDM2A [188]. LSD1 is limited to the demethylation of dimethylated
and monomethylated lysine. In contrast, JmjC domain-containing demethylases have been
shown to demthylate trimethylated lysine [189–191].

Since histone methylation is linked to a number of important biological processes (stem cell
maintenance and differentiation, X inactivation, and DNA damage response [185,192]), it is
expected that histone demethylation is also involved in these processes. Demethylases can act
as transcriptional repressors due to the fact that methylation of histone H3 activates gene
expression. This implies that inhibitors of demethylases can be used as therapeutic treatments
for diseases that involve improper changes in gene expression, such as cancer [193,194].

3.4.1 Targets—A number of crystal and solution structures of LSD1 have been determined.
The earliest is a solution structure of the SWIRM domain of LSD1 [195], which is comprised
of 6 compact α helices. Stavropoulos et al. [186] presented the crystal structure of LSD1 at 2.9
Å resolution, finding that LSD1 has a highly symmetric, closely packed domain structure, from
which a long helical ̀ tower' domain extends. Yang et al. [196], Yang et al. [197], and Forneris
et al. [198] determined the crystal structure of LSD1 in complex with CoREST, a co-repressor
that, when bound to LSD1, enables demethylation of histone H3 Lys4 (H3-K4) within
nucleosomes. Other crystal structures of LSD1 include the structure of LSD1 at a resolution
at 2.8 Å [199], LSD1 bound to an H3 peptide [200], and LSD1 in complex with
tranylcypromine, a known monoamine oxidase inhibitor [201].

The most prominent member of the JmjC domain-containing demethylase family is JMJD2A.
Chen et al. [202] first reported the crystal structure of JMJD2A with and without α-
ketoglutarate in the presence of Fe(II). The structure of the core domain consists of the JmjN
domain, the JmjC domain, the C-terminal domain, and a zinc-finger motif. Following this,
Chen et al. [203] determined the structures of the catalytic core of JMJD2A in complex with
methylated H3-K36 peptide substrates in the presence of Fe(II). In addition, structures of
JMJD2A-Ni(II)-Zn(II) bound to tri-, di- and monomethyl forms of H3-K9 and the di- and
trimethyl forms of H3-K36 have been reported [204,205]. JMJD2A has also been found to
bind another histone, H4. Lee et al. [206] presented the crystal structures JMJD2A in complex
with the trimethyl form of H3-K4 and JMJD2A in complex with the trimethyl form of H4-
K20, showing that the two histones adopt radically different binding modes. Other JmjC
domain-containing demethylase structures include the DNA binding domain of the H3-K4
demethylase RBP2 [207], the DNA binding domain of JARID1C [208], and solution structure
of JARID1A [209].

Other groups have described the binding of the LSD1/CoREST1/HDAC co-repressor complex
to SUMO-2/3 [210], the binding of HIF-1 α to JMJD1A and JMJD2B [211], and the use of
LSD1 as a potential therapeutic target [212,213].

3.4.2 Inhibitors—A recent review by Mai and Altucci [214] focuses on the chemical aspect
and potential application in cancer therapy of molecules that inhibit not only histone
demethylases but also DNA methyltransferases, histone deacetylases, histone
acetyltransferases, and histone methyltransferases. Culhane et al. [215] identified two peptidic
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inhibitors of LSD1. The first peptide (1) exhibited time-dependent inhibition of LSD1. While
the second peptide (2) did not, it was still moderately potent against LSD1 with an IC50 of 15.6
± 1.7 μM. Table 2 provides the sequences of the two peptides. Schmidt and McCafferty
[188] have studied monoamine oxidase inhibitors (MAOIs) as potential inhibitors of LSD1.
They showed that trans-2-phenylcyclopropylamine (2-PCPA) is the most potent MAOI and
that it is a time-dependent, mechanism-based irreversible inhibitor of LSD1 with an IC50 of
20.7 ± 2.1 μM. In addition, 2-PCPA has been used as template to develop other mechanism-
based inactivators of LSD1 [216].

Rose et al. [217] identified inhibitor scaffolds for JMJD2 histone demethylases. The best
inhibitor (6a) had an IC50 of 1.4 μM. The seven highest-ranked inhibitors based upon enzyme-
inhibitor interactions from this study (6a, 5a, 7, 3, 8, 1c, 1a) are shown in Table 2. Recently,
Hamada et al. [218] designed JHDM inhibitors based upon the crystal structure of JMJD2A
in complex with NGO and histone trimethylated lysine peptide. They tested four compounds
and all showed inhibitory activity against JMJD2 proteins. Other known inhibitors of JHDM
include NGO, succinic acid, and 2,4-lutidinic acid.

3.4.3 Computational Methods—In the literature examined to date, the design of
demethylase inhibitors has been done experimentally, rather than computationally. New small-
molecule inhibitors were designed based upon scaffolds of known demethylase inhibitors.
There are many known crystal and solution structures of demethylases in complex with histones
and various inhibitors, which can be used as templates for computational protein design. Even
though there are no structures of peptidic inhibitors, the knowledge that can be gleaned from
the small-molecule complexes can provide a starting point for computational design.

4 SUMMARY
A number of computational protein design methods were described and recent advances
outlined. These methods included both deterministic (such as DEE, SCMF, and quadratic
assignment-like models) and stochastic (such as Monte Carlo, genetic algorithms, and
combinatorial library approaches) methods, and showed varying incorporation of backbone
flexibility (from rigid backbones and discrete rotamers, to continuous backbones with
continuous rotamer angles). A number of successes using the various computational methods
were highlighted. Reviews on protein design by Floudas [1] and Floudas et al. [2] cite a number
of successes in the area of protein design, from the design of active sites on α-lytic protease to
improve specificity toward the substrate [219] to the design of inhibitors for complement
component C3 [5,6]. Despite these successes, there still remain many challenges for protein
design. These include improved methodologies, such as improved sequence selection using
flexible-backbone templates and simultaneous sequence and structure selection with flexible
templates, and new design applications, such as design of inhibitors or peptides, among others.

Four application domains for computational de novo protein design were described, outlining
potential drug targets. Peptides can be designed to inhibit HIV-1, PNP, USP7, and histone
demethylases. To date, there have been a number of successes with peptidic inhibitors of HIV-1
and histone demethylases, however inhibitors of PNP and USP7 consist only of small-molecule
inhibitors. All four systems have great promise for computational protein design, using the
information of both peptidic and small-molecule inhibitors bound to the target protein as design
templates.
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Table 1

HIV Fusion Inhibitors. Amino Acid letter “B” Denotes the Unnatural Amino Acid α- Aminoisobutyric Acid
(Aib). Cross-Linked Amino Acids are Denoted by the ^ Character. Upper-Case Letters Indicate L-Amino Acids
while Lower-Case Letters Indicate D-Amino Acids

Name Sequence Length IC50(μM) Refs.

(PIE7)3 PEG-(KGACDYPEWQWLCAA)3 45 0.00025 [114]

C34M2 WMEWDREINNYTSLIHS LIEESQNQQeKNEkELL 34 0.00031 [115]

Selzentry Small molecule ligand n/a 0.00040 [113]

C34 WMEWDREINNYTSLIHSLIEESQNQQEKNEQELL 34 0.0006 [116]

Fuzeon YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF 36 0.0037 [114]

Sifuvirtide SWETWEREIENYTRQIYRILEESQEQQDRNERDLLE 36 0.00394 [117,118]

P5 WMEWDREINNYTSLIHSL IEESQNQQEKNEQELLEL DKWASLWNWFNITNWLWYIK 56 0.06 [119]

PIE7 KGACDYPEWQWLCAA 15 0.62 [114]

C14linkmid MTWQ^EWDREIQ^NYT 14 35 [100]

C14Aib MTWBEWDREIBNYT 14 144 [100]

C14wt MTWMEWDREINNYT 14 >500 [100]
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Table 2

Histone Demethylase Inhibitors. The IC50 of 1 was Not Available. Peptides 1 and 2 are Modified at the N-
Terminus. See Culhane et al. [215] for Details

Name Sequence Length IC50 (μM) Ref.

6a small molecule ligand n/a 1.4 [217]

7 small molecule ligand n/a 6.6 [217]

1 QTARKSTGGKAPRKQLA 17 [194,215]

2 QTARKSTGGKAPRKQLA 17 15.6 [215]

2-PCPA small molecule ligand n/a 20.7 [188,197]

8 small molecule ligand n/a 27 [217]

5a small molecule ligand n/a 28 [217]

1a small molecule ligand n/a 78 [217]

1c small molecule ligand n/a 100 [217]

3 small molecule ligand n/a 540 [217]
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