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Although many stochastic models can accurately capture the qualitative epidemic patterns of
many childhood diseases, there is still considerable discussion concerning the basic mechan-
isms generating these patterns; much of this stems from the use of deterministic models to try
to understand stochastic simulations. We argue that a systematic method of analysing models
of the spread of childhood diseases is required in order to consistently separate out the effects
of demographic stochasticity, external forcing and modelling choices. Such a technique is pro-
vided by formulating the models as master equations and using the van Kampen system-size
expansion to provide analytical expressions for quantities of interest. We apply this method
to the susceptible–exposed–infected–recovered (SEIR) model with distributed exposed and
infectious periods and calculate the form that stochastic oscillations take on in terms of the
model parameters. With the use of a suitable approximation, we apply the formalism to ana-
lyse a model of whooping cough which includes seasonal forcing. This allows us to more
accurately interpret the results of simulations and to make a more quantitative assessment
of the predictions of the model. We show that the observed dynamics are a result of a macro-
scopic limit cycle induced by the external forcing and resonant stochastic oscillations about
this cycle.
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1. INTRODUCTION

Traditionally deterministic models have formed the
bedrock of mathematical epidemiology. The standard
approaches such as the susceptible–infected–recovered
(SIR) and the susceptible–exposed–infected–recovered
(SEIR) models (Anderson & May 1991; Keeling &
Rohani 2007) have shaped much of our present day
understanding of recurrent epidemics. Stochasticity
has long been recognized as an important factor
within epidemic modelling, but there is still much
debate as to its precise dynamical role and how it can
be understood from a theoretical point of view
(Bjornstad & Grenfell 2001; Coulson et al. 2004).

The first stochastic simulations of an epidemiological
system were carried out by Bartlett (1957) on the then
new Manchester electronic computer. He was primarily
interested in extinction dynamics (Nasell 1999), but
also recognized that the simple deterministic models
of Hamer (1906) and Soper (1929) would give recurrent
dynamics with the addition of stochasticity; in other
words, that noise could maintain oscillations by con-
stantly perturbing the system away from its steady
state (Aparicio & Solari 2001). The recognition that
external forcing is also important to the dynamics of
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many diseases adds an extra complication (London &
York 1973; Bjornstad et al. 2002; Altizer et al. 2006);
trying to understand how this interacts with stochastic
effects and thus shapes the dynamics of recurrent
epidemics is a challenging problem.

In larger populations, noise has tended to be
regarded as a small perturbation to the underlying
deterministic dynamics, or as something which can
cause switching between different deterministic states
(Schwartz 1985; Earn et al. 2000). However, the idea
that stochasticity plays a more critical role in large
populations has been growing over the past few years
(Higgins et al. 1997; Rohani et al. 1999; Alonso et al.
2007). For instance, the noise due to demographic
stochasticity (noise at the individual level owing to
chance events; Nisbet & Gurney 1982) can excite the
system’s natural frequency, creating a resonance and
giving rise to large structured oscillations, even in
large populations. The signature of this effect has
been detected in real time series data (Bauch & Earn
2003a; Grassly et al. 2005).
1.1. Models

The challenge in epidemic modelling is to form a model
which captures the observed dynamics but also eluci-
dates the mechanisms behind them. The most popular
approach tends to have two steps: first to create a
This journal is q 2010 The Royal Society
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suitable population-level model (PLM), usually in terms
of ordinary differential equations which are determinis-
tic. Next, the corresponding individual-based model
(IBM) is formed, and then simulated, to investigate
any stochastic properties. Logically, the procedure
should be reversed: real populations are finite and the
PLM is always an approximation to the underlying
IBM. Usually, it is assumed that the PLM will be accu-
rate in the limit of large populations, but what is meant
by large must first be defined (Nasell 2002).

Clearly, the IBM, rather than the PLM, should be
adopted as the starting point of an investigation.
Once an IBM has been defined, it is usually studied
using computer simulations. However, simulations are
still inferior in at least one respect to the analysis that
can be carried out on PLMs: general results valid over
a wide range of models and parameters cannot in gen-
eral be established. In addition, many insights and a
deeper understanding can frequently be more readily
obtained from analytical studies than from computer
simulations. Knowledge of the mathematics required
to analyse stochastic models has lagged behind that
used to study nonlinear differential equations. Recently,
more effort has been put into this area (Nasell 2002;
Alonso et al. 2007; Kuske et al. 2007; Keeling & Ross
2008; Ross et al. 2009), although the lack of analytical
studies of IBMs has held back the study of stochastic
and other effects in models of epidemics.

The modelling of whooping cough provides a good
illustration of these points. Whooping cough is a child-
hood disease (Cherry 2005; Crowcroft & Pebody 2006),
which can be described by the SEIR formalism
(Hethcote 1997). In England and Wales, before mass
vaccination, the time series of case reports shows
dynamics which are strongly multiennial, but after vac-
cination in the 1950s quite regular 3.5–4 year epidemic
cycles occur (Fine & Clarkson 1986; Rohani et al. 1999).
All suitably parametrized deterministic PLMs fail to
capture the correct dynamics, but IBMs produce quali-
tatively correct patterns (Hethcote 1998; Rohani et al.
1999). Stochasticity is therefore important, but its pre-
cise role has been hard to quantify (Coulson et al. 2004).
The work which has been carried out has been an amal-
gam of analytical work on the PLM and simulations of
the IBM (Keeling et al. 2001; Rohani et al. 2002). While
this has yielded valuable insights, fundamentally one is
left with the problem of interpreting stochastic simu-
lations in terms of deterministic results. More
recently, Nguyen & Rohani (2008) have proposed that
an SEIR model, with realistically distributed exposed
and infectious periods, can capture the qualitative
dynamics of whooping cough. The mechanism behind
the dynamics is multiple coexisting attractors (Earn
et al. 2000); noise plays a secondary role of switching
the system between these different deterministic states.
1.2. Methodology

A method which begins from a mathematical formu-
lation of the IBM, and, through a simple and
straightforward procedure, gives analytical results
would be a valuable tool in the investigation of the
SIR, SEIR and related models. Such a method exists,
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and was developed by van Kampen (1992) in statistical
physics nearly 50 years ago. It has been applied to
understand stochastic amplification and other effects
in ecological models (Alonso & McKane 2002;
McKane & Newman 2005), while other authors have
used similar methods in a more mathematically rigorous
context to investigate population dynamics (Pollett
1990; Ross 2006). Within epidemiology, it has only
been used for investigating relatively simple models
(Nasell 1999; Alonso et al. 2007; Black et al. 2009;
Dangerfield et al. 2009).

In this paper, we apply the van Kampen method to
the SEIR model with distributed exposed and infectious
periods (Lloyd 2001; Keeling & Grenfell 2002; Wearing
et al. 2005), which has recently been employed as a
more realistic model of epidemics (Conlan & Grenfell
2007; Ferrari et al. 2008; Nguyen & Rohani 2008).
The essence of van Kampen’s method is an expansion
in 1=

ffiffiffiffiffi

N
p

, where N is the number of individuals in the
population. In the limit where N is very large, stochastic
fluctuations become unimportant and the equations
describing the model approach the PLM. The method
determines these, rather than postulating them phe-
nomenologically, but it also provides a stochastic
correction to the equations of the PLM which takes
the form of a set of linear stochastic differential
equations. It is the analysis of these equations which
allows one to accurately interpret the results of simu-
lations and to trace back the effects seen to the
mechanisms involved, something which has previously
proved difficult to do.

This method is especially powerful when studying the
staged SEIR model. By deriving the theoretical power
spectrum, we can distinguish the effects of the more rea-
listically distributed periods from the other factors such
as immigration and finite size effects. This allows us to
give quantitative results for a broad range of parameters
very quickly and easily, which would otherwise need
large amounts of simulation time to achieve.

The rest of this paper is split into four sections: in §2,
we give an overview of the stochastic SEIR model with
distributed exposed and infectious periods and our
method of analysis. Section 3 details our results and
we discuss the impact of the effect of changing the var-
iances of the distributions on the form of the power
spectrum. In §4, we use our methods to reinterpret
the dynamics of a seasonally forced model of whooping
cough studied by Nguyen & Rohani (2008), and we
conclude in §5.
2. THE STAGED SEIR MODEL

In the standard SEIR model, each individual within the
population belongs to one of four classes: susceptible,
exposed (infected but not yet infectious), infectious
and recovered (Anderson & May 1991; Keeling &
Rohani 2007). The usual assumption is that the exposed
and infectious periods are exponentially distributed;
thus, the probability of moving from one class to
another is independent of the time spent in that class.
This is unrealistic and in general the probability of
recovery will depend quite strongly on the time since



Table 1. The reactions defining the staged SEIR model,
where a ¼ 1, . . . , L and a ¼ 1, . . . , M. The full rates and
equations are given in the electronic supplementary material.

event transition

infection S þ Ia �!
b

E1 þ Ia

immigration S �!h E1

incubation Ea�!
Ms

Eaþ1

EM �!
Ms

I1

recovery Ia �!
Lg

Iaþ1

IL�!
Lg

R

birth/death ðIa;Ea;RÞ�!
m

S
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infection (Hope-Simpson 1952; Bailey 1956). This can
be remedied by splitting the exposed and infectious
classes into a number of subclasses or stages, which
are traversed sequentially (Andersson & Britton 2000;
Lloyd 2001; Keeling & Grenfell 2002; Nguyen &
Rohani 2008). If the number of stages is M and L in
the exposed and infectious classes, respectively, with
rates Ms and Lg between them, then we obtain
gamma-distributed periods (Cox & Miller 1965;
Anderson & Watson 1980; Wearing et al. 2005).

The gamma distribution is convenient as, with this
particular formulation, the mean exposed and infec-
tious periods remain fixed at 1/s and 1/g, while the
variances can be changed with the parameters M and L.
If we set M ¼ L ¼ 1, we regain the exponential distri-
butions of the standard SEIR model. As the number
of stages is increased, the gamma distribution becomes
more central (smaller variance) and an individual
remains on average exposed/infectious for a more con-
stant amount of time. For large values of M or L, the
gamma distribution is approximately normal, and the
periods approach fixed duration as M, L!1

(Grossman 1980).
Birth and death rates are set equal to m, and these

events are linked, so that the total population N remains
constant. This allows for the elimination of the variable
relating to recovered individuals. Frequently, birth and
death processes are assumed to happen at the same
rate, but remain as distinct events. This still results in
fluctuations in the total population size for finite sys-
tems. By linking these events at the stochastic level,
the population size remains constant at any system
size, so that we can still eliminate the variable relating
to recovered individuals. This only has an effect on the
dynamics for very small populations.

In the analytical approach, seasonal forcing is not
explicitly included (Fine & Clarkson 1982; Aron &
Schwartz 1984; Keeling et al. 2001) and b, the contact
rate between individuals, is taken as a constant. In §4,
we show how a model with forcing can be analysed
using a suitable approximation scheme. We also include
a small immigration term h, allowing for infectious
imports (Hagenaars et al. 2004; Alonso et al. 2007).
The formulation we use corresponds to a commuter
model, where a susceptible has the possibility of catch-
ing the disease while away from the main population,
and then returning (Engbert & Drepper 1994). Vacci-
nation is simple to incorporate, as it can be shown in
the deterministic version of the model that vaccinating
a proportion p of the population at birth scales b by
(1 2 p), and this remains true for the stochastic version
(Earn et al. 2000). The processes which define the
stochastic system are given in table 1.

The model can now be investigated by two methods:
simulation with Gillespie’s (1976) algorithm, and ana-
lytically by constructing the master equation
corresponding to the processes given in table 1 and per-
forming van Kampen’s system-size expansion (van
Kampen 1992; Black et al. 2009). Both methods allow
the power spectrum of the fluctuations of the infective
time series to be found. Full technical details of the
model and analysis are given in the electronic
supplementary material.
J. R. Soc. Interface (2010)
3. RESULTS

3.1. The power spectrum

For orientation, we first show in figure 1 a typical simu-
lation of the stochastic model with parameters
corresponding to measles as given by Keeling & Grenfell
(2002). We see strong stochastic oscillations caused by
the amplification of the demographic stochasticity.
The theoretical power spectrum for the same par-
ameters is shown in figure 2. The effect of using the
more realistic gamma distributions, as compared with
the exponentially distributed model, is to shift the
peak frequency and increase the amplitude of the spec-
trum. These effects were first described for the SIR
model with realistic recovery profiles by Simoes et al.
(2008) and Black et al. (2009).

The deterministic version of this model (derived in
the limit N!1) shows weakly damped oscillations
tending to a stable fixed point (Hethcote & Tudor
1980; Lloyd 2001; see figure 1). A linear stability analy-
sis yields equations for the eigenvalues which allows for
the approximate calculation of the damping time and
frequency of these oscillations (Grossman 1980; Lloyd
2001). By contrast, the van Kampen method gives
exact analytical expressions (in terms of the frequency,
v) for the power spectrum, allowing precise calculation
of the peak frequency and amplification. It is possible to
give these expressions explicitly in terms of the original
parameters of the model, but they would be so unwieldy
when given in this way that they would be of little use.
They can be constructed from the information given in
the electronic supplementary material, but we prefer to
represent them graphically where the nature of the
oscillations is clearer to see.

Although the eigenvalues of the deterministic
system, to a large extent, determine the form (peak fre-
quency and amplitude) of the power spectrum of the
fluctuations (see the electronic supplementary
material), this is not exact, as the demographic stochas-
ticity can shift the peak frequency away from that
predicted from the deterministic equations (Alonso
et al. 2007; Keeling & Ross 2008). It does, however,
form a good approximation for epidemic models of
this kind.

The spectrum is normalized so that square root of
the amplitude is equal to the root mean square of the
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Figure 1. A typical stochastic realization of the staged SEIR
model. The dashed curve shows the deterministic result; see
the electronic supplementary material for these equations.
Parameters are b ¼ 3.4 d21, s ¼ 1/8 d, M ¼ 8, g ¼ 1/5 d,
L ¼ 5, m ¼ 5.5 � 1025 d21, h ¼ 1026 d21 and N ¼ 106.
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Figure 2. Theoretical power spectrum (solid curve) for the
staged SEIR model parametrized for measles, with results
from simulations (open circles). The dashed curve is the stan-
dard SEIR result, assuming exponentially distributed exposed
and infectious periods. The shift in period is from 1.9 to
2.1 years. Transient periods are discarded before evaluating
the numerical spectrum; parameters are as in figure 1.
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fluctuations. Essentially, the spectrum is seen to be very
similar to that of the SIR model; the parameter range
for which large peaks in the power spectrum occur is
also where the deterministic model shows large
transients (Alonso et al. 2007).
3.2. Effect of the variance of the distributions
on the power spectrum

In this section, we examine the effect of the parameters
M and L on the form of the power spectrum, which con-
trol the variances of the gamma distributions. The
behaviour is obviously parameter dependent, but, if
we hold the intrinsic parameters fb, s, g, d, hg fixed,
then we can make a number of observations.

Independent of the other parameters, changing M
has a simple effect on the power spectrum. Increasing
M (decreasing the variance of the exposed period distri-
bution) increases the amplitude of the spectrum with a
negligible change to its frequency. This is illustrated in
figure 3. The longer the exposed period, as compared
with the infectious period, and the larger L, the larger
the increase in amplitude. The largest changes happen
for the smaller values of M, typically less than 10,
where the exposed period distribution changes the
most.

The effect of L on the power spectrum is more com-
plicated and can change both the peak frequency and
amplitude. Firstly, independent of M, increasing L
shifts the peak frequency of the spectrum to higher
values. The effect on the amplitude depends on whether
the infectious period is longer than, approximately
equal to or shorter than the exposed period. When
the infectious period is longer than the exposed period
(s . g), then the results are similar to that of the
SIR model with gamma-distributed infectious periods
(Lloyd 2001; Black et al. 2009). Thus, increasing L
increases both the amplitude and the peak frequency
of the spectrum (figure 4). Again, the largest changes
are seen for smaller values of L.

If the exposed period is longer than the infectious
period (g . s), as with measles (Anderson & May
1991), then there is still an increase in frequency with
increasing L, but a decrease in amplitude (figure 3).
J. R. Soc. Interface (2010)
When the two average periods are approximately equiv-
alent (g � s), the behaviour is not as easy to quantify
and the amplitude is not necessarily an increasing func-
tion of L (Lloyd 2001); however, any shifts tend to be
small.
4. WHOOPING COUGH MODEL

In this section, we apply our analysis to the seasonally
forced, staged SEIR model, proposed by Nguyen &
Rohani (2008) as an explanation for the long-term
dynamics of whooping cough before and after mass
vaccination. Their model includes seasonal forcing
by assuming that the contact rate, b(t), follows a
term-time pattern (Schenzle 1985; Keeling et al. 2001),

bðtÞ ¼ b0ð1þ b1 termðtÞÞ; ð4:1Þ

where b0 is the baseline contact rate, b1 the magnitude
of forcing and term(t) is a periodic function that
switches between 1 during school terms and 21
during holidays. We use the England and Wales term
dates as set down by Keeling et al. (2001). The problem
now explicitly includes time dependence, which is
simple to include in simulations with appropriate
changes to the Gillespie algorithm (Anderson 2007).
It is also possible to include time dependence in the
master equation, but this introduces considerable com-
plications in the derivation of the power spectrum,
which we will consider in a forthcoming publication.
Instead, here we replace b(t) in the master equation
with the average effective b, defined as

kbl ¼ b0½ psð1þ b1Þ þ ð1� psÞð1� b1Þ�; ð4:2Þ

where ps is the fraction of the time spent in school, as
opposed to on holiday; for the term dates, we use ps ¼

0.75. As we show later, simulations confirm this is a
good approximation.

All other parameters are taken from Nguyen &
Rohani (2008). Before vaccination R0 ¼ 17, from
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Figure 3. The (a) amplitude and (b) peak frequency of the analytical power spectrum as a function of M, the exposed period
variance parameter. Increasing M (decreasing the variance of the exposed period distribution) increases the amplitude of the
spectrum, while having negligible effect on the peak frequency. The intrinsic parameters are typical of measles as given in
figure 1. In this example, the exposed period is longer than the infectious period so the spectra with larger L have smaller
amplitudes. Filled diamond, L ¼ 10; filled square, L ¼ 3; filled circle, L ¼ 1.
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Figure 4. The (a) amplitude and (b) peak frequency of the analytical power spectrum as a function of L, where the infectious
period is longer than the exposed period. Increasing L leads to an increase in the peak frequency and amplitude of the spectrum.
The change in frequency is independent of M. Parameters are typical of whooping cough: b ¼ 1.2 d21, s ¼ 1/8 d, g ¼ 1/14 d,
m ¼ 5.5 � 1025 d21 and h ¼ 1026 d21. Filled diamond, M ¼ 10; filled square, M ¼ 3; filled circle, M ¼ 1.
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which we find kbl � gR0 ¼ 1.21. After vaccination,
p=0.6 so kblvac ;(1 2 p)kbl ¼ 0.48 (Earn et al. 2000).
Assuming b1 ¼ 0.25 and using equation (4.2), we find
that b0 ¼ 1.075 pre-vaccination and bvac

0 ¼ 0:427.
These are lower than kbl because children spend more
time in school when b(t) is higher. The intrinsic par-
ameters, estimated from household incubation data,
are 1/s ¼ 8 days, M ¼ 1, 1/g ¼ 14 days, L ¼ 4 and
m ¼ 5.5 � 1025 per day. Note that there is a typogra-
phical error in the caption of fig. 6 of Nguyen &
Rohani (2008), which should read n ¼ 4, m ¼ 1.
These authors assume a small rate of infectious imports
of d ¼ 10 per million per year. We can convert this to
our commuter model formulation of immigration by
noticing that to a good approximation h � (d/N)R0

(Keeling & Rohani 2007, p. 210). This gives h ¼ 5 �
1027 per day.

Figure 5 shows the predicted analytical spectra
before and after vaccination. The results of using a
gamma-distributed infectious period, as compared
with a standard exponential, is to shift the peak
J. R. Soc. Interface (2010)
frequencies, while only slightly increasing the ampli-
tudes of the power spectra. Further increases in L
have much smaller effects on the power spectrum
(figure 4). Figure 5 also shows the peak frequencies
from simply carrying out a deterministic analysis. As
can be seen for this choice of parameters, demographic
stochasticity causes only very small shifts in frequency
away from those predicted by the deterministic theory
(Alonso et al. 2007).

Figure 6 shows power spectra from simulations of the
staged SEIR model which include the time-dependent
b, along with the analytical predictions. The simu-
lations were initialized near to the fixed point of the
unforced system, and transients were allowed to damp
down before the data for the power spectra were col-
lected. Other initial conditions were tried, but it was
found that the dynamics always settled into the
annual attractor. As the transients have essentially
the same frequency as the stochastic oscillations, it is
important to make sure these have damped down,
otherwise the stochastic peak in the power spectrum
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Figure 5. Comparison of the analytical power spectra for
whooping cough using the SEIR (dashed curves) and staged
SEIR (solid curves) models. Parameters are given in the
main text. Using the staged version shifts the peak periods
from 2.7 to 2.4 years pre-vaccination and from 4.5 to 4 years
post-vaccination. The vertical lines show the peak frequencies
from an analysis of just the deterministic model.
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will appear enhanced. The length of each time series
was about 700 years; this is certainly very large, but
was chosen to facilitate a good resolution on the
power spectrum without aliasing (Priestley 1982).
The simulations show an annual peak at 1 year,
which comes from the macroscopic limit cycle induced
by the external seasonal forcing, and a stochastic peak
at lower frequencies. In general, there are more peaks
at 1/2, 1/3, etc. years, but for clarity these are not
shown.

Pre-vaccination, the analytical prediction is good at
lower frequencies, but there is enhancement, giving a
higher amplitude and very slight shift in frequency.
This is in contrast to the post-vaccination model
where the analytical curve provides a very good fit,
but still somewhat enhanced. The amount of power
under each peak depends on the population size. The
annual macroscopic peak scales with N, while the sto-
chastic part scales with N1/2. In the post-vaccination
case, the stochastic peak is larger and the annual
peak is smaller by a factor of a third than in the
pre-vaccination simulations.

In the time series, the dominant period can appear to
change. This is due to the superposition of the macro-
scopic limit cycle and stochastic fluctuations. The
power of the stochastic oscillations is spread out over
a range of frequencies. Although there is a dominant
frequency, at certain times the stochastic oscillations
will be of a much longer/shorter frequency, with a
much reduced amplitude. This allows the macroscopic
signal to be seen more strongly, thus generating the
effect of a changing period.

Simulating the system at smaller population sizes
results in small shifts to the peak frequencies (Simoes
et al. 2008), but does not alter the qualitative picture.
For the whooping cough model, significant shifts
occur at N , 106. Taking a smaller forcing magnitude
(e.g. b1 ¼ 0.15) results in significantly better agreement
with the analytical predictions at lower population
sizes.
J. R. Soc. Interface (2010)
5. DISCUSSION

We have applied the van Kampen method to the more
realistic staged SEIR epidemic model. The ability to
derive the exact power spectrum gives considerable
insight, especially with regards to the effects of the par-
ameters M and L on the form of the spectrum. Both
Lloyd (2001) and Keeling & Grenfell (2002) show that
gamma-distributed models are much more sensitive to
seasonal forcing, in the sense that the bifurcation to
biennial dynamics happens at lower forcing magnitudes,
than the basic exponential model. Lloyd (2001) attri-
butes this increased sensitivity to a destabilization of
the model, but our analysis goes further to show that
a distributed infectious period also tends to increase
the natural frequency of the system. We conjecture
that it is this effect rather than the decreased stability
that makes these models more sensitive to seasonal for-
cing. This should be easy to test within this framework
as, with the appropriate choice of parameters, we can
tune the size and frequency of the power spectrum. It
should be possible to see whether a model with only a
distributed exposed period is more sensitive to forcing,
as this would be destabilized but with the same natural
frequency.

It should also be feasible to include other heterogene-
ities such as spatial structure (Hagenaars et al. 2004;
Lloyd & Jansen 2004) or age structure (Schenzle
1985; Hethcote 1997), or further complications such
as waning immunity (Grenfell & Anderson 1989). The
method does start to break down for smaller values of
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N, where deviations from the predicted spectrum are
seen. This is due to the proximity of the fade-out
boundary at I ¼ 0. This could be overcome by going
to the next order in the expansion, which would give
corrections to the spectrum which depend on the
population size (van Kampen 1992).

The review article by Coulson et al. (2004) defines two
categories for the role of noise: active and passive. These
have been characterized as follows (Nguyen & Rohani
2008). Active noise is where ‘stochasticity interacts
with the nonlinearity in the deterministic clockwork pro-
ducing patterns that cannot result from either factor
alone’. Passive noise is where ‘stochasticity influences
the transition among different deterministic states’. Pre-
vious work on whooping cough models formulated with
the basic SEIR model (Rohani et al. 1999, 2002; Keeling
et al. 2001) concludes that the noise is of the ‘active’ type
and plays a major role in the observed dynamics. This is
largely due to the failure of the deterministic model to
predict anything other than annual dynamics. In con-
trast, Nguyen & Rohani (2008) conclude that a
realistic deterministic staged SEIR model can account
for the qualitative patterns, due to the existence of
multiple coexisting attractors, which are not present in
the basic SEIR model. This explanation reverts to a pas-
sive interpretation of noise, which kicks the system
between deterministic states. All these models have
been shown to be consistent with the observed whooping
cough dynamics, but a persuasive explanation for the
mechanisms has been lacking.

Our approach, which allows us to be much more
quantitative, can encompass both older SEIR results
and the newer staged SEIR model of Nguyen &
Rohani (2008). For the unforced system, there are
strong stochastic oscillations about a macroscopic
fixed point. External forcing creates a macroscopic
annual limit cycle with stochastic oscillations about it.
For the case of whooping cough, the oscillations about
the limit cycle are very similar to those of the unforced
model and the two components of the power spectrum,
the macroscopic (from the limit cycle) and the stochas-
tic, can be viewed as approximately independent of each
other. Using the staged SEIR model changes this pic-
ture only in that it shifts the frequency of the
stochastic oscillations; it does not change the basic
nature of the dynamics.

Our results argue against multiple coexisting attrac-
tors in the stochastic whooping cough system.
Preliminary results show that the bifurcation diagrams
of Nguyen & Rohani (2008) are not robust to the
inclusion of immigration. Even small amounts as used
in the simulations depress the onset of period 3 attrac-
tors which only appear at significantly higher
magnitudes of forcing. This effect, whereby immigra-
tion can destroy longer period attractors, has been
reported before (Engbert & Drepper 1994; Ferguson
et al. 1996; Alonso et al. 2007). One can speculate
that the lack of immigration in the deterministic analy-
sis of Nguyen & Rohani (2008) might explain their
findings; alternatively there may be other stable sol-
utions of the deterministic equations, but that the
noise is never strong enough to move the system
towards them.
J. R. Soc. Interface (2010)
Our interpretation, in many ways, echoes the find-
ings of Bauch & Earn (2003b). They find resonant
and non-resonant peaks in their power spectra of real
time series which correspond to what we term the
stochastic and macroscopic peaks. They also show
that the natural damping period of the transients near
the annual attractor is well approximated by the damp-
ing period from the unforced deterministic model
(Bauch & Earn 2003a). Our analysis goes further to
show that the power spectra are also well approximated
by their unforced counterparts.

At the heart of the van Kampen approach is a split-
ting of the dynamics into two components: a
macroscopic part and a stochastic correction to this.
In the case of the seasonally forced model, the macro-
scopic part is a limit cycle and the stochastic
corrections are oscillations about this limit cycle.
Firstly, we must ask whether the macroscopic part is
really a limit cycle, that is, whether the stable solution
of the deterministic equations is a limit cycle or whether
the multiple attractors, unstable limit cycles, invasion
orbits, etc. found or postulated by previous authors
have a role or appear in the fully stochastic model.
One has to begin from a finite-event-driven model to
study these questions, but the problem of disentangling
these effects in the time series and power spectra
remains. This is where the systematic approach of the
system-size expansion is invaluable, because it allows
us to separate out the different structures which are
seen in the power spectrum. So, for instance, one
would expect to see a 3 year peak in the power spectrum
if there was a stable 3 year attractor in the model. We
also note that the van Kampan expansion frees us
from the need to introduce concepts such as invasion
orbits (Rand & Wilson 1991; Rohani et al. 2002),
which reflect the local geometry around an attractor.
Such structure is automatically encoded into the van
Kampen expansion and so there is no need to explicitly
consider it.

It is surprising that the predictions from the unforced
model remain so good in the presence of forcing—there
is no a priori reason to expect this to be true. There are
some deviations when the forcing is large, but we expect
these would be explained by a theoretical treatment in
which the time dependence of b(t) given by equation
(4.1) was not replaced by the effective value (equation
(4.2)). This more complete theory would tell us whether
these deviations are from stochastic oscillations about
the limit cycle or due to some macroscopic effect such
as the presence of an unstable multiennial limit cycle
(Boland et al. 2009). The fact that we get such a good
fit using approximation (4.2) suggests the former expla-
nation. We do not expect the current approach to
provide a good fit to forced measles spectra, as in that
case there is almost certainly a more complex macro-
scopic dynamics, namely a biennial limit cycle, to take
into account. A completely systematic approach to
stochastic perturbations of forced systems, which is cur-
rently being developed, should be able to elucidate
these points. However, we believe that the good agree-
ment which we have found in this paper between the
simulations of the fully time-dependent model and the
van Kampen expansion using the effective contact
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rate (4.2) shows the essential correctness of our
approach. It also clarifies several aspects of the
dynamics of epidemic models of the SEIR type.

A.B. would like to thank the EPSRC for the award of a
postgraduate grant.
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